


SCHAUM’S OUTLINE OF 

THEORY AND PROBLEMS 


OF 

PROGRAMMING 


WITH 


Second Edition 

BYRON S. GOTTFRIED, Ph.D. 
Professor of Industrial Engineering 

University ofPittsburgh 

SCHAUM’S OUTLINE SERIES 
McGRAW -HILL 

New York St. Lauis San Francisco Auckland Bogota’ Caracas 
Lisbon London Madrid Mexico City Milan Montreal 

New Delhi San Juan Singapore 
Sydney Tokyo Toronto 

pRan!
Approved
I share this book for educational purpose only.
If you really like this book please buy it and help the authors, they deserve it.
All The Best. :)

Book link: www.slideshare.net/pran93
Facebook: www.facebook.com/pran93



In memory of Sidney Gottfried: 
father, teacher and friend 

BYRON S. GOTTFRIED is a Professor of Industrial Engineering and Academic 
Director of the Freshman Engineering Program at the University of Pittsburgh. He 
received his Ph.D. from Case-Western Reserve University in 1962, and has been a 
member of the Pitt faculty since 1970. His primary interests are in the areas of computer 
simulation, software engineering, and the use of new educational paradigms. He is the 
author of eleven college textbooks, including Programming with C, Programming with 
Pascal and Programming with Structured BASIC in the Schaum’s Outline Series. 

DEC is a registered trademark of Digital Equipment Corporation. 
IBM is a registered trademark of International Business Machines Corporation. 
IBM PC-AT is a trademark of International Business Machines Corporation. 
Microsoft is a registered trademark of Microsoft Corporation. 
Quick C and MS-DOS are registered trademarks of Microsoft Corporation. 
Turbo C and Turbo C++ are registered trademarks of Borland International, Inc. 
VAX is a trademark of Digital Equipment Corporation. 
VMS is a trademark of Digital Equipment Corporation. 

Schaum’s Outline of Theory and Problems of 
PROGRAMMING WITH C 

Copyright 0 1996, 1990 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United 
States of America. Except as permitted under the Copyright Act of 1976, no part of this publication may be 
reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the 
prior written permission of the publisher. 

4 5 6 7 8 9  l o l l  1213 1415 1617 18 1 9 2 0 P R S P R S 9 0 1 0 9 8  

ISBN 0-07-024035-3 

Sponsoring Editors: John Aliano, Arthur Biderman 
Production Supervisor: Suzanne Rapcavage 
Editing Supervisor: Maureen Walker 

Library of Congress Cataloging-in-Publication Data 

Gottfried, Byron S., date 

Schaum’s outline of theory and problems of programming with C / 

Byron S. Gottfried. -- 2nd ed. 

p. cm. -- (Schaum’s outline series) 

ISBN 0-07-024035-3 
1.  C (Computer program language) I.  Title. 11. Series. 

QA76.73.Cl5G67 1996 

005.13’3--dc20 96-2724 

CIP 

McGraw-Hill iz 
.4Diiwon of TheMcGraw-HiUCompanies 



Preface 


C has continued to increase in popularity since the publication of the first edition of this book in 1990. 
Most newer compilers provide numerous extensions to the 1989 ANSI standard, as well as a full-feature 
graphical programming environment including a debugger, a project manager, and extensive on-line help. 
Moreover, interest in C has not been diminished by the emergence of C++, since the features found in this 
newer programming language require a solid background in C. 

This second edition provides instruction in the use of the C language, within the context of contemporary 
C programming style. It includes complete and understandable explanations of the commonly used features of 
C, including most of the features included in the current ANSI standard. In addition, the book presents a 
contemporary approach to programming, stressing the importance of clarity, legibility, modularity and 
efficiency in program design. Thus, the reader is exposed to the principles of good programming practice as 
well as the specific rules of C. Complete C programs are presented throughout the text, beginning with the 
first chapter. The use of an interactive programming style is emphasized throughout the text. 

The book can be used by a wide reader audience, ranging from beginning programmers to practicing 
professionals. It is particularly well suited for advanced secondary or beginning college-level students as a 
textbook for an introductory programming course, as a supplementary text, or as an effective independent- 
study guide. 

Many examples are included as an integral part of the text. These include numerous programming 
examples of varying complexity, as well as illustrative drill-type problems. The sample programs conform to 
the ANSI C standard. Many are solved using other programming languages in the companion Schaum’s 
Outlines, thus providing the reader with a basis of comparison among several popular languages. 

Sets of review questions and drill problems are provided at the end of each chapter. The review questions 
enable readers to test their recall of the material presented within each chapter. They also provide an effective 
chapter summary. The drill problems reinforce the principles presented within each chapter. The reader 
should solve as many of these problems as possible. Answers to most of the drill problems are provided at the 
end of the book. 

In addition, problems that require the writing of complete C programs are presented at the end of each 
chapter, beginning with Chap. 5 .  The reader is encouraged to write and execute as many of these programs as 
possible. This will greatly enhance the reader’s self-confidence and stimulate interest in the subject. 
(Computer programming is a demanding skill, much like creative writing or playing a musical instrument. As 
such, it cannot be learned simply by reading a textbook!) 

Most of these programming problems require no special mathematical or technical background. Hence, 
they can be solved by a broad range of readers. When using this book in a programming course, the instructor 
may wish to supplement these problems with additional programming exercises that reflect particular 
disciplinary interests. 

A number of changes have been made to the earlier edition. Chapter 5 has been rewritten, illustrating the 
use of C within Borland International’s Turbo C++ programming environment, and the material on debugging 
techniques has been rewritten and expanded. The topics in Chap. 6 have been rearranged to correspond to the 
order in which they are presented in most introductory programming courses, with branching preceding 
looping. Some earlier material on the use of functions, reflecting an older programming style, has been 
removed from Chap. 7, and a section on dynamic memory allocation has been added to Chap. 10. Stylistic 
changes have been made in most programming examples; in particular, programs involving functions now 
emphasize full function prototyping, as recommended by the current ANSI standard. 

All of the programming examples and many of the end-of-chapter programming problems have been 
solved on an Intel-type (“IBM-compatible”) personal computer, using several different versions of Borland 
International’s Turbo C++ compiler. In addition, some of the examples were run on a Digital Equipment VAX 
computer, using the versions of C provided by DEC for their VMS operating system. 
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iv PREFACE 

The principal features of C are summarized in Appendixes A through H at the end of the book. This 
material should be used frequently for ready reference and quick recall. It is particularly helphl when writing 
or debugging a new program. 

BYRONS. GOITFRIED 
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Chapter 1 


Introductory Concepts 

This book offers instruction in computer programming using a popular, structured programming language 
called C. We will learn how programs can be written in C. In addition, we will see how problems that are 
initially described in very general terms can be analyzed, outlined and finally transformed into well-organized 
Cprograms. These concepts are demonstrated in detail by the many sample problems that are included in the 
text. 

1.1 INTRODUCTION TO COMPUTERS 

Today’s computers come in many different forms. They range from massive, multipurpose mainJFames and 
supercomputers to desktop-size personal computers. Between these extremes is a vast middle ground of 
minicomputers and workstations. Large minicomputers approach mainframes in computing power, whereas 
workstations are powerful personal computers. 

Mainframes and large minicomputers are used by many businesses, universities, hospitals and 
government agencies to carry out sophisticated scientific and business calculations. These computers are 
expensive (large computers can cost millions of dollars) and may require a sizeable staff of supporting 
personnel and a special, carefully controlled environment. 

Personal computers, on the other hand, are small and inexpensive. In fact, portable, battery-powered 
“laptop” computers weighing less than 5 or 6 pounds are now widely used by many students and traveling 
professionals. Personal computers are used extensively in most schools and businesses and they are rapidly 
becoming common household items. Most students use personal computers when learning to program with C. 

Figure 1.1 shows a student using a laptop computer. 

Fig. 1.1 

1 
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Despite their small size and low cost, modem personal computers approach minicomputers in computing 
power. They are now used for many applications that formerly required larger, more expensive computers. 
Moreover, their performance continues to improve dramatically as their cost continues to drop. The design of 
a personal computer permits a high level of interaction between the user and the computer. Most applications 
(e.g., word processors, graphics programs, spreadsheets and database management programs) are specifically 
designed to take advantage of this feature, thus providing the skilled user with a wide variety of creative tools 
to write, draw or carry out numerical computations. Applications involving high-resolution graphics are 
particularly common. 

Many organizations connect personal computers to larger computers or to other personal computers, thus 
permitting their use either as stand-alone devices or as terminals within a computer network. Connections over 
telephone lines are also common. When viewed in this context, we see that personal computers often 
complement, rather than replace, the use of larger computers. 

1.2 COMPUTER CHARACTERISTICS 

All digital computers, regardless of their size, are basically electronic devices that can transmit, store, and 
manipulate information (Le., data). Several different types of data can be processed by a computer. These 
include numeric data, character data (names, addresses, etc.), graphic data (charts, drawings, photographs, 
etc.), and sound (music, speech patterns, etc.). The two most common types, from the standpoint of a 
beginning programmer, are numeric data and character data. Scientific and technical applications are 
concerned primarily with numeric data, whereas business applications usually require processing of both 
numeric and character data. 

To process a particular set of data, the computer must be given an appropriate set of instructions called a 
program. These instructions are entered into the computer and then stored in a portion of the computer’s 
memory. 

A stored program can be executedat any time. This causes the following things to happen. 

1. A set of information, called the input data, will be entered into the computer (from the keyboard, a 
floppy disk, etc.) and stored in a portion of the computer’s memory. 

2. The input data will be processed to produce certain desired results, known as the output data. 

3 .  The output data, and perhaps some of the input data, will be printed onto a sheet of paper or 
displayed on a monitor (a television receiver specially designed to display computer output). 

This three-step procedure can be repeated many times if desired, thus causing a large quantity of data to 
be processed in rapid sequence. It should be understood, however, that each of these steps, particularly steps 2 
and 3, can be lengthy and complicated. 

EXAMPLE 1.1 A computer has been programmed to calculate the area of a circle using the formula a = 7cr 2, given a 
numeric value for the radius r as input data. The following steps are required. 

1. Read the numeric value for the radius of the circle. 

2. Calculate the value of the area using the above formula. This value will be stored, along with the input data, in 
the computer’s memory. 

3. Print (display) the values of the radius and the corresponding area. 

4. stop. 

Each of these steps will require one or more instructions in a computer program. 

The foregoing discussion illustrates two important characteristics of a digital computer: memory and 
capability to be programmed. A third important characteristic is its speed and reliability. We will say more 
about memory, speed and reliability in the next few paragraphs. Programmability will be discussed at length 
throughout the remainder of this book. 
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Memory 

Every piece of information stored within the computer’s memory is encoded as some unique combination of 
zeros and ones. These zeros and ones are called bits (binary digits). Each bit is represented by an electronic 
device that is, in some sense, either “off’ (zero) or “on” (one). 

Small computers have memories that are organized into 8-bit multiples called bytes, as illustrated in Fig. 
1.2. Notice that the individual bits are numbered, beginning with 0 (for the rightmost bit) and extending to 7 
(the leftmost bit). Normally, a single character (e.g., a letter, a single digit or a punctuation symbol) will 
occupy one byte of memory. An instruction may occupy 1, 2 or 3 bytes. A single numeric quantity may 
occupy 1 to 8 bytes, depending on its precision (i.e., the number of significant figures) and its type (integer, 
floating-point, etc.). 

bit number: 7 6 5 4 3 2 1 0  

llImIn 
One byte 

Fig. 1.2 

The size of a computer’s memory is usually expressed as some multiple of 21° = 1024 bytes. This is 
referred to as 1K. Modem small computers have memories whose sizes typically range from 4 to 16 
megabytes, where 1 megabyte (1M) is equivalent to 21° x 21° bytes, or 21° K = 1024K bytes. 

EXAMPLE 1.2 The memory of a personal computer has a capacity of 16M bytes. Thus, as many as 16 x 1024 x 1024 = 

16,777,216 characters and/or instructions can be stored in the computer’s memory. If the entire memory is used to 
represent character data (which is actually quite unlikely), then over 200,000 names and addresses can be stored within the 
computer at any one time, assuming 80 characters for each name and address. 

If the memory is used to represent numeric data rather than names and addresses, then more than 4 million individual 
numbers can be stored at any one time, assuming each numeric quantity requires 4 bytes of memory. 

Large computers have memories that are organized into words rather than bytes. Each word will consist 
of a relatively large number of bits-typically 32 or 36. The bit-wise organization of a 32-bit word is 
illustrated in Fig. 1.3. Notice that the bits are numbered, beginning with 0 (for the rightmost bit) and extending 
to 3 1 (the leftmost bit). 

bitno.: 313029282726252423222120  1918 17 1615 14 13 12 11  10 9 8 7 6 5 4 3 2 1 0 

One 32-bit word 

Fig. 1.3 

Figure 1.4 shows the same 32-bit word organized into 4 consecutive bytes. The bytes are numbered in the 
same manner as the individual bits, ranging from 0 (for the rightmost byte) to 3 (the leftmost byte). 

The use of a 32- or a 36-bit word permits one numeric quantity, or a small group of characters (typically 4 
or 5) ,  to be represented within a single word of memory. Large computers commonly have several million 
words (Le., several megawords) of memory. 
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bitno.: 31302928272625 2423 2221 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

One 4-byte (32-bit) word 

Fig. 1.4 

EXAMPLE 1.3 The memory of a large computer has a capacity of 32M (32,768K) words, which is equivalent to 32 x 

1024 x 1024= 33,554,432 words. If the entire memory is used to represent numeric data (which is unlikely), then more 
than 33 million numbers can be stored within the computer at any one time, assuming each numeric quantity requires one 
word of memory. 

If the memory is used to represent characters rather than numeric data, then about 130 million characters can be 
stored at any one time, based upon 4 characters per word. This is enough memory to store the contents of several large 
books. 

Most computers also employ auxiliary storage devices (e.g., magnetic tapes, disks, optical memory 
devices) in addition to their primary memories. These devices can store more than 1 gigabyte (1  G = 1024M 
bytes) of information. Moreover, they allow information to be recorded permanently, since they can often be 
physically disconnected from the computer and stored when not in use. However, the access time (i.e., the 
time required to store or retrieve information) is considerably greater for these auxiliary devices than for the 
computer's primary memory. 

Speed and Reliability 

Because of its extremely high speed, a computer can carry out calculations within minutes that might require 
many days, perhaps even months or years, if carried out by hand. For example, the end-of-semester grades for 
all students in a large university can typically be processed in just a few minutes on a large computer. 

The time required to carry out simple computational tasks, such as adding two numbers, is usually 
expressed in terms of microseconds (1 psec = 10-6 sec) or nanoseconds (1 nsec = 10-3 psec = 10-9 sec). 
Thus, if a computer can add two numbers in 10 nanoseconds (typical of a modern medium-speed computer), 
100 million (log)additions will be carried out in one second. 

This very high speed is accompanied by an equally high level of reliability. Thus, computers never make 
mistakes of their own accord. Highly publicized "computer errors," such as a person's receiving a tax refund 
of several million dollars, are the result of programming errors or data entry errors rather than errors caused by 
the computer itself. 

1.3 MODES OF OPERATION 

There are two different ways that a large computer can be shared by many different users. These are the batch 
mode and the interactive mode. Each has its own advantages for certain types of problems. 

Batch Processing 

In batch processing, a number of jobs are entered into the computer, stored internally, and then processed 
sequentially. (A job refers to a computer program and its associated sets of input data.) After the job is 
processed, the output, along with a listing of the computer program, is printed on multiple sheets of paper by a 
high-speed printer. Typically, the user will pick up the printed output at some convenient time, after the job 
has been processed. 

In classical batch processing (which is now obsolete), the program and the data were recorded on 
punched cards. This information was read into the computer by means of a mechanical card reader and then 
processed. In the early days of computing, all jobs were processed in this manner. 
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Modern batch processing is generally tied into a timesharing system (see below). Thus, the program and 
the data are typed into the computer via a timesharing terminal or a personal computer acting as a terminal. 
The information is then stored within the computer’s memory and processed in its proper sequence. This form 
of batch processing is preferable to classical batch processing, since it eliminates the need for punched cards 
and allows the input information (program and data) to be edited while it is being entered. 

Large quantities of information (both programs and data) can be transmitted into and out of the computer 
very quickly in batch processing. Furthermore, the user need not be present while the job is being processed. 
Therefore, this mode of operation is well-suited to jobs that require large amounts of computer time or are 
physically lengthy. On the other hand, the total time required for a job to be processed in this manner may 
vary from several minutes to several hours, even though the job may require only a second or two of actual 
computer time. (Each job must wait its turn before it can be read, processed, and the results displayed.) Thus, 
batch processing is undesirable when processing small, simple jobs that must be returned as quickly as 
possible (as, for example, when learning computer programming). 

Timesharing 

Timesharingallows many different users to use a single computer simultaneously. The host computer may be 
a mainframe, a minicomputer or a large desktop computer. The various users communicate with the computer 
through their own individual terminals. In a modern timesharing network, personal computers are often used 
as timesharing terminals. Since the host computer operates much faster than a human sitting at a terminal, the 
host computer can support many terminals at the same time. Thus, each user will be unaware of the presence 
of any other users and will seem to have the host computer at his or her own disposal. 

An individual timesharing terminal may be wired directly to the host computer, or it may be connected to 
the computer over telephone lines, a microwave circuit, or even an earth satellite. Thus, the terminal can be 
located far-perhaps hundreds of miles-from its host computer. Systems in which personal computers are 
connected to large mainframes over telephone lines are particularly common. Such systems make use of 
modems (i.e., modulator/dernodulator devices) to convert the digitized computer signals into analog telephone 
signals and vice versa. Through such an arrangement a person working at home, on his or her own personal 
computer, can easily access a remote computer at school or at the office. 

Timesharing is best suited for processing relatively simple jobs that do not require extensive data 
transmission or large amounts of computer time. Many applications that arise in schools and commercial 
offices have these characteristics. Such applications can be processed quickly, easily, and at minimum expense 
using timesharing. 

EXAMPLE 1.4 A major university has a computer timesharing capability consisting of 200 hard-wired timesharing 
terminals and 80 additional telephone connections. The timesharing terminals are located at various places around the 
campus and are wired directly to a large mainframe computer. Each terminal is able to transmit information to or from the 
central computer at a maximum speed of 960 characters per second. 

The telephone connections allow students who are not on campus to connect their personal computers to the central 
computer. Each personal computer can transmit data to or from the central computer at a maximum speed of 240 
characters per second. Thus, all 280 terminals and personal computers can interact with the central computer at the same 
time, though each student will be unaware that others are simultaneously sharing the computer. 

Interactive Computing 

Interactive computing is a type of computing environment that originated with commercial timesharing 
systems and has been refined by the widespread use of personal computers. In an interactive computing 
environment, the user and the computer interact with each other during the computational session. Thus, the 
user may periodically be asked to provide certain information that will determine what subsequent actions are 
to be taken by the computer and vice versa. 
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EXAMPLE 1.5 A student wishes to use a personal computer to calculate the radius of a circle whose area has a value of 
100. A program is available that will calculate the area of a circle, given the radius. (Note that this is just the opposite of 
what the student wishes to do.) This program isn’t exactly what is needed, but it does allow the student to obtain an 
answer by trial and error. The procedure will be to guess a value for the radius and then calculate a corresponding area. 
This trial-and-error procedure continues until the student has found a value for the radius that yields an area sufficiently 
close to 100. 

Once the program execution begins, the message 

Radius = 7 

is displayed. The student then enters a value for the radius. Let us assume that the student enters a value of 5 for the radius. 
The computer will respond by displaying 

Area = 78.5398 

Do you wish t o  repeat  the  c a l c u l a t i o n ?  

The student then types either yes or no. If the student types yes, the message 

Radius = ? 

again appears, and the entire procedure is repeated. If the student types no, the message 

Goodbye 

is displayed and the computation is terminated. 
Shown below is a printed copy of the information displayed during a typical interactive session using the program 

described above. In this session, an approximate value of r = 5.6 was determined after only three calculations. The 
information typed by the student is underlined. 

Radius = 7 5 
Area = 78.5398 

Do you wish t o  repeat  the  c a l c u l a t i o n ?  ves 

Radius = 7 6 
Area = 113.097 

Do you wish t o  repeat  the  ca lcu la t ion?  ves 

Radius = ? 5.6 
Area = 98.5204 

Do you wish t o  repeat  the  ca lcu la t ion?  no 

Goodbye 

Notice the manner in which the student and the computer appear to be conversing with one another. Also, note that 
the student waits until he or she sees the calculated value of the area before deciding whether or not to carry out another 
calculation. If another calculation is initiated, the new value for the radius supplied by the student will depend on the 
previously calculated results. 

Programs designed for interactive computing environments are sometimes said to be conversational in 
nature. Computerized games are excellent examples of such interactive applications: This includes fast-action, 
graphical arcade games, even though the user’s responses may be reflexive rather than numeric or verbal. 
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1.4 TYPESOF PROGRAMMING LANGUAGES 

There are many different languages can be used to program a computer. The most basic of these is machine 
lunguage--a collection of very detailed, cryptic instructions that control the computer’s internal circuitry. This 
is the natural dialect of the computer. Very few computer programs are actually written in machine language, 
however, for two significant reasons: First, because machine language is very cumbersome to work with and 
second, because every different type of computer has its own unique instruction set. Thus, a machine-language 
program written for one type of computer cannot be run on another type of computer without significant 
alterations. 

Usually, a computer program will be written in some high-level language, whose instruction set is more 
compatible with human languages and human thought processes. Most of these are general-purpose languages 
such as C. (Some other popular general-purpose languages are Pascal, Fortran and BASIC.) There are also 
various special-purpose languages that are specifically designed for some particular type of application. Some 
common examples are CSMP and SIMAN, which are special-purpose simulation languages, and LISP, a Zist-
processing language that is widely used for artificial intelligence applications. 

As a rule, a single instruction in a high-level language will be equivalent to several instructions in 
machine language. This greatly simplifies the task of writing complete, correct programs. Furthermore, the 
rules for programming in a particular high-level language are much the same for all computers, so that a 
program written for one computer can generally be run on many different computers with little or no 
alteration. Thus, we see that a high-level language offers three significant advantages over machine language: 
simplicity, uniformity and portability (i.e., machine independence). 

A program that is written in a high-level language must, however, be translated into machine language 
before it can be executed. This is known as compilation or interpretation, depending on how it is carried out. 
(Compilers translate the entire program into machine language before executing any of the instructions. 
Interpreters, on the other hand, proceed through a program by translating and then executing single 
instructions or small groups of instructions.) In either case, the translation is carried out automatically within 
the computer. In fact, inexperienced programmers may not even be aware that this process is taking place, 
since they typically see only their original high-level program, the input data, and the calculated results. Most 
implementations of C operate as compilers. 

A compiler or interpreter is itself a computer program. It accepts a program written in a high-level 
language (e.g., C) as input, and generates a corresponding machine-language program as output. The original 
high-level program is called the source program, and the resulting machine-language program is called the 
object program. Every computer must have its own compiler or interpreter for a particular high-level 
language. 

It is generally more convenient to develop a new program using an interpreter rather than a compiler. 
Once an error-free program has been developed, however, a compiled version will normally execute much 
faster than an interpreted version. The reasons for this are beyond the scope of our present discussion. 

1.5 INTRODUCTION TO C 

C is a general-purpose, structured programming language. Its instructions consist of terms that resemble 
algebraic expressions, augmented by certain English keywords such as if, else, for, do and while. In this 
respect C resembles other high-level structured programming languages such as Pascal and Fortran. C also 
contains certain additional features, however, that allow it to be used at a lower level, thus bridging the gap 
between machine language and the more conventional high-level languages. This flexibility allows C to be 
used for systems programming (e.g., for writing operating systems) as well as for applications programming 
(e.g., for writing a program to solve a complicated system of mathematical equations, or for writing a program 
to bill customers). 

C is characterized by the ability to write very concise source programs, due in part to the large number of 
operators included within the language. It has a relatively small instruction set, though actual implementations 
include extensive library functions which enhance the basic instructions. Furthermore, the language 
encourages users to write additional library functions of their own. Thus the features and capabilities of the 
language can easily be extended by the user. 
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C compilers are commonly available for computers of all sizes, and C interpreters are becoming 
increasingly common. The compilers are usually compact, and they generate object programs that are small 
and highly efficient when compared with programs compiled from other high-level languages. The 
interpreters are less efficient, though they are easier to use when developing a new program. Many 
programmers begin with an interpreter, and then switch to a compiler once the program has been debugged 
(i.e., once all of the programming errors have been removed). 

Another important characteristic of C is that its programs are highly portable, even more so than with 
other high-level languages. The reason for this is that C relegates most computer-dependent features to its 
library functions. Thus, every version of C is accompanied by its own set of library functions, which are 
written for the particular characteristics of the host computer. These library fbnctions are relatively 
standardized, however, and each individual library function is generally accessed in the same manner from 
one version of C to another. Therefore, most C programs can be processed on many different computers with 
little or no alteration. 

History of C 

C was originally developed in the 1970s by Dennis Ritchie at Bell Telephone Laboratories, Inc. (now a part of 
AT&T). It is an outgrowth of two earlier languages, called BCPL and B, which were also developed at Bell 
Laboratories. C was largely confined to use within Bell Laboratories until 1978, when Brian Kernighan and 
Ritchie published a definitive description of the language.* The Kernighan and Ritchie description is 
commonly referred to as “K&R C.” 

Following the publication of the K&R description, computer professionals, impressed with C’s many 
desirable features, began to promote the use of the language. By the mid 1980s, the popularity of C had 
become widespread. Numerous C compilers and interpreters had been written for computers of all sizes, and 
many commercial application programs had been developed. Moreover, many commercial software products 
that were originally written in other languages were rewritten in C in order to take advantage of its efficiency 
and its portability. 

Early commercial implementations of C differed somewhat from Kernighan and Ritchie’s original 
definition, resulting in minor incompatibilities between different implementations of the language. These 
differences diminished the portability that the language attempted to provide. Consequently, the American 
National Standards Institute** (ANSI committee X3J11) has developed a standardized definition of the C 
language. Virtually all commercial C compilers and interpreters now adhere to the ANSI standard. Many also 
provide additional features of their own. 

In the early 1980s, another high-level programming language, called C++,was developed by Bjarne 
Stroustrup*** at the Bell Laboratories. C++ is built upon C, and hence all standard C features are available 
within C++.However, C++ is not merely an extension of C. Rather, it incorporates several new fundamental 
concepts that form a basis for object-oriented programming--a new programming paradigm that is of interest 
to professional programmers. We will not describe C++ in this book, except to mention that a knowledge of C 
is an excellent starting point for learning C++. 

This book describes the features of C that are included in the ANSI standard and are supported by 
commercial C compilers and interpreters. The reader who has mastered this material should have no difficulty 
in customizing a C program to any particular implementation of the language. 

Structure of a C Program 

Every C program consists of one or more modules calledfunctions. One of the functions must be called main. 
The program will always begin by executing the main function, which may access other functions. Any other 
function definitions must be defined separately, either ahead of or after main (more about this later, in Chaps. 
7 and 8). 

* Brim W.Kernighan and Dennis M.Ritchie, The C Programming Language, Prentice-Hall, 1978. ** 
ANSI Standard X3.159-1989. American National Standards Institute, 1430 Broadway, New York, NY,10018. (See also Brim W. 

***Kernighan and Dennis M .  Ritchie, The C Programming Language, 2d ed., Prentice-Hall, 1988.) 
Stroustrup, Bjame, The C++ Programming Language, 2d ed., Addison-Wesley, 1991. 
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Each function must contain: 

1. A function heading, which consists of the function name, followed by an optional list of arguments, 
enclosed in parentheses. 

2. A list of argument declarations,if arguments are included in the heading. 

3 .  A compound statement, which comprises the remainder of the function. 

The arguments are symbols that represent information being passed between the function and other parts of 
the program. (Arguments are also referred to as parameters.) 

Each compound statement is enclosed within a pair of braces, i.e., { }. The braces may contain one or 
more elementary statements (called expression statements) and other compound statements. Thus compound 
statements may be nested, one within another. Each expression statement must end with a semicolon (; ). 

Comments (remarks) may appear anywhere within a program, as long as they are placed within the 
delimiters / *  and * /  (e.g., / *  t h i s  i s  a comment */). Such comments are helpful in identifying the 
program's principal features or in explaining the underlying logic of various program features. 

These program components will be discussed in much greater detail later in this book. For now, the 
reader should be concerned only with an overview of the basic features that characterize most C programs. 

EXAMPLE 1.6 Area of a Circle Here is an elementary C program that reads in the radius of a circle, calculates its 
area and then writes the calculated result. 

/ *  program t o  c a l c u l a t e  the  area o f  a c i r c l e  * /  / *  T I T L E  (COMMENT) * /  

# inc lude  <stdio.h> / *  LIBRARY F I L E  ACCESS * /  

main ( ) / *  FUNCTION HEADING * /  

f l o a t  rad ius ,  a rea ;  / *  VARIABLE DECLARATIONS * /  

p r i n t f  ("Radius = ? / *  OUTPUT STATEMENT (PROMPT) * I' I ) ;  

' I ,scanf ( "%f &radius)  ; I *  INPUT STATEMENT * /  

area  = 3.14159 * rad ius  * radius;  / *  ASSIGNMENT STATEMENT * /  

p r i n t f  ( "Area  = %f" ,area)  ; / *  OUTPUT STATEMENT * /  

1 

The comments at the end of each line have been added in order to emphasize the overall program organization. 
Normally a C program will not look like this. Rather, it might appear as shown below. 

/ *  program t o  c a l c u l a t e  the  area o f  a c i r c l e  * /  

#include <s td io .h>  

main ( ) 

f l o a t  rad ius ,  area;  

p r i n t f  ("Radius = ? " )  ; 
scanf ( " % f  &radius)  ;" I ,  

a rea  = 3.14159 * rad ius  * radius;  
p r i n t f  ( "Area  = %f' ,  area)  ; 

The following features should be pointed out in this last program. 

1. The program is typed in lowercase. Either upper- or lowercase can be used, though it is customary to type 
ordinary instructions in lowercase. Most comments are also typed in lowercase, though comments are 
sometimes typed in uppercase for emphasis, or to distinguish certain comments from the instructions. 
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(Uppercase and lowercase characters are not equivalent in C. Later in this book we will see some special 
situations that are characteristically typed in uppercase.) 

2. The first line is a comment that identifies the purpose of the program. 

3.  The second line contains a reference to a special file (called s t d i o .h) which contains information that must be 
included in the program when it is compiled. The inclusion of this required information will be handled 
automatically by the compiler. 

4. The third line is a heading for the function main. The empty parentheses following the name of the function 
indicate that this function does not include any arguments. 

5 .  The remaining five lines of the program are indented and enclosed within a pair of braces. These five lines 
comprise the compound statement within main. 

6. The first indented line is a variable declaration. It establishes the symbolic names rad ius  and area  as 
floating-point variables (more about this in the next chapter). 

7. The remaining four indented lines are expression statements. The second indented line ( p r i n t f )  generates a 
request for information (namely, a value for the radius). This value is entered into the computer via the third 
indented line (scanf). 

8. The fourth indented line is a particular type of expression statement called an assignment statement. This 
statement causes the area to be calculated from the given value of the radius. Within this statement the asterisks 
(*) represent multiplication signs. 

9. The last indented line ( p r i n t f )  causes the calculated value for the area to be displayed. The numerical value 
will be preceded by a brief label. 

10. Notice that each expression statement within the compound statement ends with a semicolon. This is required of 
all expression statements. 

1 I .  Finally, notice the liberal use of spacing and' indentation, creating whitespace within the program. The blank 
lines separate different parts of the program into logically identifiable components, and the indentation indicates 
subordinate relationships among the various instructions. These features are not grammatically essential, but 
their presence is strongly encouraged as a matter of good programming practice. 

Execution of the program results in an interactive dialog such as that shown below. The user's response is 
underlined, for clarity. 

Radius = 7 3 
Area = 28.274309 

1.6 SOME SIMPLE C PROGRAMS 

In this section we present several C programs that illustrate some commonly used features of the language. 
All of the programs are extensions of Example 1.6; that is, each program calculates the area of a circle, or the 
areas of several circles. Each program illustrates a somewhat different approach to this problem. 

The reader should not attempt to understand the syntactic details of these examples, though experienced 
programmers will recognize features similar to those found in other programming languages. Beginners 
should focus their attention only on the overall program logic. The details will be provided later in this book. 

EXAMPLE 1.7 Area of a Circle Here is a variation of the program given in Example 1.6 for calculating the area of 
a circle. 

/ *  program t o  c a l c u l a t e  the  area o f  a c i r c l e  * /  

# inc lude  <s td io .h>  

#def ine  P I  3 .14159 

f l o a t  process(f1oat  r a d i u s ) ;  / *  funct ion  prototype * /  
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main ( ) 

{ 
f l o a t  rad ius ,  area; / *  va r iab le  dec la ra t i on  * /  

p r i n t f  ( "Radius = 3 " I )  ; 
scanf ( "%f",&rad ius) ; 
area = process( rad ius) ;  
p r i n t f  ("Area = %fn,area);  

1 

f l o a t  process(f1oat r )  / *  f u n c t i o n  d e f i n i t i o n  * /  

{ 
f l o a t  a; / *  l o c a l  va r iab le  dec la ra t i on  * /  

a = P I  * r * r; 
r e t u r n ( a ) ;  

1 

This version utilizes a separate programmer-defined function, called process, to carry out the actual calculations 
(i.e., to process the data). Within this function, r is an argument (also called a parameter) that represents the value of the 
radius supplied to process from main, and a is the calculated result that is returned to main. A reference to the function 
appears in main, within the statement 

area = p rocess( rad ius) ;  

The main function is preceded by a function declaration, which indicates that process accepts a floating-point 
argument and returns a floating-point value. The use of functions will be discussed in detail in Chap. 7. 

This program also contains a symbolic constant, PI ,  that represents the numerical value 3.14159. This is a form of 
shorthand that exists for the programmer's convenience. When the program is actually compiled, the symbolic constant 
will automatically be replaced by its equivalent numerical value. 

When this program is executed, it behaves in the same manner as the program shown in Example 1.6. 

EXAMPLE 1.8 Area of a Circle with Error Checking Here is a variation of the program given in Example I .7. 

/ *  program t o  c a l c u l a t e  the  area o f  a c i r c l e ,  w i t h  e r r o r  checking * /  

# inc lude <stdio.h> 

#def ine  P I  3.14159 

f l o a t  process(f1oat rad ius ) ;  / *  f u n c t i o n  prototype * /  

main( ) 

{ 
f l o a t  rad ius ,  area; / *  va r iab le  dec la ra t i on  * /  

p r in t f ( 'Rad1us = 3 ' ) ;  

scanf ( "%f" , &rad ius); 

i f  ( rad ius  < 0) 

area = 0; 

e l se  
area = process( rad ius) ;  

p r i n t f  ("Area = %f" , area) ; 
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f l o a t  p rocess( f1oat  r )  / *  f u n c t i o n  d e f i n i t i o n  * /  

f l o a t  a; / *  l o c a l  v a r i a b l e  d e c l a r a t i o n  * /  

a = P I  * r * r; 
r e t u r n ( a ) ;  

1 

This program again calculates the area of a circle. It includes the function process, and the symbolic constant PI, as 
discussed in the previous example. Now, however, we have added a simple error correction routine, which tests to see if 
the value of the radius is less than zero. (Mathematically, a negative value for the radius does not make any sense.) The 
test is carried out within main, using an i f  - e l s e  statement (see Sec. 6.6). Thus, if r a d i u s  has a negative value, a value 
of zero is assigned to area; otherwise, the value for area is calculated within process, as before. 

EXAMPLE 1.9 Areas of Several Circles The following program expands the previous sample programs by calculating 
the areas of several circles. 

/ *  program t o  c a l c u l a t e  t h e  areas o f  c i r c l e s ,  us ing  a f o r  l o o p  * /  

# i n c l u d e  <s td io .h> 

# d e f i n e  P I  3.14159 

f l o a t  p rocess( f1oat  r a d i u s ) ;  / *  f u n c t i o n  pro to type * /  

main ( ) 

{ 
f l o a t  rad ius ,  area; / *  v a r i a b l e  d e c l a r a t i o n  * /  
i n t  count ,  n; / *  v a r i a b l e  d e c l a r a t i o n  * /  

p r i n t f  ( "How many c i r c l e s ?  " )  ; 
scanf ( " % d " ,  an) ; 

f o r  (count  = 1; count <= n; ++count) { 

p r i n t f ( " \ n C i r c l e  no. %d: Radius = ? " , count) ;  
scanf ( "%f,, , &rad ius) ; 

i f  ( r a d i u s  < 0)  

area = 0; 

e l s e  
area = p rocess( rad ius) ;  

p r i n t f  (" 'Area = %f\ n "  , area) ; 

1 
1 

f l o a t  p rocess( f1oat  r )  / *  f u n c t i o n  d e f i n i t i o n  * /  

{ 
f l o a t  a; / *  l o c a l  v a r i a b l e  d e c l a r a t i o n  * /  

a = P I  * r * r ;  
r e t u r n ( a ) ;  

1 

In this case the total number of circles, represented by the integer variable n, must be entered into the computer before any 
calculation is carried out. The f o r  statement is then used to calculate the areas repeatedly, for all n circles (see Sec. 6.4). 
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Note the use of the variable count, which is used as a counter within the f o r  loop (Le., within the repeated portion 
of the program). The value of count will increase by 1 during each pass through the loop. Also. notice the expression 
++count which appears in the f o r  statement. This is a shorthand notation for increasing the value of the counter by I : 
i.e., it is equivalent to count = count + 1 (see Sec. 3.2). 

When the program is executed, it generates an interactive dialog, such as that shown below. The user's responses are 
again underlined. 

How many c i r c l e s ?  9 

C i r c l e  no. 1: Radius = ? 3 
Area = 28.274309 

C i r c l e  no. 2: Radius = ? 3 
Area = 50.265442 

C i r c l e  no. 3: Radius = ? 5 
Area = 78.539749 

EXAMPLE 1.10 Areas of an Unspecified Number of Circles The previous program can be improved by processing 
an unspecified number of circles, where the calculations continue until a value of zero is entered for the radius. This 
avoids the need to count, and then specify, the number of circles in advance. This feature is especially helpful when there 
are many sets of data to be processed. 

Here is the complete program. 

/ *  program t o  c a l c u l a t e  t h e  areas o f  c i r c l e s ,  us ing  a f o r  loop ;  
t h e  number o f  c i r c l e s  i s  unspec i f ied  * /  

# inc lude <s td io .h> 

# d e f i n e  P I  3.14159 

f l o a t  p rocess( f1oat  r a d i u s ) ;  / *  f u n c t i o n  pro to type * /  

main( ) 

{ 
f l o a t  r a d i u s ,  area; / *  v a r i a b l e  d e c l a r a t i o n  * /  
i n t  count ; / *  v a r i a b l e  d e c l a r a t i o n  * /  

p r i n t f  ( " T o  STOP, e n t e r  0 f o r  t h e  r a d i u s \ n " ) ;  
p r i n t f  ( " \nRad ius  = ? " ) ;  

scanf ( " % f  ,, , &rad ius)  ; 

f o r  (count  = 1; r a d i u s  != 0; ++count) { 

i f  ( r a d i u s  < 0) 

area = 0; 

e l s e  
area = process( rad ius) ;  

p r i n t f ( "Area = %f\ n u ,  area)  ; 

p r i n t f ( I' \nRadius = ? " ) ; 
scanf ( "%f, &rad ius) ; 

1 
1 
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f l o a t  p rocess( f1oat  r )  / *  f u n c t i o n  d e f i n i t i o n  * /  

{ 
f l o a t  a; / *  l o c a l  va r iab le  dec la ra t i on  * /  

a = P I  * r * r; 
r e t u r n ( a ) ;  

1 

Notice that this program will display a message at the beginning of the program execution, telling the user how to end 
the computation. 

The dialog resulting from a typical execution of this program is shown below. Once again, the user's responses are 
underlined. 

To STOP, enter  0 f o r  the  rad ius  

Radius = ? 9 
Area = 28.274309 

Radius = ? 4 
Area = 50.265442 

Radius = ? 3 
Area = 78.539749 

Radius = ? Q 

EXAMPLE 1.11 Areas of an Unspecified Number of Circles Here is a variation of the program shown in the previous 
example. 

/ *  program t o  c a l c u l a t e  the  areas o f  c i r c l e s ,  using a wh i l e  loop; 
number o f  c i r c l e s  i s  unspec i f ied  * /  

# inc lude <stdio.h> 

#def ine  P I  3.141 59 

f l o a t  p rocess( f1oat  rad ius ) ;  / *  f u n c t i o n  dec la ra t i on  * /  

main ( ) 

{ 
f l o a t  rad ius ,  area; / *  va r iab le  dec la ra t i on  * /  

p r i n t f  ( " T o  STOP, enter  0 f o r  the  r a d i u s \ n " ) ;  
p r i n t f  ( \nRadius = ? " ) ; 
scanf ( "%f &rad ius) ;' I ,  

wh i le  ( rad ius  != 0) { 

i f  ( rad ius  < 0) 
area = 0; 

e l se  
area = p rocess( rad ius) ;  

p r i n t f  ( "Area = %f\ n o ,  area) ; 

p r i n t f ( " \ n R a d i u s  = 7 " ) ;  

s c a n f ( " % f " ,  &rad ius) ;  

1 
1 
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f l o a t  process ( f  l o a t  r )  / *  funct ion  d e f i n i t i o n  * /  

t 
f l o a t  a ;  / *  l o c a l  v a r i a b l e  d e c l a r a t i o n  * /  

a = P I  * r * r ;  
r e t u r n ( a ) ;  

} 

This program includes the same features as the program shown in the previous example. Now, however, we use a w h i l e  
statement rather than a f o r  statement to carry out the repeated program execution (see Sec. 6.2). The w h i l e  statement 
will continue to execute as long as the value assigned to rad ius  is not zero. 

In more general terms, the whi le  statement will continue to execute as long as the expression contained within the 
parentheses is considered to be true. Therefore, the first line of the whi le  statment can be written more briefly as 

w h i l e  ( r a d i u s )  { 

rather than 

w h i l e  ( r a d i u s  != 0)  { 

because any nonzero value for rad ius  will be interpreted as a true condition. 
Some problems are better suited to the use of the f o r  statement, while others are better suited to the use of whi le .  

The w h i l e  statement is somewhat simpler in this particular application. There is also a third type of looping statement, 
called do - while,  which is similar to the whi le  statement shown above. (More about this in Chap. 6). 

When this program is executed, it generates an interactive dialog that is identical to that shown in Example 1.10. 

EXAMPLE 1.12 Calculating and Storing the Areas of Several Circles Some problems require that a series of 
calculated results be stored within the computer, perhaps for recall in a later calculation. The corresponding input data 
may also be stored internally, along with the calculated results. This can be accomplished through the use of arrays. 

The following program utilizes two arrays, called rad ius  and area, to store the radius and the area for as many as 
100 different circles. Each array can be thought of as a list of numbers. The individual numbers within each list are 
referred to as array elements. The array elements are numbered, beginning with 0. Thus, the radius of the first circle will 
be stored within the array element rad ius [01, the radius of the second circle will be stored within rad ius [ 11, and so 
on. Similarly, the corresponding areas will be stored in area [ 01, area [ 11, etc. 

Here is the complete program. 

/ *  program t o  c a l c u l a t e  the  areas o f  c i r c l e s ,  using a whi le  loop; 
the  r e s u l t s  a r e  stored i n  an ar ray ;  the  number o f  c i r c l e s  is unspec i f ied  * /  

#include <s td io .h>  

#def ine  PI 3.14159 

f l o a t  process(f1oat  r a d i u s ) ;  / *  funct ion  prototype * /  

main ( ) 

i n t  n,  i = 0; / *  v a r i a b l e  d e c l a r a t i o n  * /  
f l o a t  r a d i u s [ 1 0 0 ] ,  a rea [100] ;  / *  a r r a y  d e c l a r a t i o n  * /  

p r i n t f  ( " T o  STOP, e n t e r  0 f o r  the  r a d i u s \ n \ n " ) ;  
p r i n t f  ("Radius = 7 " ) ; 
scanf ( "%f, &radius[i]) ; 
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while (radius[i]) { 

if (radius[i] c 0) 

area[i] = 0; 

else 

area[i] = process(radius[i]); 

printf ("Radius = ? " )  ; 
scanf ( "%f &radius [++i]) ;" I ,  

1 
n = - - i ;  / *  tag the highest value of i * /  

/ *  display the array elements * /  
printf("\nSummaryof Results\n\nn); 

for (i = 0; i <= n; ++i) 

printf("Radius = %f Area = %f\n", radius[i], area[i]); 
} 

float process(f1oat r) / *  function definition * /  

{ 
float a; / *  local variable declaration * /  

a = PI * r * r; 
return(a); 


An unspecified number of radii will be entered into the computer, as before. As each value for the radius is entered (i.e., 
as the i th  value is entered), it is stored within radius [ i]. Its corresponding area is then calculated and stored within 
area[i]. This process will continue until all of the radii have been entered, i.e., until a value of zero is entered for a 
radius. The entire set of stored values (i.e., the array elements whose values are nonzero) will then be displayed. 

Notice the expression ++i,which appears twice within the program. Each of these expressions causes the value of i 
to increase by 1; i.e., they are equivalent to i = i + 1. Similarly, the statement 

causes the current value of i to be decreased by 1 and the new value assigned to n. In other words, the statement is 
equivalent to 

n = i - i ;  


Expressions such as ++i and - - i are discussed in detail in Chap. 3 (see Sec. 3.2). 
When the program is executed it results in an interactive dialog, such as that shown below. The user's responses are 

once again underlined. 

To STOP, enter 0 for the radius 

Radius = ? 3 
Radius = ? 3 
Radius = ? 
Radius = ? Q 

Summary of Results 


Radius = 3.000000 Area = 28.274309 
Radius = 4.000000 Area = 50.265442 
Radius = 5.000000 Area = 78.539749 
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This simple program does not make any use of the values that have been stored within the arrays. Its only purpose is 
to demonstrate the mechanics of utilizing arrays. In a more complex example, we might want to determine an average 
value for the areas, and then compare each individual area with the average. To do this we would have to recall the 
individual areas (i.e., the individual array elements area [01, area [ 1 I, . . .,etc.). 

The use of arrays is discussed briefly in Chap. 2, and extensively in Chap. 9. 

EXAMPLE 1.13 Calculating and Storing the Areas of Several Circles Here is a more sophisticated approach to 
the problem described in the previous example. 

/ *  program to calculate the areas of circles, using a while loop; 
the results are stored in an array of structures; 

the number of circles is unspecified; 

a string is entered to identify each data set * /  

#include <stdio.h> 


#define PI 3.14159 


float process(f1oat radius); / *  function prototype * /  

main ( ) 

int n, i = 0; / *  variable declaration * /  

struct { 

char text[20]; 

float radius; 

float area; 


} circle[101 ; / *  structure variable declaration * /  

printf ("To STOP, enter END for the identifier\n") ; 
printf ( '\nIdentif ier: ' ) ; 
scanf ( "%s", circle[ i] .text) ; 
while (circle[i].text[O] != ' E '  1 1  circle[i].text[l] != ' N I  

1 1  circle[i].text[2] != '0') { 
printf('f3adius: ' ) ;  

scanf("%f", &circle[i].radius); 


if (circle[i].radius < 0) 
circle[i].area = 0; 

else 

circle[i].area = process(circle[i].radius); 

++i ; 
printf("\nIdentifier: " ) ;  / *  next set of data * /  
scanf ( "%,I' , circle [ i] .text) ; 

1 

n = - - i ;  / *  tag the highest value of i * /  

/ *  display the array elements * /  
printf("\n\nSummary of Results\n\n'); 

for (i = 0; i <= n; ++i) 

printf ( '%s  Radius = %f Area = %f \nu , circle[i] .text , 
circle[i].radius, 

circle[i].area); 
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f l o a t  process(f1oat r )  / *  function def ini t ion * /  

{ 
f l o a t  a ; / *  local  variable declaration * /  

a = P I  * r * r ;  
r e t u r n ( a ) ;  

In this program we enter a one-word descriptor, followed by a value of the radius, for each circle. The characters that 
comprise the descriptor are stored in an array called text .  Collectively, these characters are referred to as a string 
constant (see Sec. 2.4). In this program, the maximum size of each string constant is 20 characters. 

The descriptor, the radius and the corresponding area of each circle are defined as the components of a structure (see 
Chap. 11). We then define c i r c l e  as an array of structures. That is, each element of c i r c l e  will be a structure 
containing the descriptor, the radius and the area. For example, c i rc le [  01 . t ex t  refers to the descriptor for the first 
circle, c i r c l e  [ 01 .radius refers to the radius of the first circle, and c i r c l e  [ 01 .area refers to the area of the first 
circle. (Remember that the numbering system for array elements begins with 0, not 1.) 

When the program is executed, a descriptor is entered for each circle, followed by a value of the radius. This 
information is stored within c i r c l e  [ i J .text  and c i r c l e  [ iJ .r a d i u s .  The corresponding area is then calculated and 
stored in c i r c l e  [ i].area. This procedure continues until the descriptor END is entered. All of the information stored 
within the array elements (i.e., the descriptor, the radius and the area for each circle) will then be displayed, and the 
execution will stop. 

Execution of this program results in an interactive dialog, such as that shown below. Note that the user’s responses 
are once again underlined. 

To STOP, enter E N D  for  the ident i f ie r  

Ident i f ie r :  
Radius: 3 

Ident i f ie r :  WHITE 
Radius: 4 

Ident i f ie r  : BLUE 

Radius: 5 

Ident i f ie r :  END 

Summary of Results 

RED Radius = 3.000000 Area = 28.274309 
WHITE Radius = 4.000000 Area = 50.265442 
BLUE Radius  = 5.000000 Area = 78.539749 

1.7 DESIRABLE PROGRAM CHARACTERISTICS 

Before concluding this chapter let us briefly examine some important characteristics of well-written computer 
programs. These characteristics apply to programs that are written in any programming language, not just C. 
They can provide us with a usehl set of guidelines later in this book, when we start writing our own C 
programs. 

1. Integrity. This refers to the accuracy of the calculations. It should be clear that all other program 
enhancements will be meaningless if the calculations are not carried out correctly. Thus, the integrity of 
the calculations is an absolute necessity in any computer program. 
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Clarity refers to the overall readability of the program, with particular emphasis on its underlying logic. 
If a program is clearly written, it should be possible for another programmer to follow the program logic 
without undue effort. It should also be possible for the original author to follow his or her own program 
after being away from the program for an extended period of time. One of the objectives in the design of 
C is the development of clear, readable programs through an orderly and disciplined approach to 
programming. 

Simplicity. The clarity and accuracy of a program are usually enhanced by keeping things as simple as 
possible, consistent with the overall program objectives. In fact, it may be desirable to sacrifice a certain 
amount of computational efficiency in order to maintain a relatively simple, straightforward program 
structure. 

Eficiency is concerned with execution speed and efficient memory utilization. These are generally 
important goals, though they should not be obtained at the expense of clarity or simplicity. Many 
complex programs require a tradeoff between these characteristics. In such situations, experience and 
common sense are key factors. 

Modularity. Many programs can be broken down into a series of identifiable subtasks. It is good 
programming practice to implement each of these subtasks as a separate program module. In C, such 
modules are written as functions. The use of a modular programming structure enhances the accuracy 
and clarity of a program, and it facilitates future program alterations. 

Generality. Usually we will want a program to be as general as possible, within reasonable limits. For 
example, we may design a program to read in the values of certain key parameters rather than placing 
fixed values into the program. As a rule, a considerable amount of generality can be obtained with very 
little additional programming effort. 

Review Questions 

1.1 What is a mainframe computer? Where can mainframes be found? What are they generally used for? 

1.2 What is a personal computer? How do personal computers differ from mainframes? 

1.3 What is a supercomputer? A minicomputer? A workstation? How do these computers differ from one another? 
How do they differ from mainframes and personal computers? 

1.4 Name four different types of data. 

1.5 What is meant by a computer program? What, in general, happens when a computer program is executed? 

1.6 What is computer memory? What kinds of information are stored in a computer’s memory? 

1.7 What is a bit? What is a byte? What is the difference between a byte and a word of memory? 

1.8 What terms are used to describe the size of a computer’s memory? What are some typical memory sizes? 

1.9 Name some typical auxiliary memory devices. How does this type of memory differ from the computer’s main 
memory? 

1.10 What time units are used to express the speed with which elementary tasks are carried out by a computer? 

1.11 What is the difference between batch processing and timesharing? What are the relative advantages and 
disadvantages of each? 

1.12 What is meant by interactive computing? For what types of applications is interactive computing best suited? 

1.13 What is machine language? How does machine language differ from high-level languages? 

1.14 Name some commonly used high-level languages. What are the advantages of using high-level languages? 

1.15 What is meant by compilation? What is meant by interpretation? How do these two processes differ? 

1.16 What is a source program? An object program? Why are these concepts important? 

1.17 What are the general characteristics of C? 
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1.18 Where was C originally developed and by whom? What has been done to standardize the language? 

1.19 What is C++? What is the relationship between C and C++? 

1.20 What are the major components of a C program? What significance is attached to the name main? 

1.21 Describe the composition of a function in C. 

1.22 What are arguments'? Where do arguments appear within a C program? What other term is sometimes used for an 
argument'? 

1.23 What is a compound statement? How is a compound statement written? 

1.24 What is an expression statement? Can an expression statement be included in a compound statement? Can a 
compound statement be included in an expression statement? 

1.25 HOLYcan comments (remarks) be included within a C program? Where can comments be placed? 

1.26 Are C programs required to be typed in lowercase? Is uppercase ever used in a C program? Explain. 

1.27 What is an assignment statement? What is the relationship between an assignment statement and an expression 
statement? 

1.28 What item of punctuation is used at the end of most C statements? Do all statements end this way? 

1.29 Why are some of the statements within a C program indented? Why are empty lines included within a typical C 
program? 

1.30 Summarize the meaning of each of the following program characteristics: integrity, clarity, simplicity, efficiency, 
modularity and generality. Why is each of these characteristics important? 

Problems 

1.31 Determine, as best you can, the purpose of each of the following C programs. Identify all variables within each 
program. Identify all input and output statements, all assignment statements, and any other special features that 
you recognize. 

(a) ma in( )  

printf("We1come t o  t h e  Wonderful World o f  Comput ing! \n" ) ;  

1 

(6) #def ine MESSAGE "Welcome t o  the  Wonderful World o f  Computing!\n" 

main ( ) 

{ 
printf(MESSAGE); 

1 

(c) main()  

f l o a t  base, he igh t ,  area; 

p r i n t f  ("Base: " )  ; 
scanf ( "%fU , &base) ; 
p r i n t f  ( "Height :  " ) ; 
scanf ( ' % f  'I, &he igh t )  ; 
area = (base * h e i g h t )  / 2.;  

p r i n t f  ( "Area :  %f', area)  ; 

1 
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{ 
f l o a t  gross, t a x ,  ne t ;  

p r i n t f  ( "Gross s a l a r y :  " ) ; 
scanf ("'%if I' , &gross) ; 
t a x  = 0.14 * gross; 
n e t  = gross - t a x ;  
p r i n t f  ("Taxes w i thhe ld :  %.2f  \ n "  , t a x )  ; 
p r i n t f  ( "Net  s a l a r y :  %.2 f  I" , n e t )  ; 

1 

( e )  i n t  s m a l l e r ( i n t  a, i n t  b ) ;  

main ( ) 

{ 
i n t  a, b y  min; 

p r i n t f  ( ""Please e n t e r  t h e  f i r s t  number: I " )  ; 
scanf ("d" , &a) ; 
p r i n t f  ( "P lease e n t e r  the  second number: I " )  ; 
scanf ( "%d", &b) ; 

min = smal le r (a ,  b ) ;  

p r i n t f ( " \ n T h e  smal le r  number i s :  %d",  min) ;  

i n t  s m a l l e r ( i n t  a, i n t  b)  

{ 
i f  (a <= b)  

r e t u r n ( a ) ;  
e l s e  

r e t u r n ( b ) ;  

1 

U, i n t  s m a l l e r ( i n t  a, i n t  b ) ;  

main ( ) 

{ 
i n t  count, n, a, b y  min; 

p r i n t f ( " H o w  many p a i r s  o f  numbers? " ) ;  

scanf ( "%d", an) ; 

f o r  (count = 1; count <= n; ++count) { 

p r i n t f  ( I" \nPlease e n t e r  t h e  f i r s t  number: I" ) ; 
scanf ( "%d" ,  &a) ; 
p r i n t f ( " P 1 e a s e  e n t e r  t h e  second number: " ) ;  

s c a n f ( ' % d n Y  &b); 

min = smal le r (a ,  b ) ;  

p r i n t f ( " \ n T h e  smal le r  number is: %d\n" ,  min) ;  
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i n t  s m a l l e r ( i n t  a, i n t  b)  

i f  (a <= b)  

r e t u r n ( a ) ;  
e l s e  

r e t u r n ( b ) ;  

I 

(g)  i n t  s m a l l e r ( i n t  a, i n t  b ) ;  

main ( ) 

{ 
i n t  a, b, min; 

p r i n t f ( " T o  STOP, e n t e r  0 f o r  each number\n"); 

p r i n t f ( " \ n P l e a s e  e n t e r  t h e  f i r s t  number: I " ) ;  

scanf ( "%do",  &a) ; 
p r i n t f ( " P 1 e a s e  e n t e r  t h e  second number: I " ) ;  

scanf ( "%d",  &b) ; 

w h i l e  ( a  != 0 1 1  b != 0) { 

min = smal le r (a ,  b ) ;  
p r i n t f ( " \ n T h e  smal le r  number is: %d\n" ,  min) ;  

p r i n t f ( I"\nPlease e n t e r  t h e  f i r s t  number: ) ; 
scanf ( "%d" ,  &a) ; 
p r i n t f ( " ' P 1 e a s e  e n t e r  t h e  second number: I " ) ;  

scanf ( " % d " ,  &b) ; 

i n t  s m a l l e r ( i n t  a, i n t  b )  

i f  (a  <= b)  
r e t u r n ( a ) ;  

e l s e  

r e t u r n ( b ) ;  

I 

( h )  i n t  s r n a l l e r ( i n t ,  i n t ) ;  

main ( ) 

{ 
i n t  n, i= 0; 

i n t  a [  1001, b [  1001, min[100]; 

p r i n t f ( " T o  STOP, e n t e r  0 f o r  each number\n"); 

p r i n t f ( I' \nPlease e n t e r  t h e  f i r s t  number: " ) ; 
scanf ( "%do ' ,  & a [ i ] ) ;  
p r i n t f  ( "P lease e n t e r  t h e  second number: " ) ;  

s c a n f ( " % d " ,  & b [ i ] ) ;  
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wh i le  ( a [ i ]  1 1  b [ i ] )  { 

m i n [ i ]  = s m a l l e r ( a [ i ] ,  b [ i ] ) ;  

p r i n t f  ( ' \nPlease en ter  the  f i r s t  number: I t )  ; 
scanf ( "%d",  &a [ + + i ] ) ; 
p r in t f ( "P1ease  en ter  the  second number: " ) ;  
scanf( '%d' ,  & b [ i ] ) ;  

p r i n t f  ( ' \nSummary o f  Resu l t s \n \n " )  ; 
f o r  ( i  = 0; i<= n; + + i )  

p r i n t f ( ' a  = %d b = %d min = %d\n',  a [ i ] ,  b [ i ] ,  m i n [ i ] ) ;  

1 

i n t  s m a l l e r ( i n t  a, i n t  b )  

t 
i f  (a  <= b )  

r e t u r n ( a ) ;  
e l s e  

r e t u r n ( b ) ;  

1 



Chapter 2 


C Fundamentals 

This chapter is concerned with the basic elements used to construct simple C statements. These elements 
include the C character set, identifiers and keywords, data types, constants, variables and arrays, declarations, 
expressions and statements. We will see how these basic elements can be combined to form more 
comprehensive program components. 

Some of this material is rather detailed and therefore somewhat dificult to absorb, particularly by an 
inexperienced programmer. Remember, however, that the purpose of this material is to introduce certain basic 
concepts and to provide some necessary definitions for the topics that follow in the next few chapters. 
Therefore, when reading this material for the first time, you need only acquire a general familiarity with the 
individual topics. A more comprehensive understanding will come later, from repeated references to this 
material in subsequent chapters. 

2.1 THE C CHARACTER SET 

C uses the uppercase letters A to Z, the lowercase letters a to z, the digits 0 to 9, and certain special characters 
as building blocks to form basic program elements (e.g., constants, variables, operators, expressions, etc.). 
The special characters are listed below. 

+ - * I -- % & # 

1 ? 
* II I - \ I 

< > ( 1 I 1 
9 9 - (blank space) 

Most versions of the language also allow certain other characters, such as @ and $, to be included within 
strings and comments. 

C uses certain combinations of these characters, such as \b, \n and \t,to represent special conditions such 
as backspace, newline and horizontal tab, respectively. These character combinations are known as escape 
sequences. We will discuss escape sequences in Sec. 2.4. For now we simply mention that each escape 
sequence represents a single character, even though it is written as two or more characters. 

2.2 IDENTIFIERS AND KEYWORDS 

ldentzfiers are names that are given to various program elements, such as variables, functions and arrays. 
Identifiers consist of letters and digits, in any order, except that thefirst character must be a letter. Both 
upper- and lowercase letters are permitted, though common usage favors the use of lowercase letters for most 
types of identifiers. Upper- and lowercase letters are not interchangeable (i.e., an uppercase letter is not 
equivalent to the corresponding lowercase letter.) The underscore character ( - ) can also be included, and is 
considered to be a letter. An underscore is often used in the middle of an identifier. An identifier may also 
begin with an underscore, though this is rarely done in practice. 

EXAMPLE 2.1 The following names are valid identifiers. 

X Y12 sum-1 -tempera tu re  

names a rea  tax-r ate TABLE 

24 
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The following names are not valid identifiers for the reasons stated. 

4 t h  The first character must be a letter. 

x I' Illegal characters ('I). 

order-no Illegal character (-). 

e r r o r  f l a g  Illegal character (blank space). 

An identifier can be arbitrarily long. Some implementations of C recognize only the first eight characters, 
though most implementations recognize more (typically, 3 1 characters). Additional characters are carried 
along for the programmer's convenience. 

EXAMPLE 2.2 The identifiers f ile-manager and f ile-management are both grammatically valid. Some 
compilers may be unable to distinguish between them, however, because the first eight letters are the same for each 
identifier. Therefore, only one of these identifiers should be used in a single C program. 

As a rule, an identifier should contain enough characters so that its meaning is readily apparent. On the 
other hand, an excessive number of characters should be avoided. 

EXAMPLE 2.3 A C program is being written to calculate the future value of an investment. The identifiers value or 
future-value are appropriate symbolic names. However, v or f v  would probably be too brief, since the intended 
representation of these identifiers is not clear. On the other hand, the identifier f u ture-value-of-an-investment 
would be unsatisfactory because it is too long and cumbersome. 

There are certain reserved words, called keywords, that have standard, predefined meanings in C. These 
keywords can be used only for their intended purpose; they cannot be used as programmer-defined identifiers. 

The standard keywords are 

auto e x t e r n  s i z e o f  

break f l o a t n  s t a t i c  

case f o r  s t r u c t  

char got0  swi tch 

const i f  typedef  

cont inue i n t  union 

d e f a u l t  I long unsigned 

do r e g i s t e r  vo id  

double r e t u r n  v o l a t i l e  

e l s e  shor t  w h i l e  

enum signed 

Some compilers may also include some or all of the following keywords. 

ada f a r  near  

asm f o r t r a n  pasca l  

e n t r y  huge 

Some C compilers may recognize other keywords. Consult a reference manual to obtain a complete list 
of keywords for your particular compiler. 

Note that the keywords are all lowercase. Since uppercase and lowercase characters are not equivalent, it 
is possible to utilize an uppercase keyword as an identifier. Normally, however, this is not done, as it is 
considered a poor programming practice. 
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2.3 DATA TYPES 

C supports several different types of data, each of which may be represented differently within the computer’s 
memory. The basic data types are listed below. Typical memory requirements are also given. (The memory 
requirements for each data type will determine the permissible range of values for that data type. Note that the 
memory requirements for each data type may vary from one C compiler to another.) 

i n t  integer quantity 2 bytes or one word (varies from 
one compiler to another) 

char single character 1 byte 

f l o a t  floating-point number (i.e., a number containing 1 word (4 bytes) 
a decimal point andor an exponent) 

d o u b l e  double-precision floating-point number (i.e., more 2 words (8 bytes) 
significant figures, and an exponent which may 
be larger in magnitude) 

C compilers written for personal computers or small minicomputers (i.e., computers whose natural word 
size is less than 32 bits) generally represent a word as 4 bytes (32 bits). 

The basic data types can be augmented by the use of the data type qualijiers s h o r t ,  l o n g ,  s i g n e d  and 
u n s i g n e d .  For example, integer quantities can be defined as s h o r t  i n t ,  l o n g  i n t  or u n s i g n e d  i n t  
(these data types are usually written simply as s h o r t ,  l o n g  or uns igned ,  and are understood to be integers). 
The interpretation of a qualified integer data type will vary from one C compiler to another, though there are 
some commonsense relationships. Thus, a s h o r t  i n t  may require less memory than an ordinary i n t  or it 
may require the same amount of memory as an ordinary i n t ,  but it will never exceed an ordinary i n t  in word 
length. Similarly, a l o n g  i n t  may require the same amount of memory as an ordinary i n t  or it may require 
more memory, but it will never be less than an ordinary i n t  . 

If s h o r t  i n t  and i n t  both have the same memory requirements (e.g., 2 bytes), then l o n g  i n t  will 
generally have double the requirements (e.g., 4 bytes). Or if i n t  and l o n g  i n t  both have the same memory 
requiremements (e.g., 4 bytes) then s h o r t  i n t  will generally have half the memory requirements (e.g., 2 
bytes). Remember that the specifics will vary from one C compiler to another. 

An u n s i g n e d  int has the same memory requirements as an ordinary i n t .  However, in the case of an 
ordinary i n t  (or a s h o r t  i n t  or a l o n g  i n t ) ,  the leftmost bit is reserved for the sign. With an u n s i g n e d  
i n t ,  all of the bits are used to represent the numerical value. Thus, an u n s i g n e d  i n t  can be approximately 
twice as large as an ordinary i n t  (though, of course, negative values are not permitted). For example, if an 
ordinary i n t  can vary from -32,768 to +32,767 (which is typical for a 2-byte i n t ) ,  then an u n s i g n e d  i n t  
will be allowed to vary from 0 to 65,535. The uns igned  qualifier can also be applied to other qualified i n t s ,  
e.g., u n s i g n e d  s h o r t  i n t  or uns igned  l o n g  i n t .  

The char type is used to represent individual characters. Hence, the char type will generally require 
only one byte of memory. Each c h a r  type has an equivalent integer interpretation, however, so that a char is 
a really a special kind of short integer (see Sec. 2.4). With most compilers, a c h a r  data type will permit a 
range of values extending from 0 to 255. Some compilers represent the char data type as having a range of 
values extending from -128 to +127. There may also be uns igned  char data (with typical values ranging 
from 0 to 255), or s i g n e d  char data (with values ranging from -128 to +127). 

Some compilers permit the qualifier l o n g  to be applied to f l o a t  or to d o u b l e ,  e.g., l o n g  f l o a t ,  or 
l o n g  d o u b l e .  However, the meaning of these data types will vary from one C compiler to another. Thus, 
l o n g  f l o a t  may be equivalent to doub le .  Moreover, l o n g  d o u b l e  may be equivalent to doub le ,  or it 
may refer to a separate, “extra-large” double-precision data type requiring more than two words of memory. 

Two additional data types, v o i d  and enum, will be introduced later in this book (vo id  is discussed in Sec. 
7.2; enum is discussed in Sec. 14.1). 
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Every identifier that represents a number or a character within a C program must be associated with one 
of the basic data types before the identifier appears in an executable statement. This is accomplished via a 
type declaration, as described in Sec. 2.6. 

2.4 CONSTANTS 

There are four basic types of constants in C. They are integer constants,floating-pointconstants, character 
constants and string constants (there are also enumeration constants, which are discussed in Sec. 14.1). 
Moreover, there are several different kinds of integer and floating-point constants, as discussed below. 

Integer and floating-point constants represent numbers. They are often referred to collectively as 
numeric-type constants. The following rules apply to all numeric-type constants. 

1. Commas and blank spaces cannot be included within the constant. 

2. The constant can be preceded by a minus (-) sign if desired. (Actually the minus sign is an operator that 
changes the sign of a positive constant, though it can be thought of as a part of the constant itself.) 

3.  The value of a constant cannot exceed specified minimum and maximum bounds. For each type of 
constant, these bounds will vary from one C compiler to another. 

Let us consider each type of constant individually. 

Integer Constants 

An integer constant is an integer-valued number. Thus it consists of a sequence of digits. Integer constants 
can be written in three different number systems: decimal (base lO), octal (base 8) and hexadecimal (base 16). 
Beginning programmers rarely, however, use anything other than decimal integer constants. 

A decimal integer constant can consist of any combination of digits taken from the set 0 through 9. If the 
constant contains two or more digits, the first digit must be something other than 0. 

EXAMPLE 2.4 Several valid decimal integer constants are shown below. 

0 1 743 5280 32767 9999 


The following decimal integer constants are written incorrectly for the reasons stated. 

12,245 illegal character (, ). 

36.0 illegal character (.). 

10 20 30 illegal character (blank space). 

123-45-6789 illegal character (-). 

0900 the first digit cannot be a zero. 

An octal integer constant can consist of any combination of digits taken from the set 0 through 7. 
However the first digit must be 0,in order to identiQ the constant as an octal number. 

EXAMPLE 2.5 Several valid octal integer constants are shown below. 

0 01 0743 077777 


The following octal integer constants are written incorrectly for the reasons stated. 

743 Does not begin with 0. 

05280 Illegal digit (8). 

0777.777 Illegal character ( .). 
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A hexadecimal integer constant must begin with either Ox or OX. It can then be followed by any 
combination of digits taken from the sets 0 through 9 and a through f (either upper- or lowercase). Note that 
the letters a through f (or A through F) represent the (decimal) quantities 10 through 15, respectively. 

EXAMPLE 2.6 Several valid hexadecimal integer constants are shown below. 

ox ox 1 OX7FFF Oxabcd 

The following hexadecimal integer constants are written incorrectly for the reasons stated. 

OX12.34 Illegal character (.). 
OBE38 Does not begin with Ox or OX. 

Ox.  4bf f Illegal character (.). 
OXDEFG Illegal character (G). 

The magnitude of an integer constant can range from zero to some maximum value that varies from one 
computer to another (and from one compiler to another, on the same computer). A typical maximum value for 
most personal computers and many minicomputers is 32767 decimal (equivalent to 77777 octal or i'fff 
hexadecimal), which is 215- 1. Mainframe computers generally permit larger values, such as 2,147,483,647 
(which is 231- 1).* You should determine the appropriate value for the version of C used with your particular 
computer. 

Unsigned and Long Integer Constants 

Unsigned integer constants may exceed the magnitude of ordinary integer constants by approximately a factor 
of 2, though they may not be negative.* An unsigned integer constant can be identified by appending the 
letter U (either upper- or lowercase) to the end of the constant. 

Long integer constants may exceed the magnitude of ordinary integer constants, but require more memory 
within the computer. With some computers (andor some compilers), a long integer constant will 
automatically be generated simply by specifying a quantity that exceeds the normal maximum value. It is 
always possible, however, to create a long integer constant by appending the letter L (either upper- or 
lowercase) to the end of the constant. 

An unsigned long integer may be specified by appending the letters UL to the end of the constant. The 
letters may be written in either upper- or lowercase. However, the U must precede the L. 

EXAMPLE 2.7 Several unsigned and long integer constants are shown below 

Constant Number System 

50000U decimal (unsigned) 

123456789L decimal (long) 

123456789UL decimal (unsigned long) 

0123456L octal (long) 

077777711 octal (unsigned) 

OX50000U hexadecimal (unsigned) 

OXFFFFFUL hexadecimal (unsigned long) 

* Suppose a particular computer uses a w-bit word. Then an ordinary integer quantity may fall within the range -2w - to +2w - - 1, 
whereas an unsigned integer quantity may vary From 0 to 2w - 1 .  A short integer may substitute w/2 for w,and a long integer may 
substitute 2w for w. These rules may vary from one computer to another. 
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The maximum permissible values of unsigned and long integer constants will vary from one computer 
(and one compiler) to another. With some computers, the maximum permissible value of a long integer 
constant may be the same as that for an ordinary integer constant; other computers may allow a long integer 
constant to be much larger than an ordinary integer constant. You are again advised to determine the 
appropriate values for your particular version of C. 

Floating-Point Constants 

Afloating-point constant is a base- 10 number that contains either a decimal point or an exponent (or both). 

EXAMPLE 2.8 Several valid floating-point constants are shown below. 

0 .  1 .  0 . 2  827.602 

50000. 0.000743 12.3 31 5.0066 

2 E-8 0.006e-3 1.6667E+8 .12121212e12 

The following are not valid floating-point constants for the reasons stated. 

1 Either a decimal point or an exponent must be present. 

1,000.0 Illegal character (, ). 

2E+10.2 The exponent must be an integer quantity (it cannot contain a decimal point). 

3E 10 Illegal character (blank space) in the exponent. 

If an exponent is present, its effect is to shift the location of the decimal point to the right, if the exponent 
is positive, or to the left, if the exponent is negative. If a decimal point is not included within the number, it is 
assumed to be positioned to the right of the last digit. 

The interpretation of a floating-point constant with an exponent is essentially the same as scientific 
notation, except that the base 10 is replaced by the letter E (or e). Thus, the number 1.2 x 10-3 would be 
written as 1 .2E-3 or 1 .2e-3. This is equivalent to 0.12e-2, or 12e-4, etc. 

EXAMPLE 2.9 The quantity 3 x 105can be represented in C by any of the following floating-point constants. 

300000. 3e5 3e+5 3E5 3.Oe+ 

.3e6 0.3E6 30E4 30. E+4 300e3 

Similarly, the quantity 5.026 x I O - l 7  can be represented by any of the following floating-point constants. 

5.026E-17 .5026e-16 50.26e-18 .0005026E-13 

Floating-point constants have a much greater range than integer constants. Typically, the magnitude of a 
floating-point constant might range from a minimum value of approximately 3.4E-38 to a maximum of 
3.4E+38. Some versions of the language permit floating-point constants that cover a wider range, such as 
1 .7E-308 to 1 .7E+308. Also, the value 0.0 (which is less than either 3.4E-38 or 1 .7E-308) is a valid 
floating-point constant. You should determine the appropriate values for the version of C used on your 
particular computer. 

Floating-point constants are normally represented as double-precision quantities in C. Hence, each 
floating-point constant will typically occupy 2 words (8 bytes) of memory. Some versions of C permit the 
specification of a “single-precision,” floating-point constant, by appending the letter F (in either upper- or 
lowercase) to the end of the constant (e.g., 3E5F). Similarly, some versions of C permit the specification of a 
“long” floating-point constant, by appending the letter L (upper- or lowercase) to the end of the constant (e.g., 
0.123456789E-33L). 
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The precision of floating-point constants (Le, the number of significant figures) will vary fiom one 
version of C to another. Virtually all versions of the language permit at least six significant figures, and some 
versions permit as many as eighteen significant figures. You should determine the appropriate number of 
significant figures for your particular version of C. 

Numerical Accuracy 

It should be understood that integer constants are exact quantities, whereas floating-point constants are 
approximations. The reasons for this are beyond the current scope of discussion. However, you should 
understand that the floating-point constant 1 . O  might be represented within the computer's memory as 
0.99999999.. .,even though it might appear as 1 .0 when it is displayed (because of automatic rounding). 
Therefore floating-point values cannot be used for certain purposes, such as counting, indexing, etc., where 
exact values are required. We will discuss these restrictions as they arise, in later chapters of this book. 

Character Constants 

A character constant is a single character, enclosed in apostrophes (i.e., single quotation marks). 

EXAMPLE 2.10 Several character constants are shown below. 

I I' A '  ' X I  '3' ' ? I  

Notice that the last constant consists of a blank space, enclosed in apostrophes. 

Character constants have integer values that are determined by the computer's particular character set. 
Thus, the value of a character constant may vary from one computer to another. The constants themselves, 
however, are independent of the character set. This feature eliminates the dependence of a C program on any 
particular character set (more about this later). 

Most computers, and virtually all personal computers, make use of the ASCII (i.e., American Standard 
Code for Information Interchange) character set, in which each individual character is numerically encoded 
with its own unique 7-bit combination (hence a total of 2' = 128 different characters). Table 2-1 contains the 
ASCII character set, showing the decimal equivalent of the 7 bits that represent each character. Notice that the 
characters are ordered as well as encoded. In particular, the digits are ordered consecutively in their proper 
numerical sequence (0 to 9), and the letters are arranged consecutively in their proper alphabetical order, with 
uppercase characters preceding lowercase characters. This allows character-type data items to be compared 
with one another, based upon their relative order within the character set. 

EXAMPLE 2.11 Several character constants and their corresponding values, as defined by the ASCII character set, are 
shown below. 

Constant Value 
' A '  65 

OX'  120 

'3' 51 


' 7 '  63 
I ' 32 


These values will be the same for all computers that utilize the ASCII character set. The values will be different, 
however, for computers that utilize an alternate character set. 

IBM mainframe computers, for example, utilize the EBCDIC (i.e., Extended Binary Coded Decimal Information 
Code) character set, in which each individual character is numerically encoded with its own unique 8-bit combination. 
The EBCDIC character set is distinctly different from the ASCII character set. 
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Table 2-1 The ASCII Character Set 

ASCII ASCII ASCII ASCII 
Value Character Value Character Value Character Value Character 

960 NUL 32 (blank) 64 @ 

1 SOH 33 1 65 A 97 a 
I t2 STX 34 66 B 98 b 

3 ETX 35 # 67 C 99 C 

4 EOT 36 $ 68 D 100 d 

5 ENQ 37 % 69 E 101 e 

6 AC K 38 & 70 F 102 f 
I7 BEL 39 71 G 103 g 

8 BS 40 ( 72 H 104 h 

9 HT 41 1 73 I 105 i 
* 10 L F  42 74 J 106 j 

11 VT 43 + 75 K 107 k 

12 FF 44 1 76 L 108 1 
13 CR 45 - 77 M 109 m 

14 so 46 78 N 110 n 

15 SI 47 I 79 0 111 0 

16 DLE 48 0 80 P 112 P 
17 DC1 49 1 81 Q 113 q 
18 DC2 50 2 82 R 114 r 
19 DC3 51 3 83 S 115 S 

20 DC4 52 4 84 T 116 t 
21 NAK 53 5 85 U 117 U 

22 SYN 54 6 86 V 118 V 

23 ETB 55 7 87 W 119 W 

24 CAN 56 8 88 X 120 X 

25 EM 57 9 89 Y 121 Y 
26 SUB 58 90 Z 122 z 
27 ESC 59 1 91 123 { 

28 FS 60 C 92 \ 124 I 
--29 GS 61 93 I 125 } 

A30 RS 62 > 94 126 -
31 us 63 ? 95 - 127 DEL 

'he first 32 characters and the last character are control characters. Usually, they are not displayed. However, some 
ersions of C (some computers) support special graphics characters for these ASCII values. For example, 001 may 
:present the character 0,002 may represent 8,and so on. 

Escape Sequences 

Certain nonprinting characters, as well as the backslash (\) and the apostrophe ( I ), can be expressed in terms 
of escape sequences. An escape sequence always begins with a backward slash and is followed by one or  
more special characters. For example, a line feed (LF), which is referred to as a newline in C, can be 
represented as \n. Such escape sequences always represent single characters, even though they are written in 
terms of two or more characters. 

The commonly used escape sequences are listed below. 



32 C FUNDAMENTALS [CHAP. 2 

_Character Escape Seauence ASCII Value 

bell (alert) \ a  007 

backspace \ b  008 
horizontal tab \t 009 

vertical tab \ v  011 

newline (line feed) \ n  010 

form feed \ f  012 

carriage return \ r  013 

quotation mark (") \ I' 034 

apostrophe (') \ I  039 

question mark (?) \ ?  063 

backslash 0) \ \  092 

null \O 000 

EXAMPLE 2.12 Shown below are several character constants, expressed in terms of escape sequences. 

I \ n '  I \ t '  ' \b' ' \ "  I' \ ' I  I \ \ '  

Note that the last three escape sequences represent an apostrophe, a backslash and a quotation mark, respectively. 

Of particular interest is the escape sequence \ O .  This represents the null character (ASCII OOO), which is 
used to indicate the end of a string (see below). Note that the null character constant \O I is not equivalent to 
the character constant 0 I . 

An escape sequence can also be expressed in terms of one, two or three octal digits which represent 
single-character bit patterns. The general form of such an escape sequence is \ooo, where each o represents 
an octal digit (0 through 7). Some versions of C also allow an escape sequence to be expressed in terms of 
one or more hexadecimal digits, preceded by the letter x. The general form of a hexadecimal escape sequence 
is \xhh, where each h represents a hexadecimal digit (0 through 9 and a through f). The letters can be either 
upper- or lowercase. The use of an octal or hexadecimal escape sequence is usually less desirable than writing 
the character constant directly, however, since the bit patterns may be dependent upon some particular 
character set. 

EXAMPLE 2.13 The letter A is represented by the decimal value 065 in the ASCII character set. This value is 
equivalent to the octal value 101. (The equivalent binary bit pattern is 001 000 001.) Hence the character constant ' A '  
can be expressed as the octal escape sequence ' \ 101 . 

In some versions of C, the letter A can also be expressed as a hexadecimal escape sequence. The hexadecimal 
equivalent of the decimal value 65 is 41. (The equivalent binary bit pattern is 0100 0001.) Hence the character constant 
' A '  can be expressed as ' \x41 I ,  or as ' \X41 ' . 

It should be understood that the preferred way to represent this character constant is simply ' A ' .  In this form, the 
character constant is not dependent upon its equivalent ASCII representation. 

Escape sequences can only be written for certain special characters, such as those listed above, or in terms 
of octal or hexadecimal digits. If a backslash is followed by any other character, the result may be 
unpredictable. Usually, however, it will simply be ignored. 

String Constants 

A string constant consists of any number of consecutive characters (including none), enclosed in (double) 
quotation marks. 
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EXAMPLE 2.14 Several string constants are shown below. 

"green" "Washington, D.C. 20005H "270-32-3456" 

"$19.95" "THE CORRECT ANSWER IS:' '2* ( I+3)/J " 
II II " L i n e  l \ n L i n e  2\nL ine 3" w II 

Note that the string constant " L i n e  1\nLine 2\nL ine 3 "  extends over three lines, because of the newline characters 
that are embedded within the string. Thus, this string would be displayed as 

L ine  1 

L i n e  2 
L i n e  3 

Also, notice that the string is a null (empty) string. 

Sometimes certain special characters (e.g., a backslash or a quotation mark) must be included as a part of 
a string constant. These characters must be represented in terms of their escape sequences. Similarly, certain 
nonprinting characters (e.g., tab, newline) can be included in a string constant if they are represented in terms 
of their corresponding escape sequences. 

EXAMPLE 2.15 The following string constant includes three special characters that are represented by their 
corresponding escape sequences. 

" \ t T o  cont inue,  press t h e  \"RETURN\" key \n"  

The special characters are \ t (horizontal tab), \ I' (double quotation marks, which appears twice), and \ n (newline). 

The compiler automatically places a null character (\O) at the end of every string constant, as the last 
character within the string (before the closing double quotation mark). This character is not visible when the 
string is displayed. However, we can easily examine the individual characters within a string, and test to see 
whether or not each character is a null character (we will see how this is done in Chap. 6) .  Thus, the end of 
every string can be readily identified. This is very helpful if the string is scanned on a character-by-character 
basis, as is required in many applications. Also, in many situations this end-of-string designation eliminates 
the need to spec@ a maximum string length. 

EXAMPLE 2.16 The string constant shown in Example 2.15 actually contains 38 characters. This includes five blank 
spaces, four special characters (horizontal tab, two quotation marks and newline) represented by escape sequences, and the 
null character ( \  0) at the end of the string. 

IRemember that a character constant (e.g., I A ) and the corresponding single-character string constant 
( " A " )  are not equivalent. Also remember that a character constant has an equivalent integer value, whereas a 
single-character string constant does not have an equivalent integer value and, in fact, consists of two 
characters -the specified character followed by the null character ( \0). 

EXAMPLE 2.17 The character constant I w has an integer value of 119 in the ASCII character set. It does not have a 
null character at the end. In contrast, the string constant " w "  actually consists of two characters -the lowercase letter w 
and the null character \O.  This constant does not have a corresponding integer value. 

2.5 VARIABLES AND ARRAYS 

A variable is an identifier that is used to represent some specified type of information within a designated 
portion of the program. In its simplest form, a variable is an identifier that is used to represent a single data 
item; i.e., a numerical quantity or a character constant. The data item must be assigned to the variable at some 
point in the program. The data item can then be accessed later in the program simply by referring to the 
variable name. 
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A given variable can be assigned different data items at various places within the program. Thus, the 
information represented by the variable can change during the execution of the program. However, the data 
type associated with the variable cannot change. 

EXAMPLE 2.18 A C program contains the following lines. 

i n t  a ,  b ,  c ;  
char d; 

. . .  
a = 3; 
b = 5 ;  

c = a + b ;  
d = I a I ;  

a = 4;  

b = 2;  

c = a - b ;  
d = ' W ' ;  

The first two lines are ype declarations, which state that a ,  b and c are integer variables, and that d is a char-type 
variable. Thus a ,  b and c will each represent an integer-valued quantity, and d will represent a single character. These 
type declarations will apply throughout the program (more about this in Sec. 2.6). 

The next four lines cause the following things to happen: the integer quantity 3 is assigned to a, 5 is assigned to b, 
and the quantity represented by the sum a + b (i.e., 8) is assigned to c. The character 'a '  is then assigned to d. 

In the third line within this group, notice that the values of the variables a and b are accessed simply by writing the 
variables on the right-hand side of the equal sign. 

The last four lines redefine the values assigned to the variables as follows: the integer quantity 4 is assigned to a, 
replacing the earlier value, 3; then 2 is assigned to b, replacing the earlier value, 5 ;  then the difference between a and b 
(i.e., 2) is assigned to c, replacing the earlier value, 8. Finally, the character ' W '  is assigned to d, replacing the earlier 
character, ' a ' . 

The array is another kind of variable that is used extensively in C. An array is an identifier that refers to a 
collection of data items that all have the same name. The data items must all be of the same type (e.g., all 
integers, all characters, etc.). The individual data items are represented by their corresponding array-elements 
(i.e., the first data item is represented by the first array element, etc.). The individual array elements are 
distinguished from one another by the value that is assigned to a subscript. 

EXAMPLE 2.19 Suppose that x is a 10-element array. The first element is referred to as x [ 0J ,the second as x [ 1J ,and 
so on. The last element will be x [9J . 

The subscript associated with each element is shown in square braces. Thus, the value of the subscript for the first 
element is 0, the value of the subscript for the second element is 1, and so on. For an n-element array, the subscripts 
always range from 0 to n-1 . 

There are several different ways to categorize arrays (e.g., integer arrays, character arrays, one-
dimensional arrays, multi-dimensional arrays). For now, we will confine our attention to only one type of 
array: the one-dimensional, char-type array (often called a one-dimensional character array). This type of 
array is generally used to represent a string. Each array element will represent one character within the string. 
Thus, the entire array can be thought of as an ordered list of characters. 

Since the array is one-dimensional, there will be a single subscript (sometimes called an index) whose 
value refers to individual array elements. If the array contains n elements, the subscript will be an integer 
quantity whose values range from 0 to n-1 . Note that an n-character string will require an ( n + l  )-element 
array, because of the null character (\O)that is automatically placed at the end of the string. 
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EXAMPLE 2.20 Suppose that the string " C a l i f o r n i a "  is to be stored in a one-dimensional character array called 
l e t t e r .  Since " C a l i f o r n i a " contains 10 characters, l e t t e r  will be an 1 I-element array. Thus, l e t t e r [  01 will 
represent the letter C, l e t t e r [  1 ] will represent a, and so on, as summarized below. Note that the last (i.e., the 1 Ith) array 
element, l e t t e r [ 101, represents the null character which signifies the end of the string. 

Element Subscript Array Corresponding Data Item 

lVumber Value Element (String Character) 

1 0 l e t t e r [  01 C 

2 1 l e t t e r [  11 a 

3 2 l e t t e r [  21 1 
4 3 l e t t e r [  31 i 
5 4 l e t t e r [ 41 f 
6 5 l e t t e r [  51 0 

7 6 l e t t e r [  61 r 
8 7 l e t t e r [  71 n 
9 0 l e t t e r [ 81 i 
10 9 l e t t e r [  91 a 

11 10 l e t t e r [ 101 \O 

From this list we can determine, for example, that the 5th array element, l e t t e r [ 41, represents the letter f, and so on. 
The array elements and their contents are shown schematically in Fig. 2.1. 

r n i 

Subscript: 0 1 2 3 4 5 6 7 8 9 10 

An 1 1-element character array 

Fig. 2.1 

We will discuss arrays in much greater detail in Chaps. 9 and 10. 

2.6 DECLARATIONS 

A declaration associates a group of variables with a specific data type. All variables must be declared before 
they can appear in executable statements. 

A declaration consists of a data type, followed by one or more variable names, ending with a semicolon. 
(Recall that the permissible data types are discussed in Sec. 2.3.) Each array variable must be followed by a 
pair of square brackets, containing a positive integer which specifies the size (i.e., the number of elements) of 
the array. 

EXAMPLE 2.21 A C program contains the following type declarations. 

i n t  a ,  b,  c ;  
f l o a t  r o o t l  , root2 ;  
char f l a g ,  t e x t [ 8 0 ] ;  

Thus, a, b and c are declared to be integer variables, r o o t l  and root2  are floating-point variables, f l a g  is a char-type 
variable and t e x t  is an 80-element, char-type array. Note the square brackets enclosing the size specification for t e x t .  
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These declarations could also have been written as follows. 

i n t  a ;  
i n t  b; 

i n t  c ;  
f l o a t  r o o t l ;  
f l o a t  root2; 
char f l a g ;  
char t ex t [80 ] ;  

This form may be useful if each variable is to be accompanied by a comment explaining its purpose. In small programs, 
however, items of the same type are usually combined in a single declaration. 

Integer-type variables can be declared to be short integer for smaller integer quantities, or long integer for 
larger integer quantities. (Recall that some C compilers allocate less storage space to short integers, and 
additional storage space to long integers.) Such variables are declared by writing s h o r t  i n t  and l o n g  i n t ,  
or simply s h o r t  and long,  respectively. 

EXAMPLE 2.22 A C program contains the following type declarations. 

shor t  i n t  a ,  b ,  c ;  
long i n t  r, s,  t ;  
i n t  P ,  9; 

Some compilers will allocate less storage space to the short integer variables , b and c than to the integer variables p 
and q. Typical values are two bytes for each short integer variable, and four bytes (one word) for each ordinary integer 
variable. The maximum permissible values of a, b and c will be smaller than the maximum permissible values of p and q 
when using a compiler of this type. 

Similarly, some compilers will allocate additional storage space to the long integer variables r, s and t than to the 
integer variables p and q. Typical values are two words (8 bytes) for each long integer variable, and one word (4 bytes) 
for each ordinary integer variable. The maximum permissible values of r, s and t will be larger than the maximum 
permissible values of p and q when using one of these compilers. 

The above declarations could have been written as 

shor t  a,  b y  c ;  
long r, s ,  t ;  
i n t  P ,  9; 

Thus, shor t  and shor t  i n t  are equivalent, as are long and long i n t .  

An integer variable can also be declared to be unsigned, by writing unsigned i n t ,  or simply 
unsigned,  as the type indicator. Unsigned integer quantities can be larger than ordinary integer quantities 
(approximately twice as large), but they cannot be negative. 

EXAMPLE 2.23 A C program contains the following type declarations. 

i n t  a ,  b; 
unsigned x ,  y ;  

The unsigned variables x and y can represent values that are twice as large as the values represented by a and b. However, 
x and y cannot represent negative quantities. For example, if the computer uses 2 bytes for each integer quantity, then a 
and b may take on values that range from -32768 to +32767, whereas the values of x and y may vary from 0 to +65535. 
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Floating-point variables can be declared to be double precision by using the type indicator double or 
l o n g  f l o a t  rather than f l o a t .  In most versions of C, the exponent within a double-precision quantity is 
larger in magnitude than the exponent within an ordinary floating-point quantity. Hence, the quantity 
represented by a double-precision variable can fall within a greater range. Moreover, a double-precision 
quantity will usually be expressed in terms of more significant figures. 

EXAMPLE 2.24 A C program contains the following type declarations. 

f l o a t  c l  , c2, c3; 
double root l  , root2; 

With a particular C compiler, the double-precision variables rootl  and root2 represent values that can vary (in 
magnitude) from approximately 1.7 x 10-308to 1.7 x 10+308. However, the floating-point variables c l ,  c2 and c3 are 
restricted (in magnitude) to the range 3.4 x 10-38 to 3.4 x 1038. Furthermore, the values represented by root l  and root2 

will each be expressed in terms of 18 significant figures, whereas the values represented by c l ,  c2 and c3 will each be 
expressed in terms of only 6 significant figures. 

The last declaration could have been written 

long f l o a t  r o o t l ,  root2; 

though the original form (i.e., doub le  rootl  , root2;) is more common. 

Initial values can be assigned to variables within a type declaration. To do so, the declaration must 
consist of a data type, followed by a variable name, an equal sign (=) and a constant of the appropriate type. A 
semicolon must appear at the end, as usual. 

EXAMPLE 2.25 A C program contains the following type declarations. 

i n t  c = 12; 
char s t a r  = " * I ;  

f l o a t  sum = 0.  ; 
double f a c t o r  = 0.21023e-6; 

Thus, c is an integer variable whose initial value is 12, s t a r  is a char-type variable initially assigned the character " ", 
sum is a floating-point variable whose initial value is O . ,  and f a c t o r  is a double-precision variable whose initial value is 
0.21023 x 10-6. 

A character-type array can also be initialized within a declaration. To do so, the array is usually written 
without an explicit size specification (the square brackets are empty). The array name is then followed by an 
equal sign, the string (enclosed in quotes), and a semicolon. This is a convenient way to assign a string to a 
c haract er-type array. 

EXAMPLE 2.26 A C program contains the following type declaration. 

char t e x t [  ] = "Ca l i fo rn ia" ;  

This declaration will cause t e x t  to be an 11-element character array. The first 10 elements will represent the 10 
characters within the word California,  and the 1lth element will represent the null character (\O)which is automatically 
added at the end of the string. 

The declaration could also have been written 

char t e x t [ l l ]  = "Ca l i fo rn ia" ;  
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where the size of the array is explicitly specified. In such situations it is important, however, that the size be specified 
correctly. If the size is too small, e.g., 

char text[lO] = "Cal i fornia";  

the characters at the end of the string (in this case, the null character) will be lost. If the size is too large, e.g., 

char text[20] = "Cal i fornia";  

the extra array elements may be assigned zeros, or they may be filled with meaningless characters. 

Array declarations that include the assignment of initial values can only appear in certain places within a 
C program (see Chap. 9). 

In Chap. 8 we shall see that variables can be categorized by storage class as well as by data type. The 
storage class specifies the portion of the program within which the variables are recognized. Moreover, the 
storage class associated with an array determines whether or not the array can be initialized. This is explained 
in Chap. 9. 

2.7 EXPRESSIONS 

An expression represents a single data item, such as a number or a character. The expression may consist of a 
single entity, such as a constant, a variable, an array element or a reference to a function. It may also consist 
of some combination of such entities, interconnected by one or more operators. The use of expressions 
involving operators is particularly common in C, as in most other programming languages. 

Expressions can also represent logical conditions that are either true or false. However, in C the 
conditions true and false are represented by the integer values 1 and 0,respectively. Hence logical-type 
expressions really represent numerical quantities. 

EXAMPLE 2.27 Several simple expressions are shown below. 

a + b  

x = y  


c = a + b  

x <= y 
x == Y 
++i 

The first expression involves use of the addition operator (+). This expression represents the sum of the values 
assigned to the variables a and b. 

The second expression involves the assignment operator (=). In this case, the expression causes the value 
represented by y to be assigned to x. We have already encountered the use of this operator in several earlier examples (see 
Examples 1.6 through I .  13, 2.25 and 2.26). C includes several additional assignment operators, as discussed in Sec. 3.4. 

In the third line, the value of the expression (a + b) is assigned to the variable c .  Note that this combines the 
features of the first two expressions (addition and assignment). 

The fourth expression will have the value 1 (true) if the value of x is less than or equal to the value of y. Otherwise, 
the expression will have the value 0 (false). In this expression, <= is a relational operator that compares the values of the 
variables x and y. 

The fifth expression is a test for equality (compare with the second expression, which is an assignment expression). 
Thus, the expression will have the value 1 (true) if the value of x is equal to the value of y. Otherwise, the expression will 
have the value 0 (false). 
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The last expression causes the value of the variable ito be increased by 1 (i.e., incremented). Thus, the expression is 
equivalent to 

i = i + l  

The operator ++, which indicates incrementing, is called a unary operator because it has only one operand (in this case, 
the variable i ) .  C includes several other operators of this type, as discussed in Sec. 3.2. 

The C language includes many different kinds of operators and expressions. Most are described in detail 
in Chap. 3. Others will be discussed elsewhere in this book, as the need arises. 

2.8 STATEMENTS 

A statement causes the computer to carry out some action. There are three different classes of statements in C. 
They are expression statements, compound statements and control statements. 

An expression statement consists of an expression followed by a semicolon. The execution of an 
expression statement causes the expression to be evaluated. 

EXAMPLE 2.28 Several expression statements are shown below. 

a = 3; 

c = a + b ;  

++i; 

p r i n t f  ( "Area  = %f area)  ;' I ,  

9 

The first two expression statements are assignment-type statements. Each causes the value of the expression on the right 
of the equal sign to be assigned to the variable on the left. The third expression statement is an incrementing-type 
statement, which causes the value of ito increase by 1. 

The fourth expression statement causes the p r i n t f  function to be evaluated. This is a standard C library function 
that writes information out of the computer (more about this in Sec. 3.6). In this case, the message Area = will be 
displayed, followed by the current value of the variable area. Thus, if area represents the value loo., the statement will 
generate the message 

Area = 100. 

The last expression statement does nothing, since it consists of only a semicolon. It is simply a mechanism for 
providing an empty expression statement in places where this type of statement is required. Consequently, it is called a 
null statement. 

A compound statement consists of several individual statements enclosed within a pair of braces { }. 
The individual statements may themselves be expression statements, compound statements or control 
statements. Thus, the compound statement provides a capability for embedding statements within other 
statements. Unlike an expression statement, a compound statement does not end with a semicolon. 

EXAMPLE 2.29 A typical compound statement is shown below. 

1 
p i  = 3.141593; 
circumference = 2 .  * p i  * radius;  
a rea  = p i  * rad ius  * radius;  

1 
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This particular compound statement consists of three assignment-type expression statements, though it is considered a 
single entity within the program in which it appears. Note that the compound statement does not end with a semicolon 
&er the brace. 

Control statements are used to create special program features, such as logical tests, loops and branches. 
Many control statements require that other statements be embedded within them, as illustrated in the following 
example. 

EXAMPLE 2.30 The following control statement creates a conditional loop in which several actions are executed 
repeatedly, until some particular condition is satisfied. 

w h i l e  (count <= n )  { 

p r i n t f ( ' x  = ' ) ;  

scanf ( "Skf " , &x) ; 
sum += x ;  
++count; 

1 

This statement contains a compound statement, which in turn contains four expression statements. The compound 
statement will continue to be executed as long as the value of count does not exceed the value of n. Note that count 
increases in value during each pass through the loop. 

Chapter 6 presents a detailed discussion of control statements. 

2.9 SYMBOLIC CONSTANTS 

A symbolic constant is a name that substitutes for a sequence of characters. The characters may represent a 
numeric constant, a character constant or a string constant. Thus, a symbolic constant allows a name to appear 
in place of a numeric constant, a character constant or a string. When a program is compiled, each occurrence 
of a symbolic constant is replaced by its corresponding character sequence. 

Symbolic constants are usually defined at the beginning of a program. The symbolic constants may then 
appear later in the program in place of the numeric constants, character constants, etc. that the symbolic 
constants represent. 

A symbolic constant is defined by writing 

#define name tex t  

where name represents a symbolic name, typically written in uppercase letters, and t e x t  represents the 
sequence of characters that is associated with the symbolic name. Note that t e x t  does not end with a 
semicolon, since a symbolic constant definition is not a true C statement. Moreover, if t e x t  were to end with 
a semicolon, this semicolon would be treated as though it were a part of the numeric constant, character 
constant or string constant that is substituted for the symbolic name. 

EXAMPLE 2.31 A C program contains the following symbolic constant definitions. 

#def ine  TAXRATE 0.23 

# d e f i n e  P I  3.141593 

# d e f i n e  TRUE 1 

# d e f i n e  FALSE 0 

# d e f i n e  FRIEND "Susan" 
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Notice that the symbolic names are written in uppercase, to distinguish them from ordinary C identifiers. Also, note that 
the definitions do not end with semicolons. 

Now suppose that the program contains the statement 

area  = PI * rad ius  * rad ius ;  

During the compilation process, each occurrence of a symbolic constant will be replaced by its corresponding text. Thus, 
the above statement will become 

area  = 3.141593 * rad ius  * radius;  

Now suppose that a semicolon had been (incorrectly) included in the definition for PI, i.e., 

#def ine  P I  3.141593; 

The assignment statement for a r e a  would then become 

area  = 3.141593; * rad ius  * radius;  

Note the semicolon preceding the first asterisk. This is clearly incorrect, and it will cause an error in the compilation. 

The substitution of text for a symbolic constant will be carried out anywhere beyond the # d e f i n e  
statement, except within a string. Thus, any text enclosed by (double) quotation marks will be unaffected by 
this substitution process. 

EXAMPLE 2.32 A C program contains the following statements. 

#def ine  CONSTANT 6.023E23 

i n t  c ;  
. . . . .  
p r i n t f  ( "CONSTANT = %f", c ) ; 

The p r i n t f  statement will be unaffected by the symbolic constant definition, since the term "CONSTANT = %f is a 'I 

string constant. If, however, the p r i n t f  statement were written as 

p r i n t f  ( "CONSTANT = %f CONSTANT);I " ,  

then the p r i n t f  statement would become 

p r i n t f  ( "CONSTANT = %f 6.023E23) ;I ) ,  

during the compilation process. 

Symbolic constants are not required when writing C programs. Their use is recommended, however, since 
they contribute to the development of clear, orderly programs. For example, symbolic constants are more 
readily identified than the information that they represent, and the symbolic names usually suggest the 
significance of their associated data items. Furthermore, it is much easier to change the value of a single 
symbolic constant than to change every occurrence of some numerical constant that may appear in several 
places within the program. 

The # d e f i n e  feature, which is used to define symbolic constants, is one of several features included in 
the C preprocessor (i.e., a program that provides the first step in the translation of a C program into machine 
language). A detailed discussion of the C preprocessor is included in Chap. 14 (see Sec. 14.6). 
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Review Questions 

2.1 Which characters comprise the C character set? 

2.2 Summarize the rules for naming identifiers. Are uppercase letters equivalent to lowercase letters? Can digits be 
included in an identifier name? Can any special characters be included? 

2.3 How many characters can be included in an identifier name? Are all of these characters equally significant? 

2.4 What are the keywords in C? What restrictions apply to their use? 

2.5 Name and describe the four basic data types in C. 

2.6 Name and describe the four data-type qualifiers. To which data types can each qualifier be applied? 

2.7 Name and describe the four basic types of constants in C. 

2.8 Summarize the rules that apply to all numeric-type constants. 

2.9 What special rules apply to integer constants? 

2.10 When writing integer constants, how are decimal constants, octal constants and hexadecimal constants 
distinguished from one another? 

2.1 1 Typically, what is the largest permissible magnitude of an integer constant? State your answer in decimal, octal 
and hexadecimal. 

2.12 What are unsigned integer constants? What are long integer constants? How do these constants differ from 
ordinary integer constants? How can they be written and identified? 

2.13 Describe two different ways that floating-point constants can be written. What special rules apply in each case? 

2.14 What is the purpose of the (optional) exponent in a floating-point constant? 

2.15 Typically, what is the largest permissible magnitude of a floating-point constant? Compare with an integer 
constant. 

2.16 How can “single-precision” and “long” floating-point constants be written and identified? 

2.17 Typically, how many significant figures are permitted in a floating-point constant? 

2.18 Describe the differences in accuracy between integer and floating-point constants. Under what circumstances 
should each type of constant be used? 

2.19 What is a character constant? How do character constants differ from numeric-type constants? Do character 
constants represent numerical values? 

2.20 What is the ASCII character set? How common is its use? 

2.21 What is an escape sequence? What is its purpose? 

2.22 Summarize the standard escape sequences in C. Describe other, nonstandard escape sequences that are commonly 
available. 

2.23 What is a string constant? How do string constants differ from character constants? Do string constants represent 
numerical values? 

2.24 Can escape sequences be included in a string constant? Explain. 

2.25 What is a variable? How can variables be characterized? 

2.26 What is an array variable? How does an array variable differ from an ordinary variable? 

2.27 What restriction must be satisfied by all of the data items represented by an array? 

2.28 How can individual array elements be distinguished from one another? 

2.29 What is a subscript? What range of values is permitted for the subscript of a one-dimensional, n-element array? 

2.30 What is the purpose of a type declaration? What does a type declaration consist of! 

2.31 Must all variables appearing within a C program be declared? 

2.32 How are initial values assigned to variables within a type declaration? How are strings assigned to one-
dimensional, character-type arrays? 

2.33 What is an expression? What kind of information is represented by an expression? 
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2.34 What is an operator? Describe several different types of operators that are included within the C language. 

2.35 Name the three different classes of statements in C. Describe the composition of each. 

2.36 Can statements be embedded within other statements? Explain. 

2.37 What is a symbolic constant? How is a symbolic constant defined? How is the definition written? Where must a 
symbolic constant definition be placed within a C program? 

2.38 During the compilation process, what happens to symbolic constants that appear within a C program? 

Problems 

2.39 Determine which of the following are valid identifiers. If invalid, explain why. 

(a) record1 (e )  $tax ( h )  name-and-address 

(b) l r e c o r d  cr) name (i) name-and-address 

(c) f i l e - 3  (g) name and address (j) 123- 45 - 6789 

(6) r e t u r n  

2.40 Assume that your version of C can recognize only the first 8 characters of an identifier name, though identifier 
names may be arbitrarily long. Which of the following pairs of identifier names are considered to be identical and 
which are distinct? 

(a) name, names (6) l i s t l ,  l i s t 2  

(b)  address, Address ( e )  answer, ANSWER 

(c) i d e n t i f  ie r -1  , i d e n t i f  ie r -2  CI) c h a r l ,  char-1 

2.4 1 Determine which of the following numerical values are valid constants. If a constant is valid, specify whether i t  is 

integer or real. Also, specify the base for each valid integer constant. 

(a)  0.5 ( e )  12345678 

(6) 27,822 U> 12345678L 

(i) 

(j) 

0515 

018CDF 

(c) 9.3e12 (g) 0.8E+0.8 

(d) 9.3e-12 (h)  0.8E 8 

( k )  

( I )  

OXBCFDAL 

Ox87e3ha 

2.42 Determine which of the following are valid character constants. 

(a) ' a '  (e )  " \ \ " 

(b)  ' $ I  U> ' \ a '  

( t l )  

(i) 

I \ O "  

' xyz I 

(d) ' / n o  

(c) ' \ n o  (g) ' T '  (j) ' \052"  

2.43 Determine which of the following are valid string constants. 

(a) ' 8 :15  P.M. '  ( e )  "1.3e-12" 

(b) "Red, White and B lue"  cr) "NEW YORK, NY 10020" 

(c) "Name: (g) "The pro fessor  sa id,  

(d) "Chap. 3 ( C o n t \ " d ) "  

2.44 Write appropriate declarations for each group of variables and arrays. 

(a)  Integer variables: p ,  q 
Floating-point variables: x , y , z 
Character variables: a, b y  c 

(b) Floating-point variables: r o o t  1 , r o o t 2  

Long integer variable: counter  

Short integer variable: f l a g  

"Please d o n ' t  s leep i n  c l a s s ' "  
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(c) Integer variable: index 
Unsigned integer variable: cust-no 
Double-precision variables: gross, tax ,  n e t  

(6)  Character variables: c u r r e n t ,  l a s t  
Unsigned integer variable: count 
Floating-point variable: e r r o r  

(e) Character variables: f i r s t  , l a s t  
80-element character array: message 

2.45 Write appropriate declarations and assign the given initial values for each group of variables and arrays. 

(a) Floating-point variables: a = -8.2, b = 0.005 
Integer variables: x = 129, y = 87, z= -22 
Character variables: c l  = I w , c2 = i? I 

(6) Double-precision variables: d l  = 2.88 x 10-*, d2 = -8.4 x 105 
Integer variables: U = 7 11 (octal), v = f f f f (hexadecimal) 

(c)  Long integer variable: b i g  = 123456789 
Double-precision variable: c = 0.3333333333 
Character variable: e o l  = newline character 

(d) One-dimensional character array: message = I' ERROR" 

2.46 Explain the purpose of each of the following expressions. 

(a) a - b (6)  a >= b U> a < ( b / c )  

(6) a * ( b  + c )  ( e )  (a  % 5 )  == o k) --a 

(c)  d = a * ( b  + c )  

2.47 Identify whether each of the following statements is an expression statement, a compound statement or a control 
statement. 

(U) a * ( b  + c ) ;  

(6) w h i l e  ( a  < 100) { 
d = a * (b  + c ) ;  
++a ; 

1 

(c)  i f  ( x  > 0) 
y = 2.0; 

else 

y = 3.0; 

(d) { (4 { 
++x ; ++x ; 
i f  ( x  > 0)  i f  (x  > 0) { 

y = 2.0; y = 2.0; 
e l s e  z = 6.0; 

y = 3.0; 1 
I'p r i n t f  ( "%f, y )  ; e l s e  { 

1 y = 3.0; 
z = 9.0; 

1 
1 

2.48 Write an appropriate definition for each of the following symbolic constants, as it would appear within a C 
program. 
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Constant rn 
(4 FACTOR -18 

(4 ERROR 0.0001 

(4 BEGIN t 
END 1 

(4 NAME “Sharon” 

(4 EOLN ‘\n’ 

v) COST “$1 9.95” 



Chapter 3 


Operators and Expressions 

We have already seen that individual constants, variables, array elements and function references can be 
joined together by various operators to form expressions. We have also mentioned that C includes a large 
number of operators which fall into several different categories. In this chapter we examine certain of these 
categories in detail. Specifically, we will see how arithmetic operators, unary operators, relational and logical 
operators, assignment operators and the conditional operator are used to form expressions. 

The data items that operators act upon are called operands. Some operators require two operands, while 
others act upon only one operand. Most operators allow the individual operands to be expressions. A few 
operators permit only single variables as operands (more about this later). 

3.1 ARITHMETIC OPERATORS 

There are five arithmetic operators in C. They are 

Operator -
+ addit ion 
- subtraction 
* multiplication 

I division 

% remainder after integer division 

The % operator is sometimes referred to as the modulus operator. 
There is no exponentiation operator in C. However, there is a library finction (POW) to carry out 

exponentiation (see Sec. 3.6). 
The operands acted upon by arithmetic operators must represent numeric values. Thus, the operands can 

be integer quantities, floating-point quantities or characters (remember that character constants represent 
integer values, as determined by the computer’s character set). The remainder operator (%) requires that both 
operands be integers and the second operand be nonzero. Similarly, the division operator (/) requires that the 
second operand be nonzero. 

Division of one integer quantity by another is referred to as integer division. This operation always 
results in a truncated quotient (i.e., the decimal portion of the quotient will be dropped). On the other hand, if 
a division operation is carried out with two floating-point numbers, or with one floating-point number and one 
integer, the result will be a floating-point quotient. 

EXAMPLE 3.1 Suppose that a and b are integer variables whose values are 10 and 3, respectively. Several arithmetic 
expressions involving these variables are shown below, together with their resulting values. - Value 

a + b  13 

a - b  7 

a * b  30 

a t b  3 

a % b  1 

46 
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Notice the truncated quotient resulting from the division operation, since both operands represent integer quantities. 
Also, notice the integer remainder resulting from the use of the modulus operator in the last expression. 

Now suppose that v l  and v2 are floating-point variables whose values are 12.5 and 2.0, respectively. Several-arithmetic expressions involving these variables are shown below, together with their resulting values. 

Value 
v l  + v2 14.5 

v l  - v2 10.5 

v l  * v2 25.0 

v l  I v2 6.25 

Finally, suppose that c l  and c2 are character-type variables that represent the characters P and T, respectively. 
Several arithmetic expressions that make use of these variables are shown below, together with their resulting values 
(based upon the ASCII character set). - Value 

c l  80 

c l  + c2 164 

c l  + c2 + 5 169 

c l  + c2 + ' 5 '  217 

Note that P is encoded as (decimal) 80, T is encoded as 84, and 5 is encoded as 53 in the ASCII character set, as shown in 
Table 2-1. 

If one or both operands represent negative values, then the addition, subtraction, multiplication and 
division operations will result in values whose signs are determined by the usual rules of algebra. Integer 
division will result in truncation toward zero; i.e., the resultant will always be smaller in magnitude than the 
true quotient. 

The interpretation of the remainder operation is unclear when one of the operands is negative. Most 
versions of C assign the sign of the first operand to the remainder. Thus, the condition 

a = ( ( a  / b )  * b )  + ( a  % b )  

will always be satisfied, regardless of the signs of the values represented by a and b. 
Beginning programmers should exercise care in the use of the remainder operation when one of the 

operands is negative. In general, it is best to avoid such situations. 

EXAMPLE 3.2 Suppose that a and b are integer variables whose values are 1 1  and -3, respectively. Several arithmetic 
expressions involving these variables are shown below, together with their resulting values. 

a + b  8 

a - b  14 

a * b  -33 

a l b  -3 

a % b  2 

If a had been assigned a value of -1  1 and b had been assigned 3, then the value of a 1 b would still be -3 but the 
value of a % b would be -2. Similarly, if a and b had both been assigned negative values (-1 1 and -3, respectively), 
then the value of a I b would be 3 and the value of a % b would be -2. 
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Note that the condition 

a = ( ( a  1 b )  * b )  + ( a  % b) 

will be satisfied in each of the above cases. Most versions of C will determine the sign of the remainder in this manner, 
though this feature is unspecified in the formal definition of the language. 

EXAMPLE 3.3 Here is an illustration of the results that are obtained with floating-point operands having different 
signs. Let r l  and r 2  be floating-point variables whose assigned values are -0.66 and 4.50. Several arithmetic 
expressions involving these variables are shown below, together with their resulting values. 

Expression Value-
r l  + r 2  3.84 

r l  - r 2  -5.16 

r l  * r 2  -2.97 

r l  1 r 2  -0,1466667 

Operands that differ in type may undergo type conversion before the expression takes on its final value. 
In general, the final result will be expressed in the highest precision possible, consistent with the data types of 
the operands. The following rules apply when neither operand is unsigned. 

1. If both operands are floating-point types whose precisions differ (e.g., a f l o a t  and a double), the lower- 
precision operand will be converted to the precision of the other operand, and the result will be expressed 
in this higher precision. Thus, an operation between a f l o a t  and a double will result in a double; a 
f l o a t  and a long  double will result in a long double; and a double and a long double will result 
in a long  double. (Note: In some versions of C, all operands of type f l o a t  are automatically 
converted to double.) 

2. If one operand is a floating-point type (e.g., f l o a t ,  double or long  double) and the other is a char  or 
an i n t  (including shor t  i n t  or long i n t ) ,  the char or i n t  will be converted to the floating-point 
type and the result will be expressed as such. Hence, an operation between an i n t  and a double will 
result in a double. 

3.  If neither operand is a floating-point type but one is a long  i n t ,  the other will be converted to long  
i n t  and the result will be long  i n t .  Thus, an operation between a long  i n t  and an i n t  will result in 
a l o n g  i n t .  

4. If neither operand is a floating-point type or a long i n t ,  then both operands will be converted to i n t  (if 
necessary) and the result will be i n t .  Thus, an operation between a shor t  i n t  and an i n t  will result in 
an i n t .  

A detailed summary of these rules is given in Appendix D. Conversions involving unsigned operands 
are also explained in Appendix D. 

EXAMPLE 3.4 Suppose that i is an integer variable whose value is 7, f is a floating-point variable whose value is 5.5, 
and c is a character-type variable that represents the character w. Several expressions which include the use of these 
variables are shown below. Each expression involves operands of two different types. Assume that the ASCII character 
set is being used. 

Expression Value TVpe 
i + f  12.5 dou ble-prec is ion 
i + c  126 integer 

i + c - '0' 78 integer 
(i + c) - ( 2  * f 1 5 )  123.8 double-precision 

Note that w is encoded as (decimal) 119 and 0 is encoded as 48 in the ASCII character set, as shown in Table 2-1. 
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The value of an expression can be converted to a different data type if desired. To do so, the expression 
must be preceded by the name of the desired data type, enclosed in parentheses, i.e., 

(da ta  type) expression 

This type of construction is known as a cast. 

EXAMPLE 3.5 Suppose that i is an integer variable whose value is 7, and f is a floating-point variable whose value is 
8.5. The expression 

(i + f )  % 4 

is invalid, because the first operand (i + f ) is floating-point rather than integer. However, the expression 

((int) (i + f ) )  % 4 

forces the first operand to be an integer and is therefore valid, resulting in the integer remainder 3. 
Note that the explicit type specification applies only to the first operand, not the entire expression. 

The data type associated with the expression itself is not changed by a cast. Rather, it is the value of the 
expression that undergoes type conversion wherever the cast appears. This is particularly relevant when the 
expression consists of only a single variable. 

EXAMPLE 3.6 Suppose that f is a floating-point variable whose value is 5 .5 .  The expression 

((int) f )  % 2 

contains two integer operands and is therefore valid, resulting in the integer remainder 1. Note, however, that f remains a 
floating-point variable whose value is 5.5,  even though the value o f f  was converted to an integer ( 5 )  when carrying out 
the remainder operation. 

The operators within C are grouped hierarchically according to their precedence (i.e., order of 
evaluation). Operations with a higher precedence are carried out before operations having a lower precedence. 
The natural order of evaluation can be altered, however, through the use of parentheses, as illustrated in 
Example 3.5. 

Among the arithmetic operators, *, / and % fall into one precedence group, and + and - fall into another. 
The first group has a higher precedence than the second. Thus, multiplication, division and remainder 
operations will be carried out before addition and subtraction. 

Another important consideration is the order in which consecutive operations within the same precedence 
group are carried out. This is known as associativity. Within each of the precedence groups described above, 
the associativity is left to right. In other words, consecutive addition and subtraction operations are carried out 
from left to right, as are consecutive multiplication, division and remainder operations. 

EXAMPLE 3.7 The arithmetic expression 

a - b / c * d  

is equivalent to the algebraic formula a - [ (b/ c)  x 4.Thus, if the floating-point variables a ,  b ,  c and d have been 
assigned the values I ., 2., 3. and 4., respectively, the expression would represent the value -1.666666 . . ., since 

1. - [(2. / 3.) x 4.1 = 1. - [0.666666. . . x 4.1 = 1. - 2.666666 * .  * = -1.666666 ' '  * 

Notice that the division is carried out first, since this operation has a higher precedence than subtraction. The 
resulting quotient is then multiplied by 4., because of lefi-to-right associativity. The product is then subtracted from l . ,  
resulting in the final value of -1.666666 * * * . 
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The natural precedence of operations can be altered through the use of parentheses, thus allowing the 
arithmetic operations within an expression to be carried out in any desired order. In fact, parentheses can be 
nested, one pair within another. In such cases the innermost operations are carried out first, then the next 
innermost operations, and so on. 

EXAMPLE 3.8 The arithmetic expression 

is equivalent to the algebraic formula (a - b) / (c x d). Thus, if the floating-point variables a ,  b ,  c and d have been 
assigned the values 1., 2., 3. and 4., respectively, the expression would represent the value -0.08333333 . . ., since 

( 1 . - 2 . ) / ( 3 .  ~ 4 . ) = - l . /  12.=-0.08333333. . .  

Compare this result with that obtained in Example 3.7. 

Sometimes it is a good idea to use parentheses to clarify an expression, even though the parentheses may 
not be required. On the other hand, the use of overly complex expressions, such as that shown in the next 
example, should be avoided if at all possible. Such expressions are difficult to read, and they are often written 
incorrectly because of unbalanced parentheses. 

EXAMPLE 3.9 Consider the arithmetic expression 

2 * ((i % 5) * ( 4  + ( j  - 3)  / ( k  + 2))) 

where i , j and k are integer variables. If  these variables are assigned the values 8, 15 and 4, respectively, then the given 
expression would be evaluated as 

2 x ((8 % 5)  x (4 + ( 1 5 - 3 )  / (4 + 2))) = 2 x (3 x (4 + (12/6))) = 2 x (3 x (4 + 2)) = 2 x (3 x 6) = 2 x 18 = 36 

Suppose the value of this expression will be assigned to the integer variable w; i.e., 

w = 2 * ((i % 5 )  * ( 4  + ( j  - 3 )  / ( k  + 2))); 

It is generally better to break this long arithmetic expression up into several shorter expressions, such as 

u = i % 5 ;  

v = 4 + ( j  - 3 )  / ( k  + 2); 
w = 2 * ( U  * v ) ;  

where U and v are integer variables. These equivalent expressions are much more likely to be written correctly than the 
original lengthy expression. 

Assignment expressions will be discussed in greater detail in Sec. 3.4. 

3.2 UNARY OPERATORS 

C includes a class of operators that act upon a single operand to produce a new value. Such operators are 
known as unary operators. Unary operators usually precede their single operands, though some unary 
operators are written after their operands. 

Perhaps the most common unary operation is unary minus, where a numerical constant, variable or 
expression is preceded by a minus sign. (Some programming languages allow a minus sign to be included as 
a part of a numeric constant. In C, however, all numeric constants are positive. Thus, a negative number is 
actually an expression, consisting of the unary minus operator, followed by a positive numeric constant.) 

Note that the unary minus operation is distinctly different from the arithmetic operator which denotes 
subtraction (-). The subtraction operator requires two separate operands. 
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EXAMPLE 3.10 Here are several examples which illustrate the use of the unary minus operation. 

-743 -0X7FFF -0.2 -5E-8 

-root1 - ( x  + Y )  -3 * ( x  + y )  

In each case the minus sign is followed by a numerical operand which may be an integer constant, a floating-point 
constant, a numeric variable or an arithmetic expression. 

There are two other commonly used unary operators: The increment operator, ++, and the decrement 
operator, --. The increment operator causes its operand to be increased by 1, whereas the decrement operator 
causes its operand to be decreased by 1. The operand used with each of these operators must be a single 
variable. 

EXAMPLE 3.11 Suppose that i is an integer variable that has been assigned a value of 5 .  The expression ++i,which is 
equivalent to writing i = i + 1, causes the value of i to be increased to 6. Similarly, the expression --i,which is 
equivalent to i = i - 1, causes the (original) value of i to be decreased to 4. 

The increment and decrement operators can each be utilized two different ways, depending on whether 
the operator is written before or after the operand. If the operator precedes the operand (e.g., ++i), then the 
operand will be altered in value before it is utilized for its intended purpose within the program. If, however, 
the operator follows the operand (e.g., i++), then the value of the operand will be altered after it is utilized. 

EXAMPLE 3.12 A C program includes an integer variable i whose initial value is 1. Suppose the program includes the 
following three printf statements. (See Example 1.6 for a brief explanation of the printf statement.) 

printf("i = %d\n", 1); 
printf ("1= %d\n", ++i); 
printf("i = %d\n", 1); 

These printf statements will generate the following three lines of output. (Each printf statement will generate one 
line.) 

i = l  

i = 2  

i = 2  


The first statement causes the original value of i to be displayed. The second statement increments i and then displays its 
value. The final value of i is displayed by the last statement. 

Now suppose that the program includes the following three printf statements, rather than the three statements given 
above. 

printf ( " i  = %d\n" 1); 

printf("i = %d\n", i++); 
printf("i = %d\n", 1); 

The first and third statements are identical to those shown above. In the second statement, however, the unary operator 
follows the integer variable rather than precedes it. 

These statements will generate the following three lines of output. 

i = l  

i = 1  

i = 2  


The first statement causes the original value of i to be displayed, as before. The second statement causes the current value 
of i (1) to be displayed and then incremented (to 2). The final value of i (2)is displayed by the last statement. 

We will say much more about the use of the printf statement in Chap. 4. For now, simply note the distinction 
between the expression ++i in the first group of statements, and the expression i++ in the second group. 
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Another unary operator that is worth mentioning at this time is the s i z e o f  operator. This operator 
returns the size of its operand, in bytes. The s i z e o f  operator always precedes its operand. The operand may 
be an expression, or it may be a cast. 

Elementary programs rarely make use of the s i z e o f  operator. However, this operator allows a 
determination of the number of bytes allocated to various types of data items. This information can be very 
useful when transferring a program to a different computer or to a new version of C. It is also used for 
dynamic memory allocation, as explained in Sec. 10.4. 

EXAMPLE 3.13 Suppose that iis an integer variable, x is a floating-point variable, d is a double-precision variable, 
and c is a character-type variable. The statements 

p r i n t f  ( " i n t e g e r :  %d\n" s i z e o f  i )  ; 
p r i n t f  ( " f l o a t :  %d\n"  s i z e o f  x )  ; 
p r i n t f  ( "doub le :  %d\n"  s i z e o f  d )  ; 
p r i n t f  ( " c h a r a c t e r :  %d\n"  , s i z e o f  c )  ; 

might generate the following output. 

i n t e g e r :  2 

f l o a t :  4 

double: 8 
c h a r a c t e r :  1 

Thus. we see that this version of C allocates 2 bytes to each integer quantity, 4 bytes to each floating-point quantity, 8 
b j k s  to each double-precision quantity, and I byte to each character. These values may vary from one version of C to 
another, as explained in Sec. 2.3. 

Another \vay to generate the same information is to use a cast rather than a variable within each p r i n t f  statement. 
Thus, the p r i n t f  statements could have been written as 

p r i n t f  ( " i n t e g e r :  %d\n"  , s izeof  ( i n t e g e r ) ) ; 
p r i n t f  ( " f l o a t :  % d \ n " ,  s i z e o f  ( f l o a t ) ) ;  
p r i n t f  ( "doub le :  %d\n" s izeo f  (doub le) ) ; 
p r i n t f  ( " c h a r a c t e r :  %d\n"  s i z e o f  ( c h a r ) )  ; 

These p r i n t f  statements will generate the same output as that shown above. Note that each cast is enclosed in 
parentheses, as described in Sec. 3.1. 

Finally, consider the array declaration 

char  t e x t [  ] = " C a l i f o r n i a " ;  

The statement 

p r i n t f  ( "Number o f  charac ters  = %d", s i z e o f  t e x t )  ; 

will generate the following output. 

Number o f  charac ters  = 11 

Thus we see that the array t e x t  contains 11 characters, as explained in Example 2.26. 

A cast is also considered to be a unary operator (see Example 3.5 and the preceding discussion). In 
general terms, a reference to the cast operator is written as ( type). Thus, the unary operators that we have 
encountered so far in this book are -,++, --, s i z e o f  and ( type). 
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Unary operators have a higher precedence than arithmetic operators. Hence, if a unary minus operator 
acts upon an arithmetic expression that contains one or more arithmetic operators, the unary minus operation 
will be carried out first (unless, of course, the arithmetic expression is enclosed in parentheses). Also, the 
associativity of the unary operators is right to left, though consecutive unary operators rarely appear in 
elementary programs. 

EXAMPLE 3.14 Suppose that x and y are integer variables whose values are 10 and 20, respectively. The value of the 
expression -x + y will be -10 + 20 = 10. Note that the unary minus operation is carried out before the addition. 

Now suppose that parentheses are introduced, so that the expression becomes -( 10 + 20) .  The value of this 
expression is -( 10 + 20) = -30. Note that the addition now precedes the unary minus operation. 

C includes several other unary operators. They will be discussed in later sections of this book, as the need 
arises. 

3.3 RELATIONAL AND LOGICAL OPERATORS 

There are four relational operators in C. They are 

-r Meanrna 
< less than 

<= less than or equal to 

> greater than 

>= greater than or equal to 

These operators all fall within the same precedence group, which is lower than the arithmetic and unary 
operators. The associativity of these operators is left to right. 

Closely associated with the relational operators are the following two equality operators, 

Meanrnp 

equal to 

not equal to 

The equality operators fall into a separate precedence group, beneath the relational operators. These 
operators also have a left-to-right associativity. 

These six operators are used to form logical expressions, which represent conditions that are either true or 
false. The resulting expressions will be of type integer, since true is represented by the integer value 1 and 
false is represented by the value 0. 

EXAMPLE 3.15 Suppose that i, j and k are integer variables whose values are 1, 2 and 3, respectively. Several logical 
expressions involving these variables are shown below. 

Expression IntecmetatioQ Value 
i < j  true 1 

(1 + j) >= k true 1 

(j + k )  > (i + 5) false 0 

k I =  3 false 0 

j == 2 true 1 
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When carrying out relational and equality operations, operands that differ in type will be converted in 
accordance with the rules discussed in Sec. 3. I .  

EXAMPLE 3.16 Suppose that i is an integer variable whose value is 7, f is a floating-point variable whose value is 5.5, 
and c is a character variable that represents the character ' w ' . Several logical expressions that make use of these variables 
are shown below. Each expression involves two different type operands. (Assume that the ASCII character set applies.) 

Expression tnteruretation lialue 
f > 5  true 1 

(i + f )  <= 10 false 0 

c == 119 true 1 

c !=  ' p '  true 1 

c >= 10 * (i  + f )  false 0 

In addition to the relational and equality operators, C contains two logical operators (also called logical 
connectives). They are 

Omrator Meaning 

&& and 

I I  or 

These operators are referred to as logical and and logical or, respectively. 
The logical operators act upon operands that are themselves logical expressions. The net effect is to 

combine the individual logical expressions into more complex conditions that are either true or false. The 
result of a logical arid operation will be true only if both operands are true, whereas the result of a logical or 
operation will be true if either operand is true or if both operands are true. In other words, the result of a 
logical or operation will be false only if both operands are false. 

In this context it should be pointed out that any nonzero value, not just 1, is interpreted as true. 

EXAMPLE 3.17 Suppose that i is an integer variable whose value is 7, f is a floating-point variable whose value is 5.5,  
and c is a character variable that represents the character I w ' . Several complex logical expressions that make use of these 
variables are shown below. 

Lyression Intet-vretation Value 
(i >= 6)  && ( c  == ' w ' )  true 1 

(i >= 6)  1 1  ( c  == 119) true 1 

( f  < 11)  && (i  > 100) false 0 

( c  !=  ' p ' )  1 1  ((i + f )  <= 10)  true 1 

'l'he first expression is true because both operands are true. In the second expression, both operands are again true; hence 
the overall expression is true. The third expression is false because the second operand is false. And finally, the fourth 
expression is true because the first operand is true. 

Each of the logical operators falls into its own precedence group. Logical and has a higher precedence 
than logical or. Both precedence groups are lower than the group containing the equality operators. The 
associativity is left to right. The precedence groups are summarized below. 

C also includes the unary operator ! that negates the value of a logical expression; i.e., it causes an 
expression that is originally true to become false, and vice versa. This operator is referred to as the logical 
negation (or logical not) operator. 
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EXAMPLE 3.18 Suppose that i is an integer variable whose value is 7, and f is a floating-point variable whose value is 
5 .5 .  Several logical expressions which make use of these variables and the logical negation operator are shown below. 

ExDressron htertlretatior2 Value 
f > 5  true 1 

I(f  > 5)  false 0 

1* <= 3 false 0 

I ( i  <= 3) true 1 

i > ( f  + 1 )  true 1 

I ( i  > ( f  + 1 ) )  false 0 

We will see other examples illustrating the use of the logical negation operator in later chapters of this 
book. 

The hierarchy of operator precedences covering all of the operators discussed so far has become 
extensive. These operator precedences are summarized below, from highest to lowest. - ODerators ASSOClatlvrn, 

. . .  

unary operators - ++ ! sizeof ( type)  R + L  
arithmetic multiply, divide and remainder * I % L + R  

arithmetic add and subtract + - L + R  

relational operators < <= > >= L + R  

equality operators L + R  

logical and L+ R 

logical or I I  L + R  

A more complete listing is given in Table 3- 1, later in this chapter. 

EXAMPLE 3.19 Consider once again the variables i,f and c, as described in Examples 3.16 and 3.17; i.e., i = 7, f = 

5.5 and c = ' w I . Some logical expressions that make use of these variables are shown below. 

Each of these expressions has been presented before (the first in Example 3.16, and the other two in Example 3.17), 
though pairs of parentheses were included in the previous examples. The parentheses are not necessary because of the 
natural operator precedences. Thus, the arithmetic operations will automatically be carried out before the relational or 
equality operations, and the relational and equality operations will automatically be carried out before the logical 
connectives. 

Consider the last expression in particular. The first operation to be carried out will be addition (i.e., i + f); then the 
relational comparison (i.e., i + f <= 10); then the equality comparison (i.e., c I =  ' p ' ) ;  and finally, the logical or 
condition. 

Complex logical expressions that consist of individual logical expressions joined together by the logical 
operators && and I I are evaluated left to right, but only until the overall true/false value has been established. 
Thus, a complex logical expression will not be evaluated in its entirety if its value can be established from its 
constituent operands. 
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EXAMPLE 3.20 Consider the complex logical expression shown below. 

e r r o r  > .0001 && count < 100 

If e r r o r  > ,0001 is false, then the second operand (i.e., count < 100) will not be evaluated, because the entire 
expression will be considered false. 

On the other hand, suppose the expression had been written 

e r r o r  > .0001 1 1  count < 100 

If e r r o r  > ,0001 is true, then the entire expression will be true. Hence, the second operand will not be evaluated. If 
e r r o r  > .0001 is false, however, then the second expression (i.e., count < 100) must be evaluated to determine if the 
entire expression is true or false. 

3.4 ASSIGNMENT OPERATORS 

There are several different assignment operators in C. All of them are used to form assignment expressions, 
which assign the value of an expression to an identifier. 

The most commonly used assignment operator is =. Assignment expressions that make use of this 
operator are written in the form 

i d e n t i f i e r  = expression 

where i d e n t i f i e r  generally represents a variable, and expression represents a constant, a variable or a 
more complex expression. 

EXAMPLE 3.21 Here are some typical assignment expressions that make use of the = operator. 

a = 3  

x = y  

d e l t a  = 0.001 

sum = a + b 

area  = l ength  * width  

The first assignment expression causes the integer value 3 to be assigned to the variable a, and the second assignment 
causes the value of y to be assigned to x. In the third assignment, the floating-point value 0.001 is assigned to d e l t a .  
The last two assignments each result in the value of an arithmetic expression being assigned to a variable (i.e., the value of 
a + b is assigned to sum, and the value of l ength  * width is assigned to area). 

Remember that the assignment operator = and the equality operator == are distinctly diflerent. The 
assignment operator is used to assign a value to an identifier, whereas the equality operator is used to 
determine if two expressions have the same value. These operators cannot be used in place of one another. 
Beginning programmers often incorrectly use the assignment operator when they want to test for equality. 
This results in a logical error that is usually difficult to detect. 

Assignment expressions are often referred to as assignment statements, since they are usually written as 
complete statements. However, assignment expressions can also be written as expressions that are included 
within other statements (more about this in later chapters). 

If the two operands in an assignment expression are of different data types, then the value of the 
expression on the right (i.e., the right-hand operand) will automatically be converted to the type of the 
identifier on the left. The entire assignment expression will then be of this same data type. 
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Under some circumstances, this automatic type conversion can result in an alteration of the data being 
assigned. For example: 

A floating-point value may be truncated if assigned to an integer identifier. 

A double-precision value may be rounded if assigned to a floating-point (single-precision) identifier. 

An integer quantity may be altered if assigned to a shorter integer identifier or to a character identifier 
(some high-order bits may be lost). 

Moreover, the value of a character constant assigned to a numeric-type identifier will be dependent upon the 
particular character set in use. This may result in inconsistencies from one version of C to another. 

The careless use of type conversions is a frequent source of error among beginning programmers. 

EXAMPLE 3.22 In the following assignment expressions, suppose that i is an integer-type variable. 

l&=hwm Value 
i = 3.3 3 

i = 3.9 3 

i = -3.9 -3 

Now suppose that i and j are both integer-type variables, and that j has been assigned a value of 5. Several 
assignment expressions that make use of these two variables are shown below. 

&mwQ!l Value 
i = j  5 

i = j / 2  2 

i = 2 *  j / 2  5 (left-to-right associativity) 

i = 2 *  (1 1 2) 4 (truncated division, followed by multiplication) 

Finally, assume that i is an integer-type variable, and that the ASCII character set applies. 

Multiple assignments of the form 

i d e n t i f i e r  7 = i d e n t i f i e r  2 = - . .  = expression 

are permissible in C. In such situations, the assignments are carried out from right to left. Thus, the multiple 
assignment 

i d e n t i f i e r  I = i d e n t i f i e r  2 = expression 

is equivalent to 

i d e n t i f i e r  7 = ( i d e n t i f i e r  2 = expression) 

and so on, with right-to-left nesting for additional multiple assignments. 
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EXAMPLE 3.23 Suppose that i and j are integer variables. The multiple assignment expression 

will cause the integer value 5 to be assigned to both i and j . (To be more precise, 5 is first assigned to j ,  and the value of 
j is then assigned to i.) 

Similarly, the multiple assignment expression 

i = j = 5 .9  

will cause the integer value 5 to be assigned to both i and j .  Remember that truncation occurs when the floating-point 
value 5.9 is assigned to the integer variable j . 

C contains the following five additional assignment operators: +=, -= , *=, / =  and %=. To see how 
they are used, consider the first operator, +=. The assignment expression 

expression 1 += expression 2 

is equivalent to 

expression 1 = expression 1 + expression 2 

Similarly, the assignment expression 

expression I -= expression 2 

is equivalent to 

expression 1 = expression I - expression 2 

and so on for all five operators. 
Usually, expression 1 is an identifier, such as a variable or an array element. 

EXAMPLE3.24 Suppose that i and j are integer variables whose values are 5 and 7, and f and g are floating-point 
variables whose values are 5.5 and -3.25. Several assignment expressions that make use of these variables are shown 
below. Each expression utilizes the original values of i ,  j ,  f and g. - U v a l e n t  ExpressioQ Final value 

i += 5 i = i + 5  10 

f -= g f = f - g  8.75 

j *= (i  - 3) j =  j * ( i - 3 )  14 

f I= 3 f = f  f 3 1.833333 

i %= ( j  - 2 )  i = i % ( j  - 2 )  0 

Assignment operators have a lower precedence than any of the other operators that have been discussed 
so far. Therefore unary operations, arithmetic operations, relational operations, equality operations and logical 
operations are all carried out before assignment operations. Moreover, the assignment operations have a right- 
to-left associativity. 

The hierarchy of operator precedences presented in the last section can now be modified as follows to 
include assignment operators. 
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Operator category Operators Associativitv 
unary operators - ++ ! s izeof  ( type)  R + L  

arithmetic multiply, divide and remainder * I % L + R  

arithmetic add and subtract + - L + R  

relational operators < <= > >= L + R  

equality operators != L + R  

logical and && L+ R 

logical or I I  L + R  

assignment operators -- += -= *= /=  %= R + L  

See Table 3-1 later in this chapter for a more complete listing. 

EXAMPLE3.25 Suppose that x, y and z are integer variables which have been assigned the values 2, 3 and 4, 
respectively. The expression 

is equivalent to the expression 

x = x * (-2 * ( y  + z )  / 3) 

Either expression will cause the value -8 to be assigned to x. 
Consider the order in which the operations are carried out in the first expression. The arithmetic operations precede 

the assignment operation. Therefore the expression ( y + z )  will be evaluated first, resulting in 7. Then the value of this 
expression will be multiplied by -2, yielding -14. This product will then be divided by 3 and truncated, resulting in -4. 
Finally, this truncated quotient is multiplied by the original value of x (i.e., 2) to yield the final result of -8. 

Note that all of the explicit arithmetic operations are carried out before the final multiplication and assignment are 
made. 

C contains other assignment operators, in addition to those discussed above. We will discuss them in 
Chap. 13. 

3.5 THE CONDITIONALOPERATOR 

Simple conditional operations can be carried out with the conditional operator (7 :). An expression that 
makes use of the conditional operator is called a conditional expression. Such an expression can be written in 
place of the more traditional i f  -else statement, which is discussed in Chap. 6. 

A conditional expression is written in the form 

expression 7 ? expression 2 : expression 3 

When evaluating a conditional expression, expression I is evaluated first. If expression 7 is true 
(i.e., if its value is nonzero), then expression 2 is evaluated and this becomes the value of the conditional 
expression. However, if expression 7 is false (i.e., if its value is zero), then expression 3is evaluated 
and this becomes the value of the conditional expression. Note that only one of the embedded expressions 
(either expression 2 or expression 3) is evaluated when determining the value of a conditional 
expression. 

EXAMPLE3.26 In the conditional expression shown below, assume that i is an integer variable. 

(i < 0) ? 0 : 100 



-- 

-- -- 
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The expression (i  < 0 )  is evaluated first. If it is true (i.e., if the value of i is less than 0) ,  the entire conditional 
expression takes on the value 0. Otherwise (if the value of i is not less than 0),the entire conditional expression takes on 
the value 100. 

In the following conditional expression, assume that f and g are floating-point variables. 

( f < g ) ? f  : g  

This conditional expression takes on the value o f f  if f is less than g; otherwise, the conditional expression takes on the 
value of g. In other words, the conditional expression returns the value of the smaller of the two variables. 

If the operands (i.e., expression 2 and expression 3)differ in type, then the resulting data type of 
the conditional expression will be determined by the rules given in Sec. 3.1. 

EXAMPLE 3.27 Now suppose that i is an integer variable, and f and g are floating-point variables. The conditional 
expression 

( f  < g )  ? i : g 

involves both integer and floating-point operands. Thus, the resulting expression will be floating-point, even if the value 
of i is selected as the value of the expression (because of rule 2 in Sec. 3.1). 

Conditional expressions frequently appear on the right-hand side of a simple assignment statement. The 
resulting value of the conditional expression is assigned to the identifier on the left. 

EXAMPLE 3.28 Here is an assignment statement that contains a conditional expression on the right-hand side. 

f l a g  = (i < 0 )  ? 0 : 100 

If the value of i is negative, then 0 will be assigned to f l ag .  If i is not negative, however, then 100 will be assigned to 
f l a g .  

Here is another assignment statement that contains a conditional expression on the right-hand side. 

m i n  = ( f  < g )  ? f : g 

This statement causes the value of the smaller o f f  and g to be assigned to min .  

The conditional operator has its own precedence, just above the assignment operators. The associativity 
is right to left. 

Table 3-1 summarizes the precedences for all of the operators discussed in this chapter. 

Table 3-1 Operator Precedence Groups 

Operator category Operators Associativity 

unary operators - ++ ! sizeof ( t y p e )  R + L  
arithmetic multiply, divide and remainder * I % L - + R  

arithmetic add and subtract + - L + R  

relational operators < <= > >= L + R  

equality operators ! =  L - + R  

logical and && L-+ R 

logical or I t L + R  

conditional operator 3 :  R + L  
assignment operators = += -= *= / =  %= R + L  
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A complete listing of all C operators, which is more extensive than that given in Table 3-1, is shown in 
Appendix C. 

EXAMPLE 3.29 In the following assignment statement, a, b and c are assumed to be integer variables. The statement 
includes operators from six different precedence groups. 

c += ( a  > 0 && a <= 10) ? ++a : a / b ;  

The statement begins by evaluating the complex expression 

( a  > 0 && a <= 10) 

If this expression is true, the expression ++a is evaluated. Otherwise, the expression a / b  is evaluated. Finally, the 
assignment operation (+=) is carried out, causing the value of c to be increased by the value of  the conditional expression. 

If, for example, a, b and c have the values 1 ,  2 and 3, respectively, then the value of  the conditional expression will 
be 2 (because the expression ++a will be evaluated), and the value of c will increase to 5 (c = 3 + 2). On the other hand, if 
a, b and c have the values 50, 10 and 20, respectively, then the value of the conditional expression will be 5 (because the 
expression a / b will be evaluated), and the value of c will increase to 25 (c = 20 + 5 ) .  

3.6 LIBRARY FUNCTIONS 

The C language is accompanied by a number of library functions that carry out various commonly used 
operations or calculations. These library functions are not a part of the language per se, though all 
implementations of the language include them. Some functions return a data item to their access point; others 
indicate whether a condition is true or false by returning a 1 or a 0, respectively; still others carry out specific 
operations on data items but do not return anything. Features which tend to be computer-dependent are 
generally written as library functions. 

For example, there are library functions that carry out standard input/output operations (e.g., read and 
write characters, read and write numbers, open and close files, test for end of file, etc.), functions that perform 
operations on characters (e.g., convert from lower- to uppercase, test to see if a character is uppercase, etc.), 
functions that perform operations on strings (e.g., copy a string, compare strings, concatenate strings, etc.), 
and functions that carry out various mathematical calculations (e.g., evaluate trigonometric, logarithmic and 
exponential functions, compute absolute values, square roots, etc.). Other kinds of library functions are also 
available. 

Library functions that are functionally similar are usually grouped together as (compiled) object programs 
in separate library files. These library files are supplied as a part of each C compiler. All C compilers contain 
similar groups of library functions, though they lack precise standardization. Thus there may be some 
variation in the library functions that are available in different versions of the language. 

A typical set of library functions will include a fairly large number of functions that are common to most 
C compilers, such as those shown in Table 3-2 below. Within this table, the column labeled “type” refers to 
the data type of the quantity that is returned by the function. The void entry shown for function w a n d  
indicates that nothing is returned by this function. 

A more extensive list, which includes all of the library functions that appear in the programming 
examples presented in this book, is shown in Appendix H. For complete list, see the programmer’s reference 
manual that accompanies your particular version of C. 

A library function is accessed simply by writing the function name, followed by a list of arguments that 
represent information being passed to the function. The arguments must be enclosed in parentheses and 
separated by commas. The arguments can be constants, variable names, or more complex expressions. The 
parentheses must be present, even if there are no arguments. 

A function that returns a data item can appear anywhere within an expression, in place of a constant or an 
identifier (Le., in place of a variable or an array element). A function that carries out operations on data items 
but does not return anything can be accessed simply by writing the function name, since this type of function 
reference constitutes an expression statement. 
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Table 3-2 Some Commonly Used Library Functions 

Function Type 

abs ( 1 )  int 

c e i l  ( d )  double 

cos ( d )  double 

cosh ( d )  double 

exp(d)  double 

fabs ( d )  double 

f l o o r  (d  double 

f mod ( d l  double 

ge t c  har int 

log ( d 1 double 

pow(dl,d2) double 

p r i n t f (  ...) int 

putchar (c )  int 

rand ( ) int 

s i n  ( d )  double 

s q r t ( d )  double 

w a n d  ( U) void 

scanf(  ...) int 

t a n  (d )  double 

t o a s c i i ( c )  int 

tolower ( c )  int 

toupper(c). .  int 

Purpose 

Return the absolute value of i .  

Round up to the next integer value (the smallest integer that is greater than or 
equal to d). 

Return the cosine of d. 

Return the hyperbolic cosine of d. 

Raise e to the power d (e = 2.7182818 * is the base of the natural (Naperian) 
system of logarithms). 

Return the absolute value of d. 

Round down to the next integer value (the largest integer that does not exceed d). 

Return the remainder (i.e., the noninteger part of the quotient) of d l  /d2, with 
same sign as d l  . 

Enter a character from the standard input device. 

Return the natural logarithm of d. 

Return d l  raised to the d2 power. 

Send data items to the standard output device (arguments are complicated -
see Chap. 4). 

Send a character to the standard output device. 

Return a random positive integer. 

Return the sine of d. 

Return the square root of d. 

Initialize the random number generator. 

Enter data items from the standard input device (arguments are complicated -
see Chap. 4). 

Return the tangent of d. 

Convert value of argument to ASCII. 

Convert letter to lowercase. 

Convert letter to uppercase. 

Vote: Type refers to the data type of the quantity that is returned by 

c denotes a character-type argument 

idenotes an integer argument 

d denotes a double-precision argument 

U denotes an unsigned integer argument 

the function. 

EXAMPLE 3.30 Shown below is a portion of a C program tllat solves for the roots of the quadratic equation 

m? + bx + c = 0 

using the well-known quadratic formula 

-b* db2 -4ac 
X =  

2a 
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This program uses the s q r t  library function to evaluate the square root. 

main()  / *  s o l u t i o n  o f  a quadrat ic  equat ion * /  

double a J b , c , r o o t , x 1 , x 2 ;  

/ *  read values f o r  a ,  b and c * /  

root  = s q r t ( b  * b - 4 * a * c ) ;  
x l  = ( - b  + r o o t )  / ( 2  * a ) ;  
x2 = ( - b  - r o o t )  / ( 2  * a ) ;  

/ *  d i s p l a y  values f o r  a ,  b ,  c ,  x l  and x2 * I  

In order to use a library function it may be necessary to include certain specific information within the 
main portion of the program. For example, forward function declarations and symbolic constant definitions 
are usually required when using library functions (see Secs. 7.3, 8.5 and 8.6). This information is generally 
stored in special files which are supplied with the compiler. Thus, the required information can be obtained 
simply by accessing these special files. This is accomplished with the preprocessor statement #include;  i.e., 

# inc lude  filename> 

where filenamerepresents the name of a special file. 
The names of these special files are specified by each individual implementation of C, though there are 

certain commonly used file names such as s t d i o .  h, s t d l i b .  h and math. h. The suffix “h” generally 
designates a “header” file, which indicates that it is to be included at the beginning of the program. (Header 
files are discussed in Sec. 8.6.) 

Note the similarity between the preprocessor statement # inc lude  and the preprocessor statement 
#def ine ,  which was discussed in Sec. 2.9. 

EXAMPLE 3.31 Lowercase to Uppercase Character Conversion Here is a complete C program that reads in a 
lowercase character, converts it to uppercase and then displays the uppercase equivalent. 

/ *  read a lowercase character  and d isp lay  i t s  uppercase equ iva lent  * /  

#include <s td io .h>  
#include <ctype.h> 

main ( ) 

{ 
i n t  lower,  upper; 

lower = g e t c h a r ( ) ;  
upper = toupper(1ower);  
putchar(upper);  

1 

This program contains three library functions: getchar,  toupper and putchar.  The first two functions each 
return a single character (getchar returns a character that is entered from the keyboard, and toupper returns the 
uppercase equivalent of its argument). The last function (putchar) causes the value of the argument to be displayed. 
Notice that the last two functions each have one argument but the first function does not have any arguments, as indicated 
by the empty parentheses. 

Also, notice the preprocessor statements #include <s td io .  h> and #include <ctype.  h>, which appear at the 
start of the program. These statements cause the contents of the files s t d i o .  h and ctype .h to be inserted into the 
program the compilation process begins. The information contained in these files is essential for the proper functioning of 
the library functions getchar,  putchar and toupper. 
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Review Questions 

3.1 What is an expression? What are its components? 

3.2 What is an operator? Describe several different types of operators that are included in C. 

3.3 What is an operand? What is the relationship between operators and operands? 

3.4 Describe the five arithmetic operators in C. Summarize the rules associated with their use. 

3.5 Summarize the rules that apply to expressions whose operands are of different types. 

3.6 How can the value of an expression be converted to a different data type? What is this called? 

3.7 What is meant by operator precedence? What are the relative precedences of the arithmetic operators? 

3.8 What is meant by associativity? What is the associativity of the arithmetic operators? 

3.9 When should parentheses be included within an expression? When should the use of parentheses be avoided? 

3.10 In what order are the operations carried out within an expression that contains nested parentheses? 

3.1 1 What are unary operators? How many operands are associated with a unary operator? 

3.12 Describe the six unary operators discussed in this chapter. What is the purpose of each? 

3.13 Describe two different ways to utilize the increment and decrement operators. How do the two methods differ? 

3.14 What is the relative precedence of the unary operators compared with the arithmetic operators? What is their 
associativity? 

3.15 How can the number of bytes allocated to each data type be determined for a particular C compiler? 

3.16 Describe the four relational operators included in C. With what type of operands can they be used? What type of 
expression is obtained? 

3.17 Describe the two equality operators included in C. How do they differ from the relational operators? 

3.18 Describe the two logical operators included in C. What is the purpose of each? With what type of operands can 
they be used? What type of expression is obtained? 

3.19 What are the relative precedences of the relational, equality and logical operators with respect to one another and 
with respect to the arithmetic and unary operators? What are their associativities? 

3.20 Describe the logical not (logical negation) operator. What is its purpose? Within which precedence group is it 
included? How many operands does it require? What is its associativity? 

3.21 Describe the six assignment operators discussed in this chapter. What is the purpose of each? 

3.22 How is the type of an assignment expression determined when the two operands are of different data types? In 
what sense is this situation sometimes a source of programming errors? 

3.23 How can multiple assignments be written in C? In what order will the assignments be carried out? 

3.24 What is the precedence of assignment operators relative to other operators? What is their associativity? 

3.25 Describe the use of the conditional operator to form conditional expressions. How is a conditional expression 
evaluated? 

3.26 How is the type of a conditional expression determined when its operands differ in type? 

3.27 How can the conditional operator be combined with the assignment operator to form an “if - else” type statement? 

3.28 What is the precedence of the conditional operator relative to the other operators described in this chapter? What 
is its associativity? 

3.29 Describe, in general terms, the kinds of operations and calculations that are carried out by the C library functions. 

3.30 Are the library functions actually a part of the C language? Explain. 

3.31 How are the library functiok usually packaged within a C compiler? 

3.32 How are library functions accessed? How is information passed to a library function from the access point? 

3.33 What are arguments? How are arguments written? How is a call to a library function written if there are no 
arguments? 

3.34 How is specific information that may be required by the library functions stored? How is this information entered 
into a C program? 

3.35 In what general category do the #define and #include statements fall? 
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Problems 

3.36 Suppose a, b and c are integer variables that have been assigned the values a = 8, b = 3 and c = -5. Determine the 
value of each of the following arithmetic expressions. 

(a) a + b + c  U, a % c  

(b) 2 * b + 3 *  ( a - c )  (g) a * b / c  

(c) a / b (h)  a * ( b  / c )  

(6) a % b  (i) (a  * c )  % b 

(e )  a / c 0') a * (c  % b) 

3.37 Suppose x, y and z are floating-point variables that have been assigned the values x = 8.8, y = 3.5 and z = -5.2. 
Determine the value of each of the following arithmetic expressions. 

(a) x + y + z  

(b) 2 * y + 3 *  ( x - z )  

(4 x 1 Y 

( 4  x % Y 

3.38 Suppose c l ,  c2 and c3 are character-type variables that have been assigned the characters E, 5 and ?, respectively. 
Determine the numerical value of the following expressions, based upon the ASCII character set (see Table 2-1). 

(4 c l  U, c l  % c3 

(b) c l  - c2 + c3 (g) ' 2 '  + ' 2 '  

(c) c2 - 2 (h)  ( c l  / c2) * c3 

(6) c2 - ' 2 '  (i) 3 * c2 

I # '( e )  c3 + 0') ' 3 '  * c2 

3.39 A C program contains the following declarations: 

i n t  i,j ;  
long  i x ;  

sho r t  s; 
f l o a t  x; 
double dx; 
char c; 

Determine the data type of each of the following expressions. 

(a)  i+ c V) s + j  

(6) x + c (g) i x  + j 

(c) dx + x ( h )  s + c 

(6) ( ( i n t )  dx) + i x  (i) i x  + c 

(e )  i+ x 

3.40 A C program contains the following declarations and initial assignments: 

i n t  i= 8, j = 5; 

f l o a t  x = 0.005, y = -0.01; 
char c = ' c ' ,  d = I d ' ;  

Determine the value of each of the following expressions. Use the values initially assigned to the variables for 
each expression. 

(a) ( 3 * i - 2 *  j ) % ( 2 * d - c )  

(b) 2 * ( ( i  / 5) + ( 4  * ( j  - 3 ) )  % ( i  + j - 2 ) )  
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( i - 3 * j ) % ( c + 2 * d )  / ( x - y )  

-(i + j )  

++i 


i++ 


__ j 

++X 

Y-
i <= j 

c > d  

x >= 0 

X < Y  

j != 6 

c == 99 

5 * (i + j )  > ' c '  

( 2 * x +  y )  == 0 

2 * x +  ( y = =  0) 
2 * x + y == 0 

I ( i  <= j )  

I ( c  == 99) 

I ( x  > 0) 

(i > 0) && ( j  < 5 )  

( i  > 0)  I !  ( j  < 5) 

( x  > y )  && (i > 0) ! I  ( j  < 5 )  

( x  > y )  && (i > 0) && ( j  < 5 )  

3.41 A C program contains the following declarations and initial assignments: 

i n t  i= 8, j = 5, k; 
f l o a t  x = 0.005, y = -0.01, z; 
char a, b, c = ' c ' ,  d = I d ' ;  

Determine the value of each of the following assignment expressions. Use the values originally assigned to the 
variables for each expression. 

k = (i + j )  y -= x 

z = ( x  + y )  x *= 2 

i =  j i /=  j 

k = ( x  + y )  i %= j 

k = c  i+= ( j  - 2) 

z = i / j  k =  ( j  = = 5 )  7 1 :  j 

a = b = d  k = ( j  > 5 )  7 i : j 

i= j = 1.1 2 = ( x  >= 0) 7 x : 0 

z = k = x  z = ( y  >= 0) ? y : 0 

k = z = x  a = ( c  c d)  ? c : d 

i += 2 i -= ( j  > 0) ? j : 0 
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3.42 Each of the following expressions involves the use of a library function. Identify the purpose of each expression. 

(See Appendix H for an extensive list of library functions.) 

(a) abs(i - 2 * j )  

(b) fabs(x + y) 

(c) isprint (c) 


(d) isdigit (c) 


(4 toupper (d 1 
v) ceil(x) 
(g) floor(x + y) 

(h)  islower (c) 

(i) isupper ( j ) 

0') exp(x) 
(4 logo() 

(0 sqrt(x*x + Y*Y) 
(m) isalnum(l0 * j) 

(n) isalpha(l0 * j )  

(0) isascii(l0 * j) 

(p) toascii(l0 * j) 

(4) f m o d ( x J  Y )  

(r)  

(s) 

( t )  

(U) 


(v) 


tolower (65) 


- YJ 3'0) 
sin(x - y) 
strlen( "hello\Oil) 


strpos( "hello\On, 'e ' ) 

3.43 A C program contains the following declarations and initial assignments: 

int i = 8, j = 5; 
double x = 0.005, y = -0.01; 
char c = ' c i J  d = Id'; 

Determine the value of each of the following expressions, which involve the use of library fimctions. (See 
Appendix H for an extensive list of library functions.) 

(a)  abs(i - 2 * j )  

(6) fabs(x + y) 

(c) isprint (c) 
(6) isdigit (c) 

(4 toupper ( d 1 
v) ceil(x) 

(g) ceil(x + y) 
(h)  floor(x) 

(i) floor(x + y) 

0') islower(c) 

(4 isupper ( j 1 
(0 expo() 

(4 log(x) 


(4 log(exp(x) 1 
(0) sqrt(x*x + y*y) 
(p) isalnum(l0 * j) 

(4) isalpha(l0 * j )  

( r )  isascii(l0 * j) 

(s) toascii(l0 * j) 

(') f m o d ( x J  Y) 
(U) tolower (65) 

('1 - YJ 3'0) 

( w )  sin(x - y) 
(x) strlen( 'hello\O") 
(y) strpos(l'hello\OnJ' e l )  

(z)  sqrt(sin(x) + cos(y)) 

3.44 Determine which of the library functions shown in Appendix H are available for your particular version of C. Are 
some of the functions available under a different name? What header files are required? 



Chapter 4 


Data Input and Output 


We have already seen that the C language is accompanied by a collection of library functions, which includes 
a number of inputloutput functions. In this chapter we will make use of six of these functions: getchar ,  
putchar ,  scanf, p r i n t f ,  ge ts  and puts. These six fhctions permit the transfer of information between 
the computer and the standard inputloutput devices (e.g., a keyboard and a TV monitor). The first two 
functions, getchar  and putchar, allow single characters to be transferred into and out of the computer; 
scanf and p r i n t f  are the most complicated, but they permit the transfer of single characters, numerical 
values and strings; ge ts  and pu ts  facilitate the input and output of strings. Once we have learned how to use 
these functions, we will be able to write a number of complete, though simple, C programs. 

4.1 PRELIMINARIES 

An inputloutput function can be accessed from anywhere within a program simply by writing the function 
name, followed by a list of arguments enclosed in parentheses. The arguments represent data items that are 
sent to the function. Some inputloutput functions do not require arguments, though the empty parentheses 
must still appear. 

The names of those functions that return data items may appear within expressions, as though each 
function reference were an ordinary variable (e.g., c = getchar ( ) ;), or they may be referenced as separate 
statements (e.g., scanf ( . . . ) ;). Some functions do not return any data items. Such functions are 
referenced as though they were separate statements (e.g., putchar ( . . . ) ;). 

Most versions of C include a collection of header files that provide necessary information (e.g., symbolic 
constants) in support of the various library functions. Each file generally contains information in support of a 
group of related library functions. These files are entered into the program via an # inc lude statement at the 
beginning of the program. As a rule, the header file required by the standard input'output library functions is 
called s t d i o  .h (see Sec. 8.6 for more information about the contents of these header files). 

EXAMPLE 4.1 Here is an outline of a typical C program that makes use of several inputloutput routines from the 
standard C library. 

/ *  sample setup i l l u s t r a t i n g  the  use o f  i npu t /ou tpu t  l i b r a r y  func t i ons  * /  

# inc lude <s td io .h> 

main ( ) 

{ 
char c,d; / *  dec la ra t i ons  * I  
f l o a t  x,y; 
i n t  i J j J k ;  

c = ge tcha r ( ) ;  / *  character i npu t  * /  
scanf ( " % f " ,  &x) ; / *  f l o a t i n g - p o i n t  i n p u t  * /  
scanf ("%d %d" , &i,&j) ; I *  i n tege r  i npu t  * /  
. . .  / *  a c t i o n  statements * /  
pu tcha r (d ) ;  / *  character output * /  
p r i n t f ( " % 3 d  %7.4 f " ,  k ,  y ) ;  / *  numerical  output * /  

68 
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The program begins with the preprocessor statement #include <s td io .  h>. This statement causes the contents of 
the header file s t d i o .  h to be included within the program. The header file supplies required information to the library 
functions scanf and p r i n t f .  (The syntax of the #include statement may vary from one version of C to another; some 
versions of the language use quotes instead of angle-brackets, e.g., #include I' s t d i o .  h ".) 

Following the preprocessor statement is the program heading main ( ) and some variable declarations. Several 
input/output statements are shown in the skeletal outline that follows the declarations. In particular, the assignment 
statement c = getchar ( ) ; causes a single character to be entered from the keyboard and assigned to the character 
variable c. The first reference to scanf causes a floating-point value to be entered from the keyboard and assigned to the 
floating-point variable x, whereas the second reference to scanf causes two decimal integer quantities to be entered from 
the keyboard and assigned to the integer variables iand j ,  respectively. 

The output statements behave in a similar manner. Thus, the reference to putchar causes the value of the character 
variable d to be displayed. Similarly, the reference to p r i n t f  causes the values of the integer variable k and the floating- 
point variable y to be displayed. 

The details of each input/output statement will be discussed in subsequent sections of this chapter. For now, you 
should consider only a general overview of the input/output statements appearing in this typical C program. 

4.2 SINGLE CHARACTER INPUT -THE getchar FUNCTION 

Single characters can be entered into the computer using the C library function getchar.  We have already 
encountered the use of this function in Chaps. 1 and 2, and in Example 4.1. Let us now examine it more 
thorough 1y. 

The getchar  function is a part of the standard C I/O library. It returns a single character from a standard 
input device (typically a keyboard). The function does not require any arguments, though a pair of empty 
parentheses must follow the word getchar.  

In general terms, a function reference would be written as 

character variable = getchar  ( ) ; 

where character variable refers to some previously declared character variable. 

EXAMPLE 4.2 A C program contains the following statements. 

char c ;  
. . . . .  
c = g e t c h a r ( ) ;  

The first statement declares that c is a character-type variable. The second statement causes a single character to be 
entered from the standard input device (usually a keyboard) and then assigned to c. 

If an end-of-filecondition is encountered when reading a character with the getchar  function, the value 
of the symbolic constant EOF will automatically be returned. (This value will be assigned within the s t d i o  .h 
file. Typically, EOF will be assigned the value -1, though this may vary from one compiler to another.) The 
detection of EOF in this manner offers a convenient way to detect an end of file, whenever and wherever it 
may occur. Appropriate corrective action can then be taken. Both the detection of the EOF condition and the 
corrective action can be carried out using the i f  - e l s e  statement described in Chap. 6. 

The getchar  function can also be used to read multicharacter strings, by reading one character at a time 
within a multipass loop. We will see one illustration of this in Example 4.4 below. Additional examples will 
be presented in later chapters of this book. 

4.3 SINGLE CHARACTER OUTPUT -THE putchar FUNCTION 

Single characters can be displayed (Le, written out of the computer) using the C library function putchar .  
This function is complementary to the character input function getchar,  which we discussed in the last 
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section. We have already seen illustrations of the use of these two functions in Chaps. 1 and 2, and in 
Example 4.1. We now examine the use of putchar in more detail. 

The putchar function, like getchar, is a part of the standard C I/O library. It transmits a single 
character to a standard output device (typically a TV monitor). The character being transmitted will normally 
be represented as a character-type variable. It must be expressed as an argument to the function, enclosed in 
parentheses, following the word putchar. 

In general, a h c t i o n  reference would be written as 

putchar ( character variable) 

where character variable refers to some previously declared character variable. 

EXAMPLE 4.3 A C program contains the following statements. 

char c ;  
. . . . .  
p u t c h a r ( c ) ;  

The first statement declares that c is a character-type variable. The second statement causes the current value of c to be 
transmitted to the standard output device (e.g., a TV monitor) where it will be displayed. (Compare with Example 4.2, 
which illustrates the use of the getchar function.) 

The putchar function can be used to output a string constant by storing the string within a one- 
dimensional, character-type array, as explained in Chap. 2. Each character can then be written separately 
within a loop. The most convenient way to do this is to utilize a f o r  statement, as illustrated in the following 
example. (The f o r  statement is discussed in detail in Chap. 6.) 

EXAMPLE 4.4 Lowercase to Uppercase Text Conversion Here is a complete program that reads a line of lowercase 
text, stores it within a one-dimensional, character-type array, and then displays it in uppercase. 

/ *  read i n  a l i n e  o f  lowercase t e x t  and d isp lay  i t  i n  uppercase * /  

# inc lude  <s td io .h>  
# inc lude  <ctype.h> 

main ( ) 

{ 
char l e t t e r [ 8 0 ] ;  
i n t  count,  tag ;  

/ *  e n t e r  the  t e x t  * /  

f o r  (count = 0; ( l e t t e r [ c o u n t ]  = g e t c h a r ( ) )  I =  ' \ n o ;  ++count) 

I 

/ *  t a g  the  character  count * /  

t a g  = count; 

/ *  d i s p l a y  the  l i n e  i n  uppercase * /  

f o r  (count = 0; count < tag;  ++count) 
putchar(toupper(letter[count])); 


1 

Notice the declaration 
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char  l e t t e r ( 8 0 1 ;  

This declares l e t t e r  to be an 80-element, character-type array whose elements will represent the individual characters 
within the line of text. 

Now consider the statement 

f o r  (count  = 0; ( l e t t e r [ c o u n t ]  = g e t c h a r ( ) )  I =  ' \ n ' ;  ++count) 

J 

This statement creates a loop that causes the individual characters to be read into the computer and assigned to the array 
elements. The loop begins with a value of count equal to zero. A character is then read into the computer from the 
standard input device, and assigned to l e t t e r [ 01 (the first element in l e t t e r ) .  The value of count is then incremented, 
and the process is repeated for the next array element. This looping action continues as long as a newline character (i.e., 
' \ n ' ) is not encountered. The newline character will signify the end of the line, and will therefore terminate the process. 

Once all of the characters have been entered, the value of count corresponding to the last character is assigned to 
tag.  Another f o r  loop is then initiated, in which the uppercase equivalents of the original characters are displayed on the 
standard output device. Characters that were originally uppercase, digits, punctuation characters, etc., will be displayed in 
their original form. Thus, if the message 

Now i s  t h e  t ime f o r  a l l  good men t o  come t o  t h e  a i d  o f  t h e i r  count ry  

is entered as input, the corresponding output will be 

NOW I S  THE TIME FOR ALL GOOD MEN TO COME TO THE A I D  OF THEIR COUNTRY 

Note that t a g  will be assigned the value 69 after all of the characters have been entered, since the 69th character will 
be the newline character following the exclamation point. 

Chapter 6 contains more detailed information on the use of the f o r  statement to control a character array. For now, 
you should seek only a general understanding of what is happening. 

4.4 ENTERING INPUT DATA -THE scanf FUNCTION 

Input data can be entered into the computer from a standard input device by means of the C library function 
scanf. This function can be used to enter any combination of numerical values, single characters and strings. 
The function returns the number of data items that have been entered successfully. 

In general terms, the scanf function is written as 

scanf(contro1 st r ing,  a rg l ,  arg2, . . . , argn) 

where control s t r ing refers to a string containing certain required formatting information, and arg l ,  
arg2, . . . argn are arguments that represent the individual input data items. (Actually, the arguments 
represent pointers that indicate the addresses of the data items within the computer's memory. More about 
this later, in Chap. 10.) 

The control string consists of individual groups of characters, with one character group for each input data 
item. Each character group must begin with a percent sign (%). In its simplest form, a single character group 
will consist of the percent sign, followed by a conversion character which indicates the type of the 
corresponding data item. 

Within the control string, multiple character groups can be contiguous, or they can be separated by 
whitespace characters (i.e., blank spaces, tabs or newline characters). If whitespace characters are used to 
separate multiple character groups in the control string, then all consecutive whitespace characters in the input 
data will be read but ignored. The use of blank spaces as character-group separators is very common. 

The more frequently used conversion characters are listed in Table 4- 1. 
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Table 4-1 Commonly Used Conversion Characters for Data Input 

Conversion 
Character Meaning 

C data item is a single character 

d data item is a decimal integer 

e data item is a floating-point value 

f data item is a floating-point value 

9 data item is a floating-point value 

h data item is a short integer 

i data item is a decimal, hexadecimal or octal integer 

0 data item is an octal integer 

S data item is a string followed by a whitespace character (the null character \ 0 will 
automatically be added at the end) 

U data item is an unsigned decimal integer 

X data item is a hexadecimal integer 

[ - - . I  data item is a string which may include whitespace characters (see explanation below) 

The arguments are written as variables or arrays, whose types match the corresponding character groups 
in the control string. Each variable name must be preceded by an ampersand (a). (The arguments are 
actually pointers that indicate where the data items are stored in the computer's memory, as explained in 
Chap. 10.) However, array names should not begin with an ampersand. 

EXAMPLE 4.5 Here is a typical application of a scanf function. 

#include <stdio.h> 

main ( ) 

{ 
char i tem(201;  
i n t  partno;  
f l o a t  cost ;  

. . . . .  
scanf ("%s %d %f" ,i tem,  Bpartno, &cost ) ;  

. . . . .  
1 

'I.Within the scanf function, the control string is "%s %d %f It contains three character groups. The first character 
group, %s, indicates that the first argument (item) represents a string. The second character group, %d, indicates that the 
second argument (&partno) represents a decimal integer value, and the third character group, %f,indicates that the third 
argument (&cost) represents a floating-point value. 

Notice that the numerical variables partno and cost are preceded by ampersands within the scanf function. An 
ampersand does not precede i tem, however, since i t e m  is an array name. 

Notice also that the scanf function could have been written 

scanf("%s%d%f",  i tem,  &partno, &cost ) ;  



73 CHAP. 41 DATA INPUT AND OUTPUT 

with no whitespace characters in the control string. This is also valid, though the input data could be interpreted 
differently when using c-type conversions (more about this later in this chapter). 

The actual data items are numeric values, single characters or strings, or some combination thereof. They 
are entered from a standard input device (typically a keyboard). The data items must correspond to the 
arguments in the scanf fimction in number, in type and in order. Numeric data items are written in the same 
form as numeric constants (see Sec. 2.4), though octal values need not be preceded by a 0,and hexadecimal 
values need not be preceded by Ox or OX. Floating-point values must include either a decimal point or an 
exponent (or both). 

If two or more data items are entered, they must be separated by whitespace characters. (A possible 
exception to this rule occurs with c-type conversions, as described in Sec. 4.5) The data items may continue 
onto two or more lines, since the newline character is considered to be a whitespace character and can 
therefore separate consecutive data items. 

Moreover, if the control string begins by reading a character-type data item, it is generally a good idea to 
precede the first conversion character with a blank space. This causes the scanf function to ignore any 
extraneous characters that may have been entered earlier (for example, by pressing the E n t e r  key after 
entering a previous line of data). 

EXAMPLE 4.6 Consider once again the skeletal outline of a C program shown in Example 4.5; i.e., 

#include < s t d i o .  h> 

main ( ) 

char i t e m [ 2 0 ] ;  
i n t  partno;  
f l o a t  cost ;  

s c a n f ( "  %s %d %f ' ,  i tem,  &partno, &cost ) ;  

Notice the blank space that precedes %s. This prevents any previously entered extraneous characters from being assigned 
to i tem. 

The following data items could be entered from the standard input device when the program is executed. 

f a s t e n e r  12345 0.05 

Thus, the characters that make up the string fas tener  would be assigned to the first eight elements of the array i tem; the 
integer value 12345 would be assigned to partno, and the floating-point value 0.05 would be assigned to cost .  

Note that the individual data items are entered on one line, separated by blank spaces. The data items could also be 
entered on separate lines, however, since newline characters are also whitespace characters. Therefore, the data items 
could also be entered in any of the following ways: 

f a s t e n e r  fas tener  fas tener  12345 
12345 12345 0.05 0.05 
0.05 
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Note that the s-type conversion character applies to a string that is terminated by a whitespace character. 
Therefore, a string that includes whitespace characters cannot be entered in this manner. There are ways, 
however, to work with strings that include whitespace characters. One way is to use the getchar  function 
within a loop, as illustrated in Example 4.4. It is also possible to use the scanf function to enter such strings. 
To do so, the s-type conversion character within the control string is replaced by a sequence of characters 
enclosed in square brackets, designated as [ . . . 1. Whitespace characters may be included within the 
brackets, thus accommodating strings that contain such characters. 

When the program is executed, successive characters will continue to be read from the standard input 
device as long as each input character matches one of the characters enclosed within the brackets. The order 
of the characters within the square brackets need not correspond to the order of the characters being entered. 
Input characters may be repeated. The string will terminate, however, once an input character is encountered 
that does not match any of the characters within the brackets. A null character (\O)will then automatically be 
added to the end of the string. 

EXAMPLE 4.7 This example illustrates the use of the scanf function to enter a string consisting of uppercase letters 
and blank spaces. The string will be of undetermined length, but it will be limited to 79 characters (actually, 80 characters 
including the null character that is added at the end). Notice the blank space that precedes the % sign. 

# inc lude  < s t d i o . h >  

main ( ) 

{ 
char  l i n e [ 8 0 ] ;  

scanf ( I' %[ ABCDEFGHIJKLMNOPQRSTUWXYZ] ' I ,  l i n e )  ; 

If the string 

NEW YORK CITY 

is entered from the standard input device when the program is executed, the entire string will be assigned to the array l i n e  
since the string is comprised entirely of uppercase letters and blank spaces. If the string were written as 

New York C i t y  

however, then only the single letter N would be assigned to l i n e ,  since the first lowercase letter (in this case, e) would be 
interpreted as the first character beyond the string. It would, of course, be possible to include both uppercase and 
lowercase characters within the brackets, but this becomes cumbersome. 

A variation of this feature which is often more useful is to precede the characters within the square 
brackets by a Circumflex (i.e., ^). This causes the subsequent characters within the brackets to be interpreted 
in the opposite manner. Thus, when the program is executed, successive characters will continue to be read 
from the standard input device as long as each input character does not match one of the characters enclosed 
within the brackets. 

If the characters within the brackets are simply the circumflex followed by a newline character, then the 
string entered from the standard input device can contain any ASCII characters except the newline character 
(line feed). Thus, the user may enter whatever he or she wishes and then press the Enter  key. The Enter  
key will issue the newline character, thus signifying the end of the string. 
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EXAMPLE 4.8 Suppose a C program contains the following statements. 

# inc lude <s td io .h> 

main ( ) 

{ 
char  l i n e [ 8 0 ] ;  

scanf ( ' I  %[ " \ n ]  'I , l i n e )  ; 

. . . . .  
1 

Notice the blank space preceding %[ A \ n ]  ,to ignore any unwanted characters that may have been entered previously. 
When the scanf function is executed, a string of undetermined length (but not more than 79 characters) will be 

entered from the standard input device and assigned to l i n e .  There will be no restrictions on the characters that comprise 
the string, except that they all fit on one line. For example, the string 

The PITTSBURGH STEELERS i s  one o f  Amer ica 's  f a v o r i t e  f o o t b a l l  teams! 

could be entered from the keyboard and assigned to l i n e .  

4.5 MORE ABOUT THE scanf FUNCTION 

This section contains some additional details about the scanf function. Beginning C programmers may wish 
to skip over this material for the time being. 

The consecutive nonwhitespace characters that define a data item collectively define afield. It is possible 
to limit the number of such characters by specifying a maximumfield width for that data item. To do so, an 
unsigned integer indicating the field width is placed within the control string, between the percent sign (%) and 
the conversion character. 

The data item may contain fewer characters than the specified field width. However, the number of 
characters in the actual data item cannot exceed the specified field width. Any characters that extend beyond 
the specified field width will not be read. Such leftover characters may be incorrectly interpreted as the 
components of the next data item. 

EXAMPLE 4.9 The skeletal structure of a C program is shown below 

# inc lude <s td io .h> 

main ( ) 

{ 
i n t  a, b y c;  

scanf ( "%3d %3d %3d" , &a, &by &c) ; 

. . . . .  
1 

When the program is executed, three integer quantities will be entered from the standard input device (the keyboard). 
Suppose the input data items are entered as 

1 2 3  
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Then the following assignments will result: 

a = 1 ,  b = 2 ,  c = 3  

If the data had been entered as 

123 456 789 

Then the assignments would be 

a = 123, b = 456, c = 789 

Now suppose that the data had been entered as 

123456789 

Then the assignments would be 

a = 123, b = 456, c = 789 

as before, since the first three digits would be assigned to a, the next three digits to b, and the last three digits to c. 
Finally, suppose that the data had been entered as 

1234 5678 9 

The resulting assignments would now be 

a = 123, b = 4,  c = 567 

The remaining two digits (8 and 9) would be ignored, unless they were read by a subsequent scanf statement. 

EXAMPLE 4.10 Consider a C program that contains the following statements. 

#include <s td io .h> 

main ( ) 

t 
i n t  i; 
f l o a t  x ;  
char c ;  

scanf("%3d %5f %c" ,  &i,&x,  & c ) ;  

If the data items are entered as 

10 256.875 T 

when the program is executed, then 10 will be assigned to i,256.8 will be assigned to x and the character 7 will be 
assigned to c. The remaining two input characters (5 and T) will be ignored. 
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Most versions of C allow certain conversion characters within the control string to be preceded by a 
single-letter prefur, which indicates the length of the corresponding argument. For example, an 1(lowercase 
L) is used to indicate either a signed or unsigned long integer argument, or a double-precision argument. 
Similarly, an h is used to indicate a signed or unsigned short integer. Also, some versions of of C permit the 
use of an uppercase L to indicate a long double. 

EXAMPLE 4.1 1 Suppose the following statements are included in a C program. 

#include <stdio.h> 


main ( ) 

{ 
short ix,iy; 

long lx,ly; 

double dx ,dy; 

scanf ("hd %Id %If , &ix, &lx , &dx) ; 

scanf("%3ho %71x %151e", &iy, &ly, &dy); 


The control string in the first scanf function indicates that the first data item will be assigned to a short decimal integer 
variable, the second will be assigned to a long decimal integer variable, and the third will be assigned to a double- 
precision variable. The control string in the second scanf function indicates that the first data item will have a maximum 
field width of 3 characters and it will be assigned to a short octal integer variable, the second data item will have a 
maximum field width of 7 characters and it will be assigned to a long hexadecimal integer variable, and the third data item 
will have a maximum field width of 15 characters and it will be assigned to a double-precision variable. 

Some versions of C permit the use of uppercase conversion characters to indicate long integers (signed or 
unsigned). This feature may be available in addition to the prefix 'I 1'I, or it may replace the use of the prefix. 

EXAMPLE 4.12 Consider once again the skeletal outline of the C program given in Example 4.11. With some versions 
of C, it may be possible to write the scanf functions somewhat differently, as follows. 

#include <stdio.h> 


main ( ) 

{ 
short ix ,iy; 
long lx,ly; 

double dx,dy; 


scanf ("hd %D %f I' , &ix, &lx, &dx) ; 

scanf (%3ho %7X %15e", &iy, &1y, &dy); 


. . . . .  
1 
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Notice the use of uppercase conversion characters (in the scanf functions) to indicate long integers. The interpretation of 
the scanf functions will be the same as in the previous example. 

In most versions of C it is possible to skip over a data item, without assigning it to the designated variable 
or array. To do so, the % sign within the appropriate control group is followed by an asterisk (*). This feature 
is referred to as assignment suppression. 

EXAMPLE 4.13 Here is a variation of the scanf features shown in Example 4.6. 

#include <s td io .h>  

main ( ) 

{ 
char i t e m [ 2 0 ) ;  
i n t  partno;  
f l o a t  cost ;  

s c a n f ( "  %s %*d % f " ,i tem,  &partno, &cost ) ;  

. . . . .  
1 

Notice the asterisk in the second character group. 
If the corresponding data items are 

f a s t e n e r  12345 0.05 

then f a s t e n e r  will be assigned to i t e m  and 0.05 will be assigned to cost .  However 12345 will not be assigned to 
partno because of the asterisk, which is interpreted as an assignment suppression character. 

Note that the integer quantity 12345 will be read into the computer along with the other data items, even though it is 
not assigned to its corresponding variable. 

If the control string contains multiple character groups without interspersed whitespace characters, then 
some care must be taken with c-type conversion. In such cases a whitespace character within the input data 
will be interpreted as a data item. To skip over such whitespace characters and read the next nonwhitespace 
character, the conversion group %1s should be used. 

EXAMPLE 4.14 Consider the following skeletal outline of a C program. 

#include <s td io .h>  

main ( ) 

{ 
char c l ,  c2,  c3;  

s c a n f ( "  %c%c%c", & c l ,  &c2, &c3) ;  

If the input data consisted of 
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a b c  


(with blank spaces between the letters), then the following assignments would result: 

cl = a, c2 = <blankspace>, c3 = b 

If the scanf function were written as 

scanf(" %c%ls%ls", &cl, &c2, &c3) 


however, then the same input data would result in the following assignments: 

cl = a, c2 = b, c3 = c 

as intended. 
Note that there are some other ways around this problem. We could have written the scanf function as 

scanf ( '  %c %c %c", &cl, &c2, &c3); 

with blank spaces separating the %c terms, or we could have used the original scanf function but written the input data as 
consecutive characters without blanks; i.e., abc. 

Unrecognized characters within the control string are expected to be matched by the same characters in 
the input data. Such input characters will be read into the computer, but not assigned to an identifier. 
Execution of the scanf function will terminate if a match is not found. 

EXAMPLE 4.15 Consider the following skeletal outline. 

#include <stdio.h> 


main ( ) 

int i; 

float x ;  

. . . . .  
scanf("%d a %f", &i, & x ) ;  

. . . . .  
1 

If the input data consist of 

1 a 2.0 


then the decimal integer 1 will be read in and assigned to i,the character a will be read in but subsequently ignored, and 
the floating-point value 2.0will be read in and assigned to x. 

On the other hand, if the input were entered simply as 

1 2.0 


then the scanf function would stop executing once the expected character (a) is not found. Therefore, i would be 
assigned the value 1 but x would automatically represent the value 0.  
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You should understand that there is some variation in the features supported by the scanf function from 
one version of C to another. The features described above are quite common and are available in virtually all 
versions of the language. However, there may be slight differences in their implementation. Moreover, 
additional features may be available in some versions of the language. 

4.6 WRITING OUTPUT DATA -THE p r i n t f  FUNCTION 

Output data can be written from the computer onto a standard output device using the library function 
p r i n t f .  This function can be used to output any combination of numerical values, single characters and 
strings. It is similar to the input function scanf, except that its purpose is to display data rather than to enter it 
into the computer. That is, the p r i n t f  function moves data from the computer’s memory to the standard 
output device, whereas the scanf function enters data from the standard input device and stores it in the 
computer’s memory. 

In general terms, the p r i n t f  function is written as 

p r i n t f ( c o n t r o l  string, arg7, arg2, . . . , argn) 

where c o n t r o l  stringrefers to a string that contains formatting information, and arg7, arg2, . . . , 
argn are arguments that represent the individual output data items. The arguments can be written as 
constants, single variable or array names, or more complex expressions. Function references may also be 
included. In contrast to the scanf function discussed in the last section, the arguments in a p r i n t f  function 
do not represent memory addresses and therefore are not preceded by ampersands. 

The control string consists of individual groups of characters, with one character group for each output 
data item. Each character group must begin with a percent sign (%). In its simplest form, an individual 
character group will consist of the percent sign, followed by a conversion character indicating the type of the 
corresponding data item. 

Multiple character groups can be contiguous, or they can be separated by other characters, including 
whitespace characters. These “other” characters are simply transferred directly to the output device, where 
they are displayed. The use of blank spaces as character-group separators is particularly common. 

Several of the more frequently used conversion characters are listed in Table 4-2. 

Table 4-2 Commonly Used Conversion Characters for Data Output 

Conversion 

Character Meaning 

C Data item is displayed as a single character 

d Data item is displayed as a signed decimal integer 

e Data item is displayed as a floating-point value with an exponent 

f Data item is displayed as a floating-point value without an exponent 

g Data item is displayed as a floating-point value using either e-type or f-type conversion, 
depending on value. Trailing zeros and trailing decimal point will not be displayed. 

i Data item is displayed as a signed decimal integer 

0 Data item is displayed as an octal integer, without a leading zero 

S Data item is displayed as a string 

U Data item is displayed as an unsigned decimal integer 

X Data item is displayed as a hexadecimal integer, without the leading Ox 

Note that some of these characters are interpreted differently than with the scanf funtion (see Table 4-1). 
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EXAMPLE 4.16 Here is a simple program that makes use of the p r i n t f  function. 

#include <stdio.h> 
#include <math.h> 

main()  / *  p r i n t  severa l  f l o a t i n g - p o i n t  numbers * /  

f l o a t  i= 2.0, j = 3.0; 
p r i n t f ( " % f  %f %f %f",  i,j ,  i + j ,  s q r t ( i + j ) ) ;  

Notice that the first two arguments within the p r i n t f  function are single variables, the third argument is an arithmetic 
expression, and the last argument is a function reference that has a numeric expression as an argument. 

Executing the program produces the following output: 

2.000000 3.000000 5.000000 2.236068 

EXAMPLE 4.17 The following skeletal outline indicates how several different types of data can be displayed using the 
p r i n t f  function. 

# inc lude <stdio.h> 

main ( ) 

1 
char i tem[20] ;  

i n t  p a r t  no; 
f l o a t  cos t ;  

' I ,p r i n t f  ( " % s  %d %f item, partno, cos t )  ; 

'I.Within the p r i n t f  function, the control string is "%s %d %f It contains three character groups. The first character 
group, %s, indicates that the first argument ( i t e m )  represents a string. The second character group, %d, indicates that the 
second argument (partno) represents a decimal integer value, and the third character group, %f,indicates that the third 
argument (cost) represents a floating-point value. 

Notice that the arguments are not preceded by ampersands. This differs from the scanf function, which requires 
ampersands for all arguments other than array names (see Example 4.5). 

Now suppose that name, partno and cost have been assigned the values fastener,  12345 and 0.05, 
respectively, within the program. When the p r i n t f  statement is executed, the following output will be generated. 

f as tene r  12345 0.050000 

The single space between data items is generated by the blank spaces that appear within the control string in the p r i n t f  
statement. 

Suppose the p r i n t f  statement had been written as 

' I ,p r i n t f  ( "%s%d%f i tem, partno, cos t )  ; 

This p r i n t f  statement is syntactically valid, though it causes the output items to run together; i.e., 

fastener123450.050000 

The f -type conversion and the e-type conversion are both used to output floating-point values. However, 
the latter causes an exponent to be included in the output, whereas the former does not. 



82 DATA INPUT AND OUTPUT [CHAP. 4 

EXAMPLE 4.18 The following program generates the same floating-point output in two different forms. 

#include <stdio.h> 

main()  / *  d isp lay  f l o a t i n g - p o i n t  output 2 d i f f e r e n t  ways * /  
{ 

double x = 5000.0, y = 0.0025; 

p r i n t f  ("%f%f%f%f\n \n "  , x, y, x*y, x / y ) ;  
p r i n t f  ("%e %e %e %e", x, y, x*y, x / y ) ;  

1 

Both p r i n t f  statements have the same arguments. However, the first p r i n t f  statement makes use of f-type conversion, 
whereas the second p r i n t f  statement uses e-type conversion. Also, notice the repeated newline character in the first 
p r i n t f  statement. This causes the output to be double-spaced, as shown below. 

When the program is executed, the following output is generated. 

5000.000000 0.002500 12.500000 2000000.000000 

5.000000e+03 2.500000e-03 1.250000e+01 2.000000e+06 

The first line of output shows the quantities represented by x, y, x*y and x / y  in standard floating-point format, without 
exponents. The second line of output shows these same quantities in a form resembling scientific notation, with 
exponents. 

Notice that six decimal places are shown for each value. The number of decimal places can be altered, however, by 
specifying the precision as a part of each character group within the control string (more about this in Sec. 4.7). 

The p r i n t f  function interprets s-type conversion differently than the scanf function. In the p r i n t f  
function, s-type conversion is used to output a string that is terminated by the null character ( \0). Whitespace 
characters may be included within the string. 

EXAMPLE 4.19 Reading and Writing a Line of Text Here is a short C program that will read in a line of text and 
then write it back out, just as it was entered. The program illustrates the syntactic differences in reading and writing a 
string that contains a variety of characters, including whitespace characters. 

#include <stdio.h> 

main ( ) / *  read and w r i t e  a l i n e  o f  t e x t  * /  

{ 
char l i n e [ 8 0 ] ;  

scan f ( "  % [ ^ \ n ] " ,  l i n e ) ;  
p r i n t f  ( "%s", l i n e )  ; 

1 

Notice the difference in the control strings within the scanf function and the p r i n t f  function. 
Now suppose that the following string is entered from the standard input device when the program is executed. 

The PITTSBURGH STEELERS i s  one o f  America's f a v o r i t e  f o o t b a l l  teams! 

This string contains lowercase characters, uppercase characters, punctuation characters and whitespace characters. The 
entire string can be entered with the single scanf function, as long as it is terminated by a newline character (by pressing 
the Enter key). The p r i n t f  function will then cause the entire string to be displayed on the standard output device, just 
as it had been entered. Thus, the message 

The PITTSBURGH STEELERS i s  one o f  America's f a v o r i t e  f o o t b a l l  teams! 

would be generated by the computer. 
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A minimum field width can be specified by preceding the conversion character by an unsigned integer. If 
the number of characters in the corresponding data item is less than the specified field width, then the data 
item will be preceded by enough leading blanks to fill the specified field. If the number of characters in the 
data item exceeds the specified field width, however, then additional space will be allocated to the data item, 
so that the entire data item will be displayed. This is just the opposite of the field width indicator in the scanf 
function, which specifies a maximum field width. 

EXAMPLE 4.20 The following C program illustrates the use of the minimum field width feature. 

#include <stdio.h> 


main ( ) / *  minimum field width specifications * /  

.( 
int 1 = 12345; 
float x = 345.678; 

printf ("%3d %5d %8d\n\n", 1, i, 1); 

printf("%3f %10f %13f\n\nn, x ,  x ,  x ) ;  
printf("%3e %13e %16e", x ,  x ,  x ) ;  

Notice the double newline characters in the first two printf statements. They will cause the lines of output to be double 
spaced, as shown below. 

When the program is executed, the following output is generated. 

12345 12345 12345 


345.678000 345.678000 345.678000 


The first line of output displays a decimal integer using three different minimum field widths (three characters, five 
characters and eight characters). The entire integer value is displayed within each field, even if the field width is too small 
(as with the first field in this example). 

The second value in the first line is preceded by one blank space. This is generated by the blank space separating the 
first two character groups within the control string. 

The third value is preceded by four blank spaces. One blank space comes from the blank space separating the last 
two character groups within the control field. The other three blank spaces fill the minimum field width, which exceeds 
the number of characters in the output value (the minimum field width is eight, but only five characters are displayed). 

A similar situation is seen in the next two lines, where the floating-point value is displayed using f-type conversion 
(in line 2) and e-type conversion (line 3). 

EXAMPLE 4.21 Here is a variation of the program presented in Example 4.20, which makes use of g-type conversion. 

#include <stdio.h> 


main ( ) / *  minimum field width specifications * /  

.( 
int i = 12345; 
float x = 345.678; 

printf("%3d %5d %8d\n\nn, 1, i, 1); 

printf("%3g %log %13g\n\n",x ,  x ,  x ) ;  
printf("%3g %13g %16gn, x ,  x ,  x ) ;  

} 
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Execution of this program causes the following output to be displayed. 

12345 12345 12345 


345.678 345.678 345.678 


345.678 345.678 345.678 


The floating-point values are displayed with an f-type conversion, since this results in a shorter display. The minimum 
field widths conform to the specifications within the control string. 

4.7 MORE ABOUT THE print f FUNCTION 

This section contains additional details about the p r i n t f  function. Beginning C programmers may wish to 
skip over this material for the time being. 

We have already learned how to specify a minimum field width in a p r i n t f  function. It is also possible 
to specify the maximum number of decimal places for a floating-point value, or the maximum number of 
characters for a string. This specification is known as precision. The precision is an unsigned integer that is 
always preceded by a decimal point. If a minimum field width is specified in addition to the precision (as is 
usually the case), then the precision specification follows the field width specification. Both of these integer 
specifications precede the conversion character. 

A floating-point number will be rounded if it must be shortened to conform to a precision specification. 

EXAMPLE 4.22 Here is a program that illustrates the use of the precision feature with floating-point numbers. 

#include <stdio.h> 


main() / *  display a floating-point number with several different precisions * /  

t 
float x = 123.456; 

printf("%7f %7.3f %7.lf\n\n", x ,  x ,  x ) ;  
printf ("%12e %12.5e %12.3@", x ,  x ,  x ) ;  

1 

When this program is executed, the following output is generated. 

123.456000 123.456 123.5 


The first line is produced by f-type conversion. Notice the rounding that occurs in the third number because of the 
precision specification (one decimal place). Also, notice the leading blanks that are added to fill the specified minimum 
field width (seven characters). 

The second line, produced by e-type conversion, has similar characteristics. Again, we see that the third number is 
rounded to conform to the specified precision (three decimal places). Also, note the leading blanks that are added to fill 
the specified minimum field width (1 2 characters). 

A minimum field width specification need not necessarily accompany the precision specification. It is 
possible to specify the precision without the minimum field width, though the precision must still be preceded 
by a decimal point. 

EXAMPLE 4.23 Now let us rewrite the program shown in the last example without any minimum field width 
specifications, but with precision specifications. 
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#include <s td io .h>  

main()  / *  disp lay  a f l o a t i n g - p o i n t  number w i t h  severa l  d i f f e r e n t  prec is ions  * /  

i 
f l o a t  x = 123.456; 

p r i n t f ( " % f  % . 3 f  % . l f \ n \ n " ,  x ,  x ,  x ) ;  
p r i n t f ( " % e  %.5e % . 3 e " ,  x ,  x ,  x ) ;  

1 

Execution of this program produces the following output. 

123.456000 123.456 123.5 

Notice that the third number in each line does not have multiple leading blanks, since there is no minimum field width that 
must be satisfied. In all other respects, however, this output is the same as the output generated in the last example. 

Minimum field width and precision specifications can be applied to character data as well as numerical 
data. When applied to a string, the minimum field width is interpreted in the same manner as with a numerical 
quantity; i.e., leading blanks will be added if the string is shorter than the specified field width, and additional 
space will be allocated if the string is longer than the specified field width. Hence, the field width 
specification will not prevent the entire string from being displayed. 

However, the precision specification will determine the maximum number of characters that can be 
displayed. If the precision specification is less than the total number of characters in the string, the excess 
right-most characters will not be displayed. This will occur even if the minimum field width is larger than the 
entire string, resulting in the addition of leading blanks to the truncated string. 

EXAMPLE 4.24 The following program outline illustrates the use of field width and precision specifications in 
conjunction with string output. 

#include <s td io .h>  

main ( ) 

{ 
char l i n e [ l 2 ] ;  

p r i n t f ( " % l O s  %15s %15.5s % . 5 s " ,  l i n e ,  l i n e ,  l i n e ,  l i n e ) ;  

1 

Now suppose that the string hexadecimal is assigned to the character array l i n e .  When the program is executed, the 
following output will be generated. 

hexadecimal hexadecimal hexad hexad 

The first string is shown in its entirety, even though this string consists of 11 characters but the field width specification is 
only 10 characters. Thus, the first string overrides the minimum field width Specification. The second string is padded 
with four leading blanks to fill out the 15-character minimum; hence, the second string is rightjustified within its field. 
The third string consists of only five nonblank characters because of the five-character precision specification; however, 
10 leading blanks are added to fil l  out the minimum field width specification, which is 15 characters. The last string also 
consists of five nonblank characters. Leading blanks are not added, however, because there is no minimum field width 
specification. 
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Most versions of C permit the use of prefixes within the control string to indicate the length of the 
corresponding argument. The allowable prefixes are the same as the prefixes used with the scanf function. 
Thus, an 1 (lowercase) indicates a signed or unsigned integer argument, or a double-precision argument; an h 
indicates a signed or unsigned short integer. Some versions of C permit an L (uppercase) to indicate a long 
double. 

EXAMPLE 4.25 Suppose the following statements are included in a C program. 

# inc lude <s td io .h> 

main ( )  

shor t  a, b; 
l ong  c, d; 

p r i n t f ( " % 5 h d  %6hx %810 %lu", a, b,  c, d ) ;  

. . . . .  
1 

The control string indicates that the first data item will be a short decimal integer, the second will be a short 
hexadecimal integer, the third will be a long octal integer, and the fourth will be a long unsigned (decimal) integer. Note 
that the first three fields have minimum field width specifications, but the fourth does not. 

Some versions of C allow the conversion characters X, E and G to be written in uppercase. These 
uppercase conversion characters cause any letters within the output data to be displayed in uppercase. (Note 
that this use of uppercase conversion characters is distinctly different than with the scanf function.) 

EXAMPLE 4.26 The following program illustrates the use of uppercase conversion characters in the p r i n t f  function. 

# inc lude <stdio.h> 

main ( ) / *  use of uppercase conversion characters * /  

{ 
i n t  a = Ox80ec; 
f l o a t  b = 0.3e-12; 

p r i n t f  ( " % 4 x  %10.2e\n\nU, a, b ) ;  
p r i n t f  ( " % 4 X  %10.2E", a, b ) ;  

1 

Notice that the first p r i n t f  statement contains lowercase conversion characters, whereas the second p r i n t f  statement 
contains uppercase conversion characters. 

When the program is executed, the following output is generated. 

80ec 3.00e-13 

80EC 3.00E-13 

The first quantity on each line is a hexadecimal number. Note that the letters ec (which are a part of the hexadecimal 
number) are shown in lowercase on the first line, and in uppercase on the second line. 

The second quantity on each line is a decimal floating-point number which includes an exponent. Notice that the 
letter e, which indicates the exponent, is shown in lowercase on the first line and uppercase on the second. 

You are again reminded that the use of uppercase conversion characters is not supported by all compilers. 
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In addition to the field width, the precision and the conversion character, each character group within the 
control string can include aflag, which affects the appearance of the output. The flag must be placed 
immediately after the percent sign (%). Some compilers allow two or more flags to appear consecutively, 
within the same character group. The more commonly used flags are listed in Table 4-3. 

Table 4-3 Commonly Used Flags 

Flag Meaning 
- Data item is left justified within the field (blank spaces required to fill the minimum field 

width will be added after the data item rather than before the data item). 
+ A sign (either + or -) will precede each signed numerical data item. Without this flag, only 

negative data items are preceded by a sign. 

0 Causes leading zeros to appear instead of leading blanks. Applies only to data items that 
are right justified within a field whose minimum size is larger than the data item. 

(Note: Some compilers consider the zero flag to be a part of the field width specification 
rather than an actual flag. This assures that the 0 is processed last, if multiple flags are 
present.) 

I I (blank space) 
A blank space will precede each positive signed numerical data item. This flag is 

overridden by the + flag if both are present. 

# (with 0- and x-type conversion) 
Causes octal and hexadecimal data items to be preceded by 0 and Ox, respectively. 

# (with e-, f-and g-type conversion) 
Causes a decimal point to be present in all floating-point numbers, even if the data item is 

a whole number. Also prevents the truncation of trailing zeros in g-type conversion. 

SXAMPLE 4.27 Here is a simple C program that illustrates the use of flags with integer and floating-point quantities. 

#include <stdio.h> 


main ( ) / *  use of flags with integer and floating-point numbers * /  

int i = 123;. 
float x = 12.0, y = -3.3; 

printf(':%6d %7.0f %lO.le:\n\n", i, x ,  y); 
printf ( '  :%-6d %-7.0f %-lO.le: \n\n" 1, x ,  y) ; 
printf(":%+6d %+7.0f %+lO.le:\n\n', 1, x ,  y); 
printf(":%-+6d %-+7.0f %-+lO.le:\n\n", 1, x ,  y); 
printf(":%7.0f %#7.0f %7g %#7g:", x ,  x ,  y, y); 

1 

When the program is executed, the following output is produced. (The colons indicate the beginning of the first field 
and the end of the last field in each line.) 

: 123 12 -3.3e+00: 

:123 12 -3.3e+00 : 

: +123 +12 -3,3e+00: 

:+123 +12 -3.3e+00 : 

12 12. -3.3 -3.30000: 
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The first line illustrates how integer and floating-point numbers appear without any flags. Each number is right justified 
within its respective field. The second line shows the same numbers, using the same conversions, with a - flag included 
within each character group. Note that the numbers are now left justified within their respective fields. The third line 
shows the effect of using a + flag. The numbers are now right justified, as in the first line, but each number (whether 
positive or negative) is preceded by an appropriate sign. 

The fourth line shows the effect of combining a - and a + flag. The numbers are now left justified and preceded by 
an appropriate sign. Finally, the last line shows two floating-point numbers, each displayed first without and then with the 
# flag. Note that the effect of the flag is to include a decimal point in the number 12. (which is printed with f-type 
conversion), and to include the trailing zeros in the number -3.300000(printed with g-type conversion). 

EXAMPLE 4.28 Now consider the following program, which displays decimal, octal and hexadscimal numbers. 

#include <stdio.h> 


main() / *  use of flags with unsigned decimal, octal and hexadecimal numbers * /  

int i = 1234, j = 01777, k = OxaO8c; 

printf(”:%8u %80 %8x:\n\nN, i, j ,  k ) ;  
printf(”:%-8u %-80 %-8x:\n\n”, 1, j ,  k ) ;  
printf ( ‘ I  :%#8u %#80 %#8X: \n\n”, i, j ,  k ) ; 
printf ( I’ :%08u %080 %08X: \n\n” , i, j , k )  ; 

1 

Execution of this program results in the following output. (The colons indicate the beginning of the first field and the 
end of the last field in each line.) 

: 1234 1777 a08c : 

:1234 1777 a08c : 

: 1234 01777 OXAO8C: 

:00001234 00001777 0000A08C: 


The first line illustrates the display of unsigned integer, octal and hexadecimal output without any flags. Note that the 
numbers are right justified within their respective fields. The second line shows what happens when you include a - flag 
within each character group. Now the numbers are left justified within their respective fields. 

In the third line we see what happens when the # flag is used. This flag causes the octal number 1777 to be preceded 
by a 0 (appearing as 01 777), and the hexadecimal number to be preceded by OX (Le., OXAO8C). Notice that the unsigned 
decimal integer 1234 is unaffected by this flag. Also, notice that the hexadecimal number now contains uppercase 
characters, since the conversion character was written in uppercase (X). 

The last line illustrates the use of the 0 flag. This flag causes the fields to be filled with leading OS rather than leading 
blanks. We again see uppercase hexadecimal characters, in response to the uppercase conversion character (X). 

EXAMPLE 4.29 The following program outline illustrates the use of flags with string output. 

#include <stdio.h> 


main ( ) 

char line(l2J; 


printf (“:%15s %15.5s %.5s:\n\n”, line, line, line); 

printf(”:%-l5s %-15.5s %-.5s:”, line, line, line); 


1 
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Now suppose that the string lower-caseis assigned to the character array line. The following output will be generated 
when the program is executed. 

lower-case lower lower: 


:lower-case lower lower: 

The first line illustrates how strings are displayed when flags are not present, as explained in Example 4.24. The second 
line shows the same strings, left justified, in response to the - flag in each character group. 

Unrecognized characters within the control string will be displayed just as they appear. This feature 
allows us to include labels and messages with the output data items, if we wish. 

EXAMPLE 4.30 The following program illustrates how printed output can be labeled. 

#include <stdio.h> 


main ( ) / *  labeling of floating-pointnumbers * /  

{ 
float a = 2.2, b = -6.2, xl = .005, x2 = -12.88; 

printf("$%4.2f %7.lf%%\n\n", a, b); 

printf ("xl=%7.3f x2=%7.3fM,xl, x2); 


This program causes the value of a (2.2)to be preceded by a dollar sign ($), and the value of b (-6.2)to be followed by a 
percent sign (%).Note the two consecutive percent signs in the first printf statement. The first percent sign indicates the 
start of a character group, whereas the second percent sign is interpreted as a label. 

The second printf statement causes the value of xl to be preceded by the label xl=, and the value of x2 to be 
preceded by the label x2=.Three blank spaces will separate these two labeled data items. 

The actual output is shown below. 

$2.20 -6.2% 


Xl = 0.005 ~2=-12.880 

Remember that there is some variation in the features supported by the p r i n t f  function in different 
versions of C. The features described in this section are very common, though there may be differences in the 
way these features are implemented. Additional features are also available in many versions of the language. 

4.8 THE g e t s  AND puts  FUNCTIONS 

C contains a number of other library functions that permit some form of data transfer into or out of the 
computer. We will encounter several such functions in Chap. 12, where we discuss data files. Before leaving 
this chapter, however, we mention the gets  and puts  functions, which facilitate the transfer of strings 
between the computer and the standard inputloutput devices. 

Each of these functions accepts a single argument. The argument must be a data item that represents a 
string. (e.g., a character array). The string may include whitespace characters. In the case of gets, the string 
will be entered fiom the keyboard, and will terminate with a newline character (i.e., the string will end when 
the user presses the Enter  key). 

The g e t s  and puts  functions offer simple alternatives to the use of scanf and p r i n t f  for reading and 
displaying strings, as illustrated in the following example. 
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EXAMPLE 4.31 Reading and Writing a Line of Text Here is another version of the simple program originally 
presented in Example 4.19, that reads a line of text into the computer and then writes it back out in its original form. 

# inc lude <s td io .h> 

main ( ) / *  read and w r i t e  a l i n e  o f  t e x t  * /  

char  l i n e [ 8 0 ] ;  

g e t s ( 1 i n e ) ;  
p u t s ( 1 i n e ) ;  

1 

This program utilizes g e t s  and puts, rather than scanf and p r i n t f ,  to transfer the line of text into and out of the 
computer. Note that the syntax is simpler in the present program (compare carefully with the program shown in Example 
4.19). On the other hand, the scanf and p r i n t f  functions in the earlier program can be expanded to include additional 
data items, whereas the present program cannot. 

When this program is executed, it will behave in exactly the same manner as the program shown in Example 4.19. 

4.9 INTERACTIVE (CONVERSATIONAL) PROGRAMMING 

Many modern computer programs are designed to create an interactive dialog between the computer and the 
person using the program (the "user"). These dialogs usually involve some form of question-answer 
interaction, where the computer asks the questions and the user provides the answers, or vice versa. The 
computer and the user thus appear to be carrying on some limited form of conversation. 

In C, such dialogs can be created by alternate use of the scanf and p r i n t f  functions. The actual 
programming is straightforward, though sometimes confusing to beginners, since the p r i nt f  function is used 
both when entering data (to create the computer's questions) and when displaying results. On the other hand, 
scanf is used only for actual data entry. 

The basic ideas are illustrated in the following example. 

EXAMPLE 4.32 Averaging Student Exam Scores This example presents a simple, interactive C program that reads in 
a student's name and three exam scores, and then calculates an average score. The data will be entered interactively, with 
the computer asking the user for information and the user supplying the information in a free format, as requested. Each 
input data item will be entered on a separate line. Once all of the data have been entered, the computer will compute the 
desired average and write out all of the data (both the input data and the calculated average). 

The actual program is shown below. 

# inc lude <s td io .h> 

main( ) / *  sample i n t e r a c t i v e  program * /  

{ 
char  name[20]; 
f l o a t  score1 , score2, score3, avg; 

p r i n t f ( " P 1 e a s e  e n t e r  your name: ' I ) ;  / *  e n t e r  name * /  
s c a n f ( "  % [ ^ \ n ] " ,  name); 

p r i n t f ( " P 1 e a s e  e n t e r  t h e  f i r s t  score: " ) ;  / *  e n t e r  1 s t  score * /  
s c a n f ( " % f " ,  & s c o r e l ) ;  

p r i n t f ( " P 1 e a s e  e n t e r  t h e  second score: " ) ;  I *  e n t e r  2nd score * /  
scanf ( "%f',&score2) ; 

p r i n t f ( " P 1 e a s e  e n t e r  the  t h i r d  score: " ) ;  / *  e n t e r  3 r d  score * /  
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s c a n f ( * % f * ,  &score3);  

avg = (scorel+score2+score3)/3; / *  c a l c u l a t e  avg * /  

p r i n t f  ( \n\nName: % - s \ n \ n " ,  name); / *  w r i t e  output * /  
p r i n t f ( " S c o r e  1 :  % - 5 . 1 f \ n n ,  s c o r e l ) ;  
p r i n t f ( " S c o r e  2: % - 5 . l f \ n " ,  score2);  
p r i n t f ( " S c o r e  3 :  % - 5 . l f \ n \ n " ,  score3);  
p r i n t f ( " A v e r a g e :  % - 5 . 1 f \ n \ n N ,  avg);  

1 

Notice that two statements are associated with each input data item. The first is a p r i n t f  statement, which generates a 
request for the item. The second statement, a scanf function, causes the data item to be entered from the standard input 
device (i.e., the keyboard). 

After the student's name and all three exam scores have been entered, an average exam score is calculated. The input 
data and the calculated average are then displayed, as a result of the group of p r i n t f  statements at the end of the program. 

A typical interactive session is shown below. To illustrate the nature of the dialog, the user's responses have been 
underlined. 

Please e n t e r  your name: Robert Smith 
Please e n t e r  the  f i r s t  score: 88 
Please e n t e r  the  second score: 6 2 . 3  
Please e n t e r  t h e  t h i r d  score: 

Name: Robert Smith 

Score 1:  88.0 
Score 2 :  62 .5  
Score 3: 90.0 

Average : 80.2 

Additional interactive programs will be seen in many of the programming examples presented in later chapters of this 
book. 

Review Questions 

4.1 What are the commonly used inputloutput functions in C? How are they accessed? 

4.2 What is the standard inputloutput header file called in most versions of C? How is the file included within a 
program? 

4.3 What is the purpose of the getchar function? How is it used within a C program? 

4.4 What happens when an end-of-file condition is encountered when reading characters with the getc  har function? 
How is the end-of-file condition recognized? 

4.5 How can the getchar function be used to read multicharacter strings? 

4.6 What is the purpose of the putchar function? How is it used within a C program? Compare with the getchar 
function. 

4.7 How can the putchar function be used to write multicharacter strings? 

4.8 What is a character-type array? What does each element of a character-type array represent? How are character- 
type arrays used to represent multicharacter strings? 

4.9 What is the purpose of the scanf function? How is it used within a C program? Compare with the getchar 
function. 



92 DATA INPUT AND OUTPUT [CHAP. 4 

4.10 What is the purpose of the control string in a scanf function? What type of information does it convey? Of what 
is the control string composed? 

4.11 How is each character group within the control string identified? What are the constituent characters within a 
character group? 

4.12 If a control string within a scanf function contains multiple character groups, how are the character groups 
separated? Are whitespace characters required? 

4.13 If whitespace characters are present within a control string, how are they interpreted? 

4.14 Summarize the meaning of the more commonly used conversion characters within the control string of a scanf 
function. 

4.15 What special symbol must be included with the arguments, other than the control string, in a scanf function? In 
what way are array names treated differently than other arguments? 

4.16 When entering data via the scanf function, what relationships must there be between the data items and the 
corresponding arguments? How are multiple data items separated from one another? 

4.17 When entering data via the scanf function, must octal data be preceded by O? Must hexadecimal data be 
preceded by Ox (or OX)? How must floating-point data be written? 

4.18 When entering a string via the scanf function using an s-type conversion factor, how is the string terminated? 

4.19 When entering a string via the scanf function, how can a single string which includes whitespace characters be 
entered? 

4.20 Summarize a convenient method for entering a string of undetermined length, which may contain whitespace 
characters and all printable characters, and which is terminated by a carriage return. Answer this question relative 
to the type of conversion required within the control string of a scanf function. 

4.21 What is meant by a field? 

4.22 How can the maximum field width for a data item be specified within a scanf function? 

4.23 What happens if an input data item contains more characters than the maximum allowable field width? What if 
the data item contains fewer characters? 

4.24 How can short integer, long integer and double-precision arguments be indicated within the control string of a 
scanf function? 

4.25 How can long double arguments be indicated within the control string of a scanf function? Is this feature 
available in most versions of C? 

4.26 How can the assignment of an input data item to its corresponding argument be suppressed? 

4.27 If the control string within a scanf function contains multiple character groups without interspersed whitespace 
characters, what difficulty can arise when using c-type conversion? How can this difficulty be avoided? 

4.28 How are unrecognized characters within the control string of a scanf function interpreted? 

4.29 What is the purpose of the p r i n t f  function? How is it used within a C program? Compare with the putchar 
function. 

4.30 In what ways does the control string within a p r i n t f  function differ from the control string within a scanf 
function? 

4.3 1 If the control string within a p r i n t f  function contains multiple character groups, how are the character groups 
separated? How are the separators interpreted? 

4.32 Summarize the meaning of the more commonly used conversion characters within the control string of a p r i n t f  
function. Compare with the conversion characters that are used in a scanf function. 

4.33 In a p r i n t f  function, must the arguments (other than the control string) be preceded by ampersands? Compare 
with the scanf function and explain any differences. 

4.34 What is the difference between f -type conversion, e-type conversion and g-type conversion when outputting 
floating-point data with a p r i n t f  function? 

4.35 Compare the use of s-type conversion in the p r i n t f  and the scanf functions. How does s-type conversion differ 
when processing strings containing whitespace characters? 
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4.36 How can the minimum field width for a data item be specified within the p r i n t f  function? 

4.37 What happens if an output data item contains more characters than the minimum field width? What if the data 
item contains fewer characters? Contrast with the field width specifications in the scanf function. 

4.38 What is meant by the precision of an output data item? To what types of data does this apply? 

4.39 How can the precision be specified within a p r i n t f  function? 

4.40 What happens to a floating-point number if it must be shortened to conform to a precision specification? What 
happens to a string? 

4.41 Must a precision specification be accompanied by a minimum field width specification in a p r i n t f  function? 

4.42 How can short integer, long integer and double-precision arguments be indicated within the control string of a 
p r i n t f  function? How can long double arguments be indicated? 

4.43 How are uppercase conversion characters interpreted differently than the corresponding lowercase conversion 
characters in a p r i n t f  function? To what types of conversion does this feature apply? Do all versions of C 
recognize this distinction? 

4.44 Summarize the purpose of the flags that are commonly used within the p r i n t f  function. 

4.45 Can two or more flags appear consecutively within the same character group? 

4.46 How are unrecognized characters within the control string of a p r i n t f  function interpreted? 

4.47 How can labeled data items be generated by the p r i n t f  function? 

4.48 Summarize the use of the gets  and puts  functions to transfer strings between the computer and the standard 
inputloutput devices. Compare the use of these functions with the string transfer features in the scanf and 
p r i n t f  statements. 

4.49 Explain, in general terms, how an interactive dialog can be generated by repeated use of pairs of scanf and 
p r i n tf functions. 

Problems 

4.50 A C program contains the following statements: 

#include <stdio.h> 

char a, b ,  c; 

(a)  Write appropriate getchar statements that will allow values for a, b and c to be entered into the computer. 

(b) Write appropriate putchar statements that will allow the current values of a, b and c to be written out of 
the computer (i.e., to be displayed). 

4.51 Solve Prob. 4.50 using a single scanf function and a single p r i n t f  function rather than the getchar and 
putchar statements. Compare your answer with the solution to Prob. 4.50. 

4.52 A C program contains the following statements: 

# inc lude <stdio.h> 

char t e x t [ 8 0 ] ;  

(a) Write a f o r  statement that will permit a 60-character message to be entered into the computer and stored in 
the character array t e x t .  Include a reference to the getchar function in the f o r  loop, as in Example 4.4. 

(b)  Write a f o r  statement that will permit the first 60 characters of the character array t e x t  to be displayed. 
Include a reference to the putchar function in the f o r  loop, as in Example 4.4. 

4.53 Modify the solution to Prob. 4.52(a) so that a character array whose length is unspecified can be read into the 
computer. Assume that the message does not exceed 79 characters, and that it is automatically terminated by a 
newline character (\n). (See Example 4.4.) 
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4.54 Solve Prob. 4.53 using a scanf statement in place of a f o r  statement (see Example 4.8). What additional 
information is provided by the method described in Prob. 4.53? 

4.55 A C program contains the following statements: 

#include <stdio.h> 

i n t  i, j ,  k;  

Write an appropriate scanf function to enter numerical values for i, j and k, assuming 

(a) The values for i,j and k will be decimal integers. 

(b) The value for iwill be a decimal integer, j an octal integer and k a hexadecimal integer. 

(c) The values for iand j will be hexadecimal integers and k will be an octal integer. 

4.56 A C program contains the following statements: 

#include cstd io .  h> 

i n t  i,j ,  k; 

Write an appropriate scanf function to enter numerical values for i, j and k into the computer, assuming 

(a) The values for i,j and k will be decimal integers not exceeding six characters each. 

(b) The value for iwill be a decimal integer, j an octal integer and k a hexadecimal integer, with each quantity 
not exceeding 8 characters. 

(c )  The values for iand j will be hexadecimal integers and k will be an octal integer. Each quantity will be 7 
or fewer characters. 

4.57 Interpret the meaning of the control string in each of the following scanf functions. 

(a) scan f ( "% l2 ld  %5hd %151f %151en, &a, &b, &c, &d); 

(b)  scanf ("%101x %6ho %5hu %141um, &a, &b, &c, &d); 

(c )  scanf("12D %hd %15f %15e", &a, &b, &c, &d); 

(d) scanf("8d %*d %121f %121fu, &a, &b, &c, &d); 

4.58 A C program contains the following statements: 

#include <stdio.h> 

i n t  i, j ;  
long i x ;  

short  s; 
unsigned U; 

f l o a t  x; 
double dx; 
char c; 

For each of the following groups of variables, write a scanf function that will allow a set of data items to be read 
into the computer and assigned to the variables. Assume that all integers will be read in as decimal quantities. 

(a) i,j ,  x and dx (c) i,U and c 

(b) i,i x ,  j ,  x and U (d) c,x,dxands 

4.59 A C program contains the following statements: 

#include <stdio.h> 

i n t  i,j ;  
long i x ;  
short  s; 
unsigned U; 

f l o a t  x;  
double dx; 
char c; 
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Write an appropriate scanf function to accommodate each of the following situations, assuming that all integers 
will be read in as decimal quantities. 

(a) Enter values for i, j ,  x and dx, assuming that each integer quantity does not exceed four characters, the 
floating-point quantity does not exceed eight characters, and the double-precision quantity does not exceed 
15 characters. 

(6) Enter values for i, ix, j ,  x and U, assuming that each integer quantity does not exceed five characters, the 
long integer does not exceed 12 characters, and the floating-point quantity does not exceed 10 characters. 

(c) Enter values for i,U and c,assuming that each integer quantity does not exceed six characters. 

(d) Enter values for c, x, dx and s,assuming that the floating-point quantity does not exceed nine characters, 
the double-precision quantity does not exceed 16 characters and the short integer does not exceed six 
characters. 

4.60 A C program contains the following statements: 

#include <stdio.h> 


char text[80]; 


Write a scanf function that will allow a string to be read into the computer and assigned to the character array 
text. Assume that the string does not contain any whitespace characters. 

4.61 Solve Prob. 4.60 assuming that the string contains only lowercase letters, blank spaces and newline characters. 

4.62 Solve Prob. 4.60 assuming that the string contains only uppercase letters, digits, dollar signs and blank spaces. 

4.63 Solve Prob. 4.60 assuming that the string contains anything other than an asterisk (i.e., assume that an asterisk will 

be used to indicate the end of the string). 

4.64 A C program contains the following statements. 

#include <stdio.h> 


char a, b,  c; 

Suppose that $ is to be entered into the computer and assigned to a, * assigned to b and @ assigned to c. Show 
how the input data must be entered for each of the following scanf functions. 

(a) scanf ( "%c%c%c*, &a, &b, &c) ; 
(6) scanf("%c %c %c*, &a, &b, &c); 
(c) scanf("%s%s%s", &a, &b, &c); 
(6) scanf("%s %s % s " ,  &a, &b, &c); 
(e) scanf ( " % l s % l s % l s * ,  &a, &b, &c); 

4.65 A C program contains the following statements. 

#include <stdio.h> 


int a, b; 
float x, y; 


Suppose the value 12 is to be entered into the computer and assigned to a, -8 assigned to by0.011 assigned to x 
and -2.2 x 106 assigned to y. Show how the input data might most conveniently be entered for each of the 
following scanf functions. 

(a) scanf('%d %d %f %fn, &a, &b, &x, by); 
(b) scanf("%d %d %e %em', &a, &b, &x, &y);  

(c) scanf ( '%2d %2d %5f %6e &a, &b, &x, By) ; 

(6) scanf ("3d %3d %8f %8e", &a, &b, &x, &y) ; 
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4.66 A C program contains the following statements: 

#include <stdio.h> 


int i, j, k;  

Write a printf function for each of the following groups of variables or expressions. Assume all variables 
represent decimal integers. 

(a) i, j and k 

(4 (1 + j), (1 - k )  

(c) sqrt(i + j),abs(i - k )  

4.67 A C program contains the following statements: 

#include <stdio.h> 


int i, j, k;  

Write a printf function for each of the following groups of variables or expressions. Assume all variables 
represent decimal integers. 

(a) i, j and k, with a minimum field width of three characters per quantity. 

(b) ( i + j ), ( i - k )  ,with a minimum field width of five characters per quantity. 

(c) sqrt (i + j ), abs (i - k ) ,  with a minimum field width of nine characters for the first quantity, and 
seven characters for the second quantity. 

4.68 A C program contains the following statements: 

#include <stdio.h> 


float x ,  y, z; 

Write a printf function for each of the following groups of variables or expressions. 

(4 x, Y and z 
(6)  ( x  + Y ) ,  ( x  - 2 )  

(c) sqrt(x + y), fabs(x - z) 
4.69 A C program contains the following statements: 

#include <stdio. h> 


float x ,  Y ,  

Write a printf function for each of the following groups of variables or expressions, using f-type conversion for 
each floating-point quantity. 

(a) x, y and z,with a minimum field width of six characters per quantity. 

(b) (x + y ) ,  (x - z),with a minimum field width of eight characters per quantity. 

(c) sqrt ( x  + y), abs(x - z),with a minimum field width of 12 characters for the first quantity and nine 
characters for the second. 

4.70 Repeat the previous problem using e-type conversion. 

4.71 A C program contains the following statements: 

#include <stdio.h> 


float x ,  y, z; 

Write a printf function for each of the following groups of variables or expressions, using f -type conversion for 
each floating-point quantity. 

(a) x, y and z,with a minimum field width of eight characters per quantity, with no more than four decimal 
places. 
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(b)  (x + y ) , (x - z), with a minimum field width of nine characters per quantity, with no more than three 
decimal places. 

(c) sqrt (x + y), abs(x - z),with a minimum field width of 12 characters for the first quantity and 10 
characters for the second. Display a maximum of four decimal places for each quantity. 

4.72 A C program contains the following statements: 

#include <stdio.h> 


float x, y, z; 


Write a printf function for each of the following groups of variables or expressions, using e-type conversion for 
each floating-point quantity. 

(a)  x, y and z,with a minimum field width of 12 characters per quantity, with no more than four decimal 
places. 

(b) (x + y), (x - z),with a minimum field width of 14 characters per quantity, with no more than five 
decimal places. 

(c) sqrt (x + y), abs(x - z),with a minimum field width of 12 characters for the first quantity and 15 
characters for the second. Display a maximum of seven decimal places for each quantity. 

4.73 A C program contains the following statements: 

#include <stdio.h> 


int a = 0177, b = 055, c = Oxa8, d = Oxlff; 

Write a printf function for each of the following groups of variables or expressions. 

(a) a, b, c and d 

(b)  (a + b), (c - d) 

4.74 A C program contains the following statements: 

#include <stdio.h> 


int i, j; 

long ix; 

unsigned U; 


float x; 

double dx; 

char c; 


For each of the following groups of variables, write a printf function that will allow the values of the variables 
to be displayed. Assume that all integers will be shown as decimal quantities. 

(a) i, j, x and dx (c) i,U and c 

(b) i, ix, j, x and U (6) c, x, dx and ix 

4.75 A C program contains the following statements: 

#include <stdio.h> 


int i, j; 

long ix; 

unsigned U; 


float x; 

double dx; 

char c; 


Write an appropriate printf function for each of the following situations, assuming that all integers will be 
displayed as decimal quantities. 
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Display the values of i, j, x and dx, assuming that each integer quantity will have a minimum field width 
of four characters and each floating-point quantity is displayed in exponential notation with a total of at 
least 14 characters and no more than eight decimal places. 

Repeat part (a),displaying each quantity on a separate line. 

Display the values of i, ix, j ,  x and U, assuming that each integer quantity will have a minimum field 
width of five characters, the long integer will have a minimum field width of 12 characters and the floating- 
point quantity will be have at least 10 characters with a maximum of five decimal places. Do not include 
an exponent. 

Repeat part (c), displaying the first three quantities on one line, followed by a blank line and then the 
remaining two quantities on the next line. 

Display the values of i, U and c, with a minimum field width of six characters for each integer quantity. 
Place three blank spaces between each output quantity. 

Display the values for j ,  U and x. Display the integer quantities with a minimum field width of five 
characters. Display the floating-point quantity using f-type conversion, with a minimum field width of 1 1 
and a maximum of four decimal places. 

Repeat part U,with each data item left justified within its respective field. 

Repeat part v), with a sign (either + or -) preceding each signed data item. 

Repeat part cr),with leading zeros filling out the field for each of the integer quantities. 

Repeat part cr),with a provision for a decimal point in the value of x regardless of its value. 

4.76 Assume that i, j and k are integer variables, and that i represents an octal quantity, j represents a decimal 
quantity and k represents a hexadecimal quantity. Write an appropriate printf function for each of the following 
situations. 

(a) Display the values for i, j and k, with a minimum field width of eight characters for each value. 

(b) Repeat part (a)with each output data item left justified within its respective field. 

(c) Repeat part (a)with each output data item preceded by zeros (Ox, in the case of the hexadecimal quantity). 

4.77 A C program contains the following variable declarations. 

int i = 12345, j = -13579, k = -24680; 
long ix = 123456789; 
short sx = -2222; 
unsigned ux = 5555;  

Show the output resulting from each of the following printf statements. 

(a) printf("%d %d %d %Id %d %U', i, j ,  k ,  ix, sx, ux); 

(b)  printf('%3d %3d %3d\n\n%31d %3d %3u", 1, j ,  k ,  ix, sx, ux); 
(c) printf ("%8d %8d %8d\n\n%151d %8d %8un , 1, j , k ,  ix, s x ,  ux); 

(6) printf("%-8d %-8d\n%-8d %-15ld\n%-8d %-8u", i, j ,  k ,  ix, SX, UX); 

( e )  printf ("%+8d %+8d\n%+8d %+151d\n%+8d %8u" , 1, j , k ,  ix, sx, ux); 
cr) printf("%08d %08d\n%08d %0151d\n%08d %08uMJ 1, j ,  k ,  ix, sx, ux); 

4.78 A C program contains the following variable declarations. 

int i = 12345, j = Oxabcd9, k = 077777; 

Show the output resulting from each of the following printf statements. 

(a) printf("%d %x %o", i, j ,  k ) ;  

(b)  printf("%3d %3x %30", 1, j, k ) ;  

(c) printf ("%8d %8x %80' , 1, j , k ) ;  

(6) printf('%-8d %-8x %-80", 1, j ,  k ) ;  
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(e )  p r i n t f  ("%+ad %+ex %+80n, 1, j ,  k ) ;  

cf) pr in t f ( "%O8d %#ex %#80n,i,j ,  k ) ;  

4.79 A C program contains the following variable declarations. 

f l o a t  a = 2.5, b = 0.0005, c = 3000.; 

Show the output resulting from each of the following p r i n t f  statements. 

(a) p r i n t f ( " % f %f%f",a, b, c ) ;  

(b) p r i n t f ( ' % 3 f  %3f %3fn,  a, b, c ) ;  

(c) p r i n t f ( " 8 f  %8f %8 f " ,  a, b, c) ;  

(d) p r i n t f ( " % 8 . 4 f  %8.4f %8.4fn, a, b, c ) ;  

(e )  pr in t f ( I1%8.3f  %8.3f %8.3f1', a, b, c ) ;  

cf) p r i n t f ( " % e  %e %e", a, b, c ) ;  

(g) p r i n t f ( " % 3 e  %3e %3e", a, b, c) ;  

(h) p r i n t f ( " % l 2 e  %12e %12e', a, b, c ) ;  

( i )  p r i n t f ( " % l 2 . 4 e  %12.4e %12.4en, a, b, c ) ;  

(j) p r in t f ( "%8 .2e  %8.2e %8.2e", a, b, c ) ;  

( k )  printf("%-8f %-8f %-8f", a, b, c ) ;  

(0 p r i n t f ( " % + 8 f  %+8f %+€If", a, b, c ) ;  

(m) pr in t f ( "%O8f  % O a f  % O a f n ,  a, b, c ) ;  

(n) p r i n t f ( " % # 8 f  %#8f %#8f" ,  a, b, c ) ;  

(0) p r i n t f ( " % g  %g %g", a, b, c ) ;  

(p) p r i n t f ( " % # g  %#g %#g", a, b, c ) ;  

4.80 A C program contains the following variable declarations. 

char c l  = ' A ' ,  c2 = " B ' ,  c3 = ' C ' ;  

Show the output resulting from each of the following p r i n t f  statements. 

(a) p r i n t f ( * % c  %c %c",  c l ,  c2, c3); 

(6)  pr in t f ( "%c%c%c",  c l ,  c2, c3); 

(c) p r i n t f  ("%3c %3c %3c" c l ,  c2, c3) ; 

(6) pr int f ("%3c%3c%3cW,c l ,  c2, c3); 

(e )  p r i n t f  ( "cl=%c c2=%c c3=%cW, c l ,  c2, c3) ; 

4.81 A C program contains the following statements. 

#include <stdio.h> 

char t e x t  [801 ; 

Write a p r i n t f  function that will allow the contents of t e x t  to be displayed in the following ways. 

(a) Entirely on one line. 

(b) Only the first eight characters. 

(c) The first eight characters, preceded by five blanks. 

(d) The first eight characters, followed by five blanks. 

4.82 A C program contains the following array declaration. 

char t e x t [ 8 0 ] ;  

Suppose that the following string has been assigned to t ex t .  
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Programming w i t h  C can be a chal lenging c r e a t i v e  a c t i v i t y .  

Show the output resulting from the following p r i n t f  statements. 

(a) p r i n t f ( " % s " ,  t e x t )  ; (4 p r i n t f  ( "%18.7s", t e x t )  ; 

(6) p r i n t f  ( " % 1 8 s " ,  t e x t )  ; (e) p r i n t f ( " % - 1 8 . 7 ~ " ,  t e x t ) ;  

(c) p r i n t f  ( 'I%. 1 8 s " ,  t e x t )  ; 

4.83 Write the necessary scanf or p r i n t f  statements for each of the following situations. 

(a) Generate the message 

Please e n t e r  your name: 

Then enter the name on the same line. Assign the name to a character-type array called name. 

(6) Suppose that x l  and x2 are floating-point variables whose values are 8.0 and -2.5, respectively. Display 
the values of x l  and x2, with appropriate labels; i.e., generate the message 

~1 = 8 .0  ~2 = - 2 . 5  

(c )  Suppose that a and b are integer variables. Prompt the user for input values of these two variables, then 
display their sum. Label the output accordingly. 

4.84 Determine which conversion characters are available with your particular version of C. Also, determine which 
flags are available for data output. 



Chapter 5 


Preparing and Running a Complete C Program 

By now we have learned enough about C to write complete, though simple, C programs. We will therefore 
pause briefly from our coverage of new features and devote some attention to the planning, writing and 
execution of a complete C program. In addition, we will discuss some methods for detecting and correcting 
the different types of errors that can occur in improperly written programs. 

Our attention will be directed toward the use of Version 4.5 of Borland International’s Turbo C++, 
running within the Windows operating environment (remember that C++ includes a full implementation of 
standard ANSI C, as discussed in Sec. 1.5). We emphasize this particular version of C because of its 
widespread popularity on personal computers, its low cost, and because it is representative of contemporary C 
usage on many different computers. 

5.1 PLANNING A C PROGRAM 

It is essential that the overall program strategy be completely mapped out before any of the detailed 
programming actually begins. This permits you to concentrate on the general program logic, without being 
concerned with the syntactic details of the actual instructions. Once the overall program strategy has been 
clearly established, the details associated with the individual program statements can be considered. This 
approach is generally referred to as “top-down” programming. With large programs, this entire process might 
be repeated several times, with more programming detail added at each stage. 

Top-down program organization is normally carried out by developing an informal outline, consisting of 
phrases or sentences that are part English and part C. In the initial stages of program development the amount 
of C is minimal, consisting only of major program components, such as function headings, function 
references, braces defming compound statements, and portions of control statements describing major 
program structures. Additional detail is then provided by descriptive English material which is inserted 
between these elements, often in the form of program comments. The resulting outline is usually referred to 
as pseudocode. 

EXAMPLE 5.1 Compound Interest A common problem in personal finance is that of determining how much money 
will accumulate in a bank account after n years if a known amount, P, is deposited initially and the account collects 
interest at a rate of r percent per year, compounded annually. The answer to this question can be determined by the well- 
known formula 

F =  P (1 + i)n 

where F represents the future accumulation of money (including the original sum, P, which is known as the principal) and 
i is the decimal representation of the interest rate; i.e., i = d100 (for example, an interest rate of r = 5% would correspond 
to i = 0.05). 

Consider the organization of a C program that will solve this problem. The program will be based upon the 
following general outline. 

1. Declare the required program variables. 

2. Read in values for the principal (P),the interest rate (r)and the number of years (n).  

3 .  Calculate the decimal representation of the interest rate (i) ,using the formula 

i = r/lOO 

101 
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4. Determine the future accumulation (F)using the formula 

F = P ( l  +i)" 

5 .  Display the calculated value for F. 

Here is the program outline in the form of pseudocode. 

/ *  compound i n t e r e s t  ca l cu la t i ons  * /  

main ( ) 

{ 
/ *  declare the program var iab les  * /  

/ *  read i n  values f o r  P, r and n * /  

/ *  ca l cu la te  a value f o r  i* /  

/ *  ca l cu la te  a value f o r  F * /  

/ *  d i sp lay  the  ca lcu la ted  value f o r  F * /  

1 

Each of these steps appears very simple when viewed from the top. However, some steps require more detail before 
they can actually be programmed. For example, the data input step will be carried out interactively. This will require 
some dialog generated by pairs of p r i n t f  and scanf statements, as explained in the Chap. 4. Moreover, C does not have 
an exponentiation operator. Therefore, some additional detail will be required in order to evaluate the formula 

F = P ( l  +i)" 

Here is a more detailed version of the above outline. 

/ *  compound i n t e r e s t  ca l cu la t i ons  * /  

main ( ) 

{ 
/ *  declare p, r, n, iand f t o  be f l o a t i n g - p o i n t  var iab les  * /  

/ *  w r i t e  a prompt f o r  p and then read i n  i t s  value * /  
/ *  w r i t e  a prompt f o r  r and then read i n  i t s  value * /  
/ *  w r i t e  a prompt f o r  n and then read i n  i t s  value * /  

/ *  ca l cu la te  i= r /100 * /  

/ *  ca l cu la te  f = p (1 + i ) "  as fo l lows:  

f = p * pow(( l+ i ) ,n )  

where POW i s  a l i b r a r y  func t i on  f o r  exponent iat ion * /  

/ *  d i sp lay  the value f o r  f ,  w i t h  an accompanying l a b e l  * /  

This outline involves more detail than is actually necessary for a program this simple, though it does illustrate the top- 
down approach to program development. 

We will consider the detailed development and implementation of this program later in this chapter, in Examples 5.2, 
5.4 and 5.5.  

Another method that is sometimes used when planning a C program is the "bottom-up" approach. This 
method may be useful for programs that make use of self-contained program modules (e.g., user-defined 
functions). The bottom-up approach involves the detailed development of these program modules early in the 
planning process. The overall program development is then based upon the known characteristics of these 
available program modules. 
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In practice we often use both approaches: top-down for the overall program planning, bottom-up in 
developing individual modules before the main part of the program, and top-down with respect to the 
development of each individual module. 

5.2 WRITING A C PROGRAM 

Once an overall program strategy has been formulated and a program outline has been written, attention can 
be given to the detailed development of a working C program. At this point the emphasis becomes one of 
translating each step of the program outline (or each portion of the pseudocode) into one or more equivalent C 
instructions. This should be a straightforward activity provided the overall program strategy has been thought 
through carefully and in enough detail. 

You should understand, however, that there is more to writing a complete C program than simply 
arranging the individual declarations and statements in the right order and then punctuating them correctly. 
Attention should also be given to including certain additional features that will improve the readability of the 
program and its resulting output. These features include the logical sequencing of the statements, the use of 
indentation and whitespace, the inclusion of comments and the generation of clearly labeled output. 

The selection of the program statements and their logical sequencing within the program is, to a large 
extent, determined by the underlying program logic. Often, however, there will be several different choices 
available for obtaining the same end result. This is particularly true of more complex programs that involve 
the use of conditional or repeated program segments. In such cases, the manner in which the program is 
organized can have a major effect on the logical clarity of the program and the efficiency of execution. 
Therefore it is important that the statements be selected and sequenced in the most effective manner. We will 
say more about this in Chap. 6 ,  where we discuss the various types of conditional and repetitive features that 
are available in C. 

The use of indentation is closely related to the sequencing of groups of statements within a program. 
Whereas sequencing affects the order in which a group of operations is carried out, indentation illustrates the 
subordinate nature of individual statements within a group. In addition, blank lines are sometimes used to 
separate related groups of statements. The value of the indentation and the blank lines should be obvious, 
even in the simple programs presented earlier in this book. This will become even more apparent later, as we 
encounter C programs whose structure is more complex. 

Comments should always be included within a C program. If written properly, comments can provide a 
useful overview of the general program logic. They can also delineate major segments of a program, identify 
certain key items within the program and provide other useful information about the program. Generally, the 
comments need not be extensive; a few well-placed comments can shed a great deal of light on an otherwise 
obscure program. Such comments can be of great use to the original programmer as well as to other persons 
trying to read and understand a program, since most programmers do not remember the details of their own 
programs over a period of time. This is especially true of programs that are long and complicated. 

Another important characteristic of a well-written program is its ability to generate clear, legible output. 
Two factors contribute to this legibility. The first is labeling of the output data, as we have discussed in Chap. 
4. The second is the appearance of some of the input data along with the output, so that each instance of 
program execution (if there are more than one) can be clearly identified. The manner in which this is 
accomplished depends upon the environment in which the C program will be executed. In an interactive 
environment the input data is displayed on the screen at the time of data entry, during program execution. 
Hence the input data need not be displayed again. 

When executing an interactive program, the user (someone other than the programmer) may not know 
how to enter the required input data. For example, the user may not know what data items are required, when 
the data items should be entered, or the order in which they should be entered. Thus a well-written interactive 
program should generate prompts at appropriate times during the program execution in order to provide this 
information. 

EXAMPLE 5.2 Compound Interest Let us now consider an interactive C program corresponding to the outline 
presented in Example 5.1. 
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/ *  simple compound i n t e r e s t  problem * /  

# inc lude  <s td io .h>  
# inc lude  <math.h> 

main ( ) 

f l o a t  p,  r ,  n ,  i,f ;  

/ *  read i n p u t  da ta  ( inc lud ing  prompts) * /  

p r i n t f ( " P 1 e a s e  e n t e r  a value f o r  the  p r i n c i p a l  ( P ) :  " ) ;  

scanf ( "%fn, &p) ; 
p r i n t f ( " P 1 e a s e  e n t e r  a value f o r  the  i n t e r e s t  r a t e  ( r ) :  I " ) ;  

scanf ( " % f "  , & r ) ; 
p r i n t f ( " P 1 e a s e  e n t e r  a value f o r  the  number o f  years ( n ) :  " ) ;  
scanf ( " % f " ,  an) ; 

/ *  c a l c u l a t e  i,then f * /  

i= r / 1 0 0 ;  
f = p * pow((1 + i ) , n ) ;  

/ *  d i s p l a y  the  output  * /  

p r i n t f ( " \ n T h e  f i n a l  value (F )  i s :  % . 2 f \ n N J  f ) ;  

The program shown in this example is logically very straightforward. Thus we did not have to concern ourselves 
with alternate ways to sequence the statements. There are, however, some other desirable features that might have been 
included. For example, we might want to execute the program repetitively, for several different sets of input data. Or, we 
might want to add error traps that prevent the user from entering negative values for any of the input parameters. In Chap. 
6 we will see how these features can be added. 

5.3 ENTERING THE PROGRAM INTO THE COMPUTER 

Once the program has been written, it must be entered into the computer before it can be compiled and 
executed. In older versions of C this was done by typing the program into a text file on a line-by-line basis, 
using a text editor or a word processor. 

Most contemporary versions of C or C++ include a screen editor that is used for this purpose. The editor 
is usually integrated into the software environment. Thus, to access the editor, you must first enter the C or 
C++ programming environment. The manner in which this accomplished varies from one implementation of 
C to another. 

Consider, for example, Version 4.5 Turbo C++,running under Windows on an IBM-compatible personal 
computer. To enter Turbo C++,open the Turbo C++ group and then click on the Turbo C++ icon. This will 
result in the near-empty window shown in Fig. 5.1. Within this window, the first line (containing Turbo C++ 
- [nonameOO. cpp]), is the titZe bar, and the second line (containing File Edit Search View, etc.) is the 
menu bar. Selecting one of the items in the menu bar will cause a drop-down menu to appear, with a number 
of choices related to the menu bar selection. For example, the File menu includes choices that allow you to 
open a new program, retrieve an existing program, save a program, print a program listing, or exit from Turbo 
C++.We will discuss some of these drop-down menu selections later in this chapter. 

Usually a pointing device, such as a mouse, is used to select a menu item. This is accomplished by 
moving the cursor over the desired item and then "clicking" on the item; i.e., pressing a button on the pointing 
device. 

The large clear space beneath the menu bar is an editing area where a new program can be entered or an 
existing program displayed. Portions of the program listed in this area can be changed, deleted, copied or 
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moved to another part of the program. Some of these changes are made directly in the editing area, while 
others are made by highlighting (i.e., selecting) a part of the program and then copying, moving or deleting 
the highlighted material using the selections provided in the E d i t  menu. Highlighting is usually carried out 
by holding down a mouse button and then dragging the mouse across the material to be highlighted. 

Scroll bars are present beneath and to the right of the editing area, The scroll bars allow you to move 
quickly to other parts of the program if the program listing extends beyond the confines of the screen. Thus, 
you can move vertically through the program listing by clicking along the right scroll bar, or by dragging the 
small square scroll button up or down. Similarly, you can move horizontally across the program listing by 
clicking along the bottom scroll bar, or by dragging the scroll button to the right or the left. 

Finally, the last line is the status bar, which indicates the current status of the editing area, or the purpose 
of the currently highlighted menu selection. Figure 5.1 indicates that the editing window is in the insert mode, 
meaning that text can be inserted anywhere within the window. 

Fig. 5.1 

To enter a new program in Turbo C++, you simply type the program into the editing area on a line-by-line 
basis and press the Ente r  key at the end of each line. To edit a line, use the mouse or the cursor movement 
(arrow) keys to locate the beginning of the edit area. Then use the Backspace or D e l e t e  keys to remove 
unwanted characters. You may also insert additional characters, as required. 

You may delete one or more lines simply by highlighting the lines and then selecting Cut from the E d i t  
menu, or by pressing the D e l e t e  key. A block of lines can be moved to another location using the Cut and 
Paste selections in the E d i t  menu. Similarly, a block of lines can be copied to another location using the 
Copy and Paste selections in the E d i t  menu. Additional editing instructions are provided in the Turbo C++ 
User’s Manual. 

Once the program has been entered, it should be saved before it is executed. In Turbo C++, this is 
accomplished by selecting Save As from the F i l e  menu, and then supplying a program name, such as 
INTEREST. C. (The extension C will be added automatically if an extension is not included as a part of the file 
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name.) Once the program has been saved and a name has been provided, it can again be saved at some later 
time (with, for example, any recent editing changes), simply by selecting Save from the F i l e  menu. 

A program that has been saved can later be recalled by selecting Open from the F i l e  menu, and then 
either typing the program name or selecting the program name from a list of stored programs. A printed 
listing of the current program (called a “hard copy”) can be obtained at any time by selecting P r i n t  from the 
F i l e  menu. 

EXAMPLE 5.3 Compound Interest Suppose you have entered the compound interest program shown in Example 
5.2 into an IBM-compatible personal computer using Turbo C++. After all typing corrections have been made, the screen 
will appear as shown in Fig. 5.2. You can then save the program by selecting Save As from the File menu, as shown in 
Fig. 5.3. 

Once you select Save As, a dialog box will appear, requesting the name of the program being saved. Respond by 
entering the program name INTEREST. C. You may then conclude the session by selecting Exit from the File menu. 

Fig. 5.2 

5.4 COMPILING AND EXECUTING THE PROGRAM 

Once the program has been entered into the computer, edited and saved, it can be compiled and executed 
by selecting Run from the Debug menu. A new window will then be opened, and an attempt will be made to 
compile the current program. If the program does not compile successfully, a list of error messages will 
appear in a separate window. Each error message indicates the line number where the error was detected as 
well as the type of error. If the program does compile successfully, however, it will immediately begin to 
execute, prompting for input, displaying output, etc., within the new window. 

EXAMPLE 5.4 Compound Interest Suppose you reenter Turbo C++ after concluding the session described in 
Example 5.3. Start by loading the previous program, INTEREST. C, into the computer’s memory, by selecting Open from 
the File menu. Then select Run from the Debug menu, as shown in Fig. 5.4. 
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The program is compiled successfully and immediately begins to execute. A new window, showing the inputloutput 
dialog, appears on top of the original window containing the program listing. This is shown in Fig. 5.5 for the values P = 

1000, r = 6 and n = 20. These values have been entered by the user, in response to the input prompts. 
Once the last input quantity has been entered (n = 20), the program resumes execution, resulting in the final output 

shown in Fig. 5.6. Thus, we see that a value of F = 3207.14 is obtained for the given input quantities. 

5.5 ERROR DIAGNOSTICS 

Programming errors often remain undetected until an attempt is made to compile or execute the program. The 
presence of syntactic (or grammatical) errors will become readily apparent once the Run command has been 
issued, since these errors will prevent the program from being compiled or executed successfully. Some 
particularly common errors of this type are improperly declared variables, a reference to an undeclared 
variable, incorrect punctuation, etc. 

Most C compilers will generate diagnostic messages when syntactic errors have been detected during the 
compilation process. These diagnostic messages are not always straightforward in their meaning and they 
may not correctly identify where the error occurred (though they may attempt to do so). Nevertheless, they 
are helpful in identifying the nature and the approximate location of the errors. 

If a program includes several different syntactic errors, they may not all be detected on the first pass 
through the compiler. Thus, it may be necessary to correct some syntactic errors before others can be found. 
This process could repeat itself through several cycles before all of the syntactic errors have been identified 
and corrected. 

EXAMPLE 5.5 Syntactic Errors Here is another version of the compound interest program shown in Examples 5.2 
through 5.4. 

/ *  simple compound i n t e r e s t  problem * /  

# inc lude  <s td io .h>  
inc lude  <math.h> 

main ( ) 

.i 
f l o a t  p ,  r ,  n ,  i,f ;  

/ *  read i n p u t  data ( inc lud ing  prompts) * /  

p r i n t f ( " P 1 e a s e  enter  a value f o r  the  p r i n c i p a l  ( P ) :  " ) ;  

scanf ( " % f  &p) ;' I ,  

p r i n t f ( " P 1 e a s e  e n t e r  a value f o r  the  i n t e r e s t  r a t e  ( r ) :  ) ;  

scanf ( "%f & r ) ;' I ,  

p r i n t f ( " P 1 e a s e  enter  a value f o r  the  number o f  years ( n ) :  " ) ;  
scanf ( "%f an)' I ,  

/ *  c a l c u l a t e  i,then f * /  

i = r / 1 0 0 ;  
f = p * pow(1 + i ) , n ) ;  

/ *  w r i t e  output / *  

p r i n t f ( " \ n T h e  f i n a l  value (F) i s :  % . 2 f \ n " ,  f ) ;  

This version of the program contains five different syntactic errors. The errors are as follows: 

1. The second inc lude  statement does not begin with a # sign. 

2. The control string in the second p r i n t f  statement does not have a closing quotation mark. 
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3. The last scanf statement does not end with a semicolon. 

4. The assignment statement for f contains unbalanced parentheses. 

5 .  The last comment closes improperly (it ends with / * instead of * /). 

When a compilation was attempted (by selecting either Run from the Debug menu or Compile from the Project 
menu), the error messages shown in Fig. 5.7 were obtained within a separate message window. 

The first message refers to the missing # sign in line 4 (the line numbers include empty lines). The second message refers 
to the missing double quote (") at the end of the second printf statement (line 15), and the third message refers to the 
improper ending of the last comment (line 25). Notice that the error messages are somewhat cryptic. Thus, some 
ingenuity may be required to determine what they mean. 

When these three errors were correctly identified and corrected, another attempt was made to compile the program. 
This resulted in the new set of error messages shown in Fig. 5.8. 

The first error message refers to the missing semicolon at the end of the last scanf statement (which actually occurs in line 
18, not line 22). The second message refers to the missing left parenthesis in second assignment statement (line 23). The 
following two warnings and the third error message are also a result of this one error. 

When these remaining two errors were corrected, the program compiled correctly and began to execute, as shown in 
Fig. 5.5. 

You should understand that the specific error messages and warnings will vary from one version of C to another. 
Some compilers may generate messages that are longer or more informative than those shown in this example, though the 
messages shown here are typical. 

Another type of error that is quite common is the execution error. Execution errors occur during program 
execution, after a successful compilation. For example, some common execution errors are a numerical 
overflow of underflow (exceeding the largest or smallest permissible number that can be stored in the 
computer), division by zero, attempting to compute the logarithm or the square root of a negative number, etc. 
Diagnostic messages will often be generated in situations of this type, making it easy to identify and correct 
the errors. These diagnostics are sometimes called execution messages or run-time messages, to distinguish 
them from the compilation messages described earlier. 
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EXAMPLE 5.6 Real Roots of a Quadratic Equation Suppose we want to calculate the real roots of the quadratic 
equation 

using the quadratic formula 

- b f J b 2 - 4 a c  
X =  

242 

Here is a C program that will carry out these calculations. 

/ *  r e a l  r o o t s  o f  a quadra t ic  equat ion * /  

# inc lude <stdio.h> 
# inc lude Cmath. h> 

main( ) 

f l o a t  a, b, c, d, x l ,  x2; 

/ *  read i n p u t  data * /  

p r i n t f  ( " a  = ' I ) ;  

scanf ( "%f", &a) ; 
p r i n t f ( ' b  = " ) ;  

scanf ( "%f &b) ;' I ,  

p r i n t f  ( " c  = " )  ; 
scanf ( '%f  ', &c) ; 

/ *  c a r r y  ou t  t he  ca l cu la t i ons  * /  

d = s q r t ( b  * b - 4 * a * c ) ;  
x l  = ( - b  + d) / (2  * a ) ;  
x2 = ( - b  - d) / ( 2  * a ) ;  

/ *  d i sp lay  the  output * /  

p r i n t f  ( ' \ n x l  = %e x2 = %e", x l ,  x2);  

1 

This program is completely free of syntactic errors, but it is unable to accommodate negative values for b2 - 4ac. 
Furthermore, numerical difficulties may be encountered if the variable U has a very small or a very large numerical value, 
or if a = 0. A separate error message will be generated for each of these errors. 

Suppose, for example, the program is run with Turbo C++ using the following input values: 

a=l . O  b=2.0 c=3.0 

The program compiles without any difficulty. When the object program is executed, however, the following error 
message is generated, after the input values have been entered into the computer. 

s q r t :  DOMAIN e r r o r  

Everything then comes to a halt, since the program execution cannot continue beyond this point. Figure 5.9 illustrates the 
appearance of the screen in Turbo C++. 
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Fig. 5.9 

Similarly, suppose the program is run with the input values 

a=IE-30 b=l El 0 c=lE36 

The system now generates the error message 

Floating P o i n t :  O v e r f l o w  

when an attempt is made to execute the program. Figure 5.10 shows the appearance of the screen in Turbo C++ 

5.6 DEBUGGING TECHNIQUES 

We now know that syntactic errors and execution errors usually produce error messages when compiling or 
executing a program. Syntactic errors are relatively easy to find and correct, even if the resulting error 
messages are unclear. Execution errors, on the other hand, can be much more troublesome. When an 
execution error occurs, we must first determine its location (where it occurs) within the program. Once the 
location of the execution error has been identified, the source of the error (why it occurs) must be determined. 
Knowing where the error occurred often assists, however, in recognizing and correcting the error. 

Closely related to execution errors are logical errors. Here the program executes correctly, carrying out 
the programmer’s wishes, but the programmer has supplied the computer with instructions that are logically 
incorrect. Logical errors can be very difficult to detect, since the output resulting from a logically incorrect 
program may appear to be error-free. Moreover, logical errors are often hard to locate even when they are 
known to exist (as, for example, when the computed results are obviously incorrect). 

Fortunately, methods are available for finding the location of execution errors and logical errors within a 
program. Such methods are generally referred to as debugging techniques. Some of the more commonly used 
debugging techniques are described below. 
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Fig. 5.10 

Error Isolation 

Error isolation is useful for locating an error resulting in a diagnostic message. If the general location of the 
error is not known, it can frequently be found by temporarily deleting a portion of the program and then 
rerunning the program to see if the error disappears. The temporary deletion is accomplished by surrounding 
the instructions with comment markers (/ * and * /), causing the enclosed instructions to become comments. 
If the error message then disappears, the deleted portion of the program contains the source of the error. 

A closely related technique is that of inserting several unique p r i n tf statements, such as 

p r i n t f  ("Debugging - l i n e  1\ n " ) ; 

p r i n t f  ("Debugging - l i n e  2 \ n " )  ; 

etc. 

at various places within the program. When the program is executed, the debug messages will indicate the 
approximate location of the error. Thus, the source of the error will lie somewhere between the last p r i n t f  
statement whose message did appear, and the first p r i n tf statement whose message did not appear. 

Tracing 

Tracing involves the use of p r i n t f  statements to display the values assigned to certain key variables, or to 
display the values that are calculated internally at various locations within the program. This information 
serves several purposes. For example, it verifies that the values actually assigned to certain variables really 
are (or are not) the values that should be assigned to those values. It is not uncommon to find that the actual 
assigned values are different than those expected. In addition, this information allows you to monitor the 
progress of the computation as the program executes. In many situations, you will be able to identify a 
particular place where things begin to go wrong because the values generated will be obviously incorrect. 
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EXAMPLE 5.7 Debugging a Program Consider once again the program for calculating the real roots of a quadratic 
equation, originally shown in Example 5.6. We saw that the program generates the execution error 

F l o a t i n g  Po in t :  Overf low 

when it was executed with the input values a = 1E - 30, b = 1E l 0 and c = 1E36. Let us now apply error isolation and 
tracing techniques to determine the source of the error. 

It is reasonable to assume that the error is generated in one of the three assignment statements following the last 
scanf statement. Therefore, let us temporarily remove these three statements by placing exaggerated comment markers 
around them, as shown in the following program listing. 

/ *  r e a l  r o o t s  o f  a quadra t ic  equat ion * /  

# inc lude <s td io .  h> 
# inc lude <math. h> 

main ( ) 

{ 
f l o a t  a, b, c ,  d, x l ,  x 2 ;  

/ *  read i n p u t  data * /  

p r i n t f  ( " a  = " )  ; 
scanf ( "%fI' , &a) ; 
p r i n t f ( " b  = " ) ;  

scanf ( "%fI' , &b) ; 
p r i n t f ( " c  = " ) ;  

scanf ( "%f" ,&c) ; 

/ *  c a r r y  ou t  t he  c a l c u l a t i o n s  * /  

/ *  d i sp lay  the  output * /  

p r i n t f  ( ' \ n x l  = %e x 2  = %e", x l ,  x 2 ) ;  

} 

When the altered program was executed with the same three input values, the error message did not appear (though the 
displayed values for x i  and x 2  did not make any sense). Thus, it is clear that the source of the original error message lies 
in one of these three statements. 

We now remove the comment markers, but precede each assignment statement with a p r i n t f  statement, as shown 
below. 

/ *  r e a l  r o o t s  o f  a quadra t ic  equat ion * /  

# inc lude <stdio.h> 
# inc lude <math.h> 

main ( ) 

f l o a t  a, b, c, d, x l ,  x2;  
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/ *  read i n p u t  data * /  

p r i n t f  ( " a  = " ) ;  

scanf ( "%f", &a) ; 
p r i n t f ( " b  = " ) ;  

scanf ( "%f, &b) ;'I 

p r i n t f  ( " c  = " ) ;  

scanf ( "%f, &c) ; 

/ *  c a r r y  ou t  t he  ca l cu la t i ons  * /  

p r in t f ( "Debugg ing  - L ine  l \ n " ) ;  / *  temporary debugging statement * /  
d = s q r t ( b  * b - 4 * a * c ) ;  
p r i n t f  ("Debugging - L ine  2 \ n " )  ; / *  temporary debugging statement * /  
x l  = ( - b  + d) / ( 2  * a ) ;  
p r i n t f  ( "Debugging - Line 3 \ n u  ) ; / *  temporary debugging statement * /  
X2 = ( - b  - d) / ( 2  * a ) ;  

/ *  d i s p l a y  the  output * /  

p r i n t f  ( " \ n x l  = %e x2 = %e", x l ,  x2);  

1 

When the program was executed, again using the same three input values, all three debug messages appeared; i.e., 

Debugging - L ine  1 
Debugging - L ine  2 
Debugging - L ine  3 

Hence, we conclude that the overflow occurred in the last assignment statement, since this statement follows the third 
p r i n t f  statement. 

We might normally conclude our debugging efforts at this point. To be complete, however, let us remove these three 
debugging statements and replace them with three other p r i n t f  statements (i.e., three tracing statements). The first 
p r i n t f  statement will display the values of a, b, c and d, the second will display the value of (-b + d), and the last will 
display the value of (-b - d), as shown below. (Notice the placement of the three p r i n t f  statements, together after the 
calculation of d but before the calculation of x l  and x2. Also, notice the e-type formats in the p r i n t f  statements.) 

/ *  r e a l  r o o t s  o f  a quadra t ic  equation * /  

# inc lude <stdio.h> 
# inc lude <math.h> 

main ( ) 

{ 
f l o a t  a, b, c, d, x l ,  x2; 
/ *  read i n p u t  data * /  

p r i n t f  ( " a  = " )  ; 
scanf ( "%fI' , &a) ; 
p r i n t f  ( " b  = I t ) ;  

scanf ( "%f &b) ;' I ,  

p r i n t f  ( " c  = ' I )  ; 
scanf ( "%f '  , &c) ; 

/ *  c a r r y  ou t  t he  c a l c u l a t i o n s  * /  

d = s q r t ( b  * b - 4 * a * c ) ;  
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p r i n t f ( " a  = %e b = %e c = %e d = %e\n",  a, b, c, d ) ;  / *  t rac ing  statement * /  
p r i n t f ( " - b  + d = %e\n",  ( - b  + d ) ) ;  / *  t rac ing  statement * /  
p r i n t f ( " - b  - d = %e\n",  ( - b  - d ) ) ;  / *  t rac ing  statement * /  

x l  = ( - b  + d) / (2 * a ) ;  
x2 = ( - b  - d) / (2 * a ) ;  

/ *  d isp lay the output * /  

p r i n t f  ( " \ n x l  = %e x2 = %e" ,  x l ,  x2);  

Execution of this program resulted in the following output: 

a = 1.000000e-30 b = 1.000000e+l0 c = 1.000000e+36 d = 1.000000e+10 

- b  + d = 0.000000e+00 
-b - d = -2.000000e+10 

From these results we can now determine that the value of x2 should be 

x2 = ( - b  - d) / (2  * a) = (-2.000000e+10) / (2 x 1.000000e-30) = -1.000000e+40 

The resulting value, - 1 .000000e+40, exceeds (in magnitude) the largest floating-point number that can be stored within 
the computer's memory (see Sec. 2.4). Hence, the overflow. 

Most contemporary C compilers include an interactive debugger, which provides the ability to set watch 
values and breakpoints, and allows stepping through a program one instruction at a time. Watch values are 
usually used with breakpoints or with stepping to provide detailed monitoring of the program as it executes. 
The use of these features offers greater flexibility and convenience than the simple error isolation and tracing 
techniques described previously. Each of these features is described in more detail below. 

Watch Values 

A watch value is the value of a variable or an expression which is displayed continuously as the program 
executes. Thus, you can see the changes in a watch value as they occur, in response to the program logic. By 
monitoring a few carefully selected watch values, you can often determine where the program begins to 
generate incorrect or unexpected values. 

In Turbo C++, watch values can be defined by selecting Add Watch from the Debug menu (see Fig. 5.4 
earlier in this chapter), and then specifying one or more variables or expressions in the resulting dialog box. 
The watch values will then be displayed within a separate window as the program executes. 

Breakpoints 

A breakpoint is a temporary stopping point within a program. Each breakpoint is associated with a particular 
instruction within the program. When the program is executed, the program execution will temporarily stop at 
the breakpoint, before the instruction is executed. The execution may then be resumed, until the next 
breakpoint is encountered. Breakpoints are often used in conjunction with watch values, by observing the 
current watch value at each breakpoint as the program executes. 

To set a breakpoint in Turbo C++,select Add Breakpoint  from the Debug menu (see Fig. 5.4), and then 
provide the requested information in the resulting dialog box. Or, select a particular line within the program 
and designate it a breakpoint by pressing function key F5. The breakpoint may later be disabled by again 
pressing F5. (Function key F5 is called a "toggle" in this context, since it turns the breakpoint on or off by 
successively pressing the key.) 
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Stepping 

Stepping refers to the execution of one instruction at a time, typically by pressing a fbnction key to execute 
each instruction. In Turbo C++, for example, stepping can be carried out by pressing either function key F7 or 
F8. (F8 steps over subordinate functions, whereas F 7  steps through the functions.) By stepping through an 
entire program, you can determine which instructions produce erroneous results or generate error messages. 

Stepping is often used with watch values, allowing you to trace the entire history of a program as it 
executes. Thus, you can observe changes to watch values as they happen. This allows you to determine 
which instructions generate erroneous results. 

EXAMPLE 5.8 Debugging with an Interactive Debugger Let us again consider the program given in Examples 5.6 
and 5.7, for calculating the real roots of a quadratic equation. We will now use the interactive debugger in Turbo C++ to 
determine the source of error when the program is executed with the input values a = 1E-30,b = 1E l  0 and c = 1E36, 
as before. 

Figure 5.1 1 shows the program within the Turbo C++ editing window. Three watch values have been selected for the 
quantities -b+d, -b-d and 2*a. Each watch value was selected by choosing Add Watch from the Debug menu. The 
watch values can be seen in the Watch window, which is superimposed over the program listing. 

In addition, a breakpoint has been defined at the first assignment statement, i.e., d = sqrt (b*b  - 4*a*c). The 
breakpoint was defined by placing the cursor on the desired statement and then pressing function key F5. The breakpoint 
is shown highlighted in Fig. 5.11. 

Note that Fig. 5.1 1 shows the status of the program before it has begun to execute. That is why the message <No 
process running> appears after each watch value. 

Fig. 5.11 

Once the program execution begins (by selecting Run from the Debug menu), the values for a, b and c are entered 
from the keyboard and the execution continues as far as the break point. The program then temporarily stops, as shown in 
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Fig. 5.12. Note that the first assignment statement has not yet been executed, so that d has not yet been assigned a value. 
Hence, the first two watch values are undefined. However, the last watch value is obtained directly from the input data. 
Its value is shown in the watch window in Fig. 5.12 as 2e-30. 

Fig. 5.12 

We could resume the execution, continuing to the end of the program, by again selecting Run from the Debug menu. 
Instead, however, let us step through the program by pressing function key F 8  two times. Figure 5.13 shows the status of 
the program at this point. Note that the breakpoint remains highlighted. In addition, the third assignment statement (i.e., 
x2 = (-b - d )  / ( 2  * a )  ) is also highlighted. This last highlight indicates the next statement to be executed. 

Within the watch window, we now see the current values for all of the watch values. It is now easy to see that the 
value to be assigned to x2, which is the quotient of the second watch value divided by the third watch value, will produce 
an overflow. Indeed, if we resume the program execution, either by selecting Run from the Debug menu or by stepping, 
the overflow message shown in Fig. 5.10 will appear. 

Sometimes an error simply cannot be located, despite the most elaborate debugging techniques. On such 
occasions beginning programmers are often inclined to suspect a problem that is beyond their control, such as 
a hardware error or an error in the compiler. However, the problem almost always turns out to be some subtle 
error in the program logic. In such situations, you should resist the temptation to blame the computer and not 
look further for that elusive programming error. Though computer errors do occur on rare occasions, they 
usually produce very bizarre results, such as the computer “locking up” or displaying random, unintelligible 
characters. 

Finally, you should recognize that some logical errors are inescapable in computer programming, no 
matter how carefully you may attempt to minimize their occurrence. You should therefore anticipate the need 
for some logical debugging when writing realistic, meaningful C programs. 
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Fig. 5.13 

Review Questions 

5.1 What is meant by “top-down’’ programming? What are its advantages? How is it carried out? 


5.2 What is pseudocode? What advantage is there in using pseudocode to plan a new program? 


5.3 What is meant by “bottom-up” programming? How does it differ from top-down programming? 


5.4 How much flexibility does the programmer have in the logical sequencing of the statements within a C program? 

Explain. 

5.5 Why are some statements indented within a C program? Is this indentation absolutely necessary? 


5.6 What are the reasons for placing comments within a C program? How extensive should these comments be? 


5.7 Name two factors that contribute to the generation of clear, legible output data. 


5.8 What useful information is provided by prompts? 


5.9 How is a program entered into the computer in most contemporary C programming environments? 


5.10 What is a program name extension? 


5.11 What is a syntactic error? Name some common syntactic errors. 


5.12 What is an execution error? Name some common execution errors. 


5.13 How do syntactic errors and execution errors differ from one another? 


5.14 What is a logical error? How do logical errors differ from syntactic and execution errors? 


5.15 What are diagnostic messages? 


5.16 What is the difference between compilation messages and execution messages? Name some situations in which 

each type of diagnostic message would be generated. 

5.17 What is error isolation? For what is it used? How is error isolation carried out? 
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5.18 What is tracing? For what is it used? How is tracing carried out? 

5.19 What is an interactive debugger? What special features are made available by a debugger? 

5.20 What are watch values? For what are they used? In general terms, how are watch values defined? 

5.21 What are breakpoints? For what are they used? In general terms, how are breakpoints defined? 

5.22 What is stepping? For what is it used? In general terms, how is stepping carried out? 

5.23 Describe how watch values can be used with breakpoints and stepping to monitor the progress of a program’s 
execution. 

Problems 

The following questions are concerned with information gathering rather than actual problem solving. 

5.24 For the personal computers at your school or office, obtain answers to the following questions. 

(a) Exactly what equipment is available (printers, auxiliary memory devices, etc.)? 

( b )  What operating systems are available? 

(c)  How can files (programs) be saved, displayed, and transferred from one memory device to another? 

(4 What is the approximate cost of a complete personal computer system? 

5.25 For the C compiler at your school or office, obtain answers to the following questions. 

(a) What version of C is available? What operating system does it require? 

(b)  How is the C compiler accessed? Once the compiler is active, how is a C program accessed? How is the 
program displayed? How is it saved? 

(c) How are normal editing functions (e.g., insert, delete, etc.) carried out? 

(4 How is a C program compiled and executed? 

( e )  Does your compiler include an interactive debugger? If so, what features are supported by the debugger? 
How are the more common features utilized? 

U, What is the cost of the C compiler? 

Programming Problems 

5.26 Example 1.6 presents a C program for calculating the area of a circle, given its radius. Enter this program into your 
computer and make any necessary modifications, such as # i n c l u d e  < s t d i o .  h>. Be sure to correct any typing 
errors. List the program after it has been stored within the computer. When you are sure that it is correct, compile 
the program and then execute the object program using several different values for the radius. Verify that the 
computed answers are correct by comparing them with hand calculations. 

5.27 Enter, compile and execute the C programs given in Examples 1.7 through 1.13. Verify that they run correctly 
with your particular version of C. (If any of the programs do not run, try to determine why.) 

5.28 Repeat Prob. 5.27 for a few of the programs given in Prob. 1.3 1. 

5.29 Example 5.2 presents a C program for determining the future value of a savings account if the interest is allowed 
to accumulate and compound annually. Enter this program into the computer and save it, then run the program 
using several different sets of input data. Verify that the calculated results are correct by comparing them with 
calculations carried out by hand, with the aid of a calculator. 

5.30 Write a complete C program for each of the following problem situations. Enter each program into the computer, 
being sure to correct any typing errors. When you are sure that it has been entered correctly, save the program, 
then compile and execute. Be sure to include prompts for all input data, and label all output. 



121 CHAP. 51 PREPARING AND RUNNING A COMPLETE C PROGRAM 

Print HELLO! at the beginning of a line. 

Have the computer print 

H I ,  WHAT’S YOUR NAME? 

on one line. The user then enters his or her name immediately after the question mark. The computer then 
skips two lines and prints 

WELCOME (name) 
L E T ’ S  BE FRIENDS! 

on two consecutive lines. Use a character-type array to represent the user’s name. Assume the name 
contains fewer than 20 characters. 

Convert a temperature reading in degrees Fahrenheit to degrees Celsius, using the formula 

C = (519)x (F- 32) 

Test the program with the following values: 68, 150,212,0, -22, -200 (degrees Fahrenheit). 

Determine how much money (in dollars) is in a piggy bank that contains several half-dollars, quarters, 
dimes, nickels and pennies. Use the following values to test your program: 11 half-dollars, 7 quarters, 3 
dimes, 12 nickels and 17 pennies. (Answer: $8.32). 

Calculate the volume and area of a sphere using the formulas 

V = 4 d 1 3  

A = 4 x 9  

Test the program using the following values for the radius: 1 ,  6,  12.2,0.2. 

Calculate the mass of air in an automobile tire, using the formula 

PV= 0.37m(T+ 460) 

where P = pressure, pounds per square inch (psi) 
V = volume, cubic feet 
m = mass of air, pounds 
T = temperature, degrees Fahrenheit 

The tire contains 2 cubic feet of air. Assume that the pressure is 32 psi at room temperature. 

Read a five-letter word into the computer, then encode the word on a letter-by-letter basis by subtracting 30 
from the numerical value that is used to represent each letter. Thus if the ASCII character set is being used, 
the letter a (which is represented by the value 97)would become a C (represented by the value 67),etc. 

Write out the encoded version of the word. Test the program with the following words: white, roses, 
Japan, zebra. 

Read into the computer a five-letter word that has been encoded using the scheme described above. Decode 
the word by reversing the above procedure, then write out the decoded word. 

Read an entire line of text into the computer, encoding it as it is read in, using the method described in part 
(g), Display the entire line of text in encoded form. Then decode the text and write it out (displaying the 
text as it originally appeared), using the method described in part (A). 
Read into the computer a line of text containing both uppercase and lowercase letters. Write out the text 
with the uppercase and lowercase letters reversed, but all other characters intact. (Hint:Use the conditional 
operator ? : and the library functions is lower,  tolower and toupper.) 



Chapter 6 


Control Statements 


In most of the C programs we have encountered so far, the instructions were executed in the same order in 
which they appeared within the program. Each instruction was executed once and only once. Programs of 
this type are unrealistically simple, since they do not include any logical control structures. Thus, these 
programs did not include tests to determine if certain conditions are true or false, they did not require the 
repeated execution of groups of statements, and they did not involve the execution of individual groups of 
statements on a selective basis. Most C programs that are of practical interest make extensive use of features 
such as these. 

For example, a realistic C program may require that a logical test be carried out at some particular point 
within the program. One of several possible actions will then be carried out, depending on the outcome of the 
logical test. This is known as branching. There is also a special kind of branching, called selection, in which 
one group of statements is selected from several available groups. In addition, the program may require that a 
group of instructions be executed repeatedly, until some logical condition has been satisfied. This is known as 
looping. Sometimes the required number of repetitions is known in advance; and sometimes the computation 
continues indefinitely until the logical condition becomes true. 

All of these operations can be carried out using the various control statements included in C. We will see 
how this is accomplished in this chapter. The use of these statements will open the door to programming 
problems that are much broader and more interesting than those considered earlier. 

6.1 PRELIMINARIES 

Before considering the detailed control statements available in C, let us review some concepts presented in 
Chaps. 2 and 3 that must be used in conjunction with these statements. Understanding these concepts is 
essential in order to proceed fiuther. 

First, we will need to form logical expressions that are either true or false. To do so, we can use the four 
relational operators, <, <=, >, >=, and the two equality operators, == and != (see Sec. 3.3). 

EXAMPLE 6.1 Several logical expressions are shown below. 

count  <= 100 

sqr t (a+b+c)  > 0.005 

answer == 0 

balance >= cu to f f  

l e t t e r  I =  ' X I  

The first four expressions involve numerical operands. Their meaning should be readily apparent. 
In the fifth expression, c h l  is assumed to be a char-type variable. This expression will be true if the character 

represented by c h l  comes before T in the character set, i.e., if the numerical value used to encode the character is less than 
the numerical value used to encode the letter T. 

The last expression makes use of the char-type variable l e t t e r .  This expression will be true if the character 
represented by l e t t e r  is something other than x. 

122 
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In addition to the relational and equality operators, C contains two logical connectives (also called logical 
operators), && (AND) and I I (OR), and the unary negation operator ! (see Sec. 3.3). The logical connectives 
are used to combine logical expressions, thus forming more complex expressions. The negation operator is 
used to reverse the meaning of a logical expression (e.g., from true to false). 

EXAMPLE 6.2 Here are some logical expressions that illustrate the use of the logical connectives and the negation 
operator. 

(count <= 100) && (ch l  I =  I * ' )  

(balance < 1000.0)  1 1  (s ta tus  == ' R ' )  

(answer < 0) 1 1  ((answer > 5 . 0 )  && (answer <= 1 0 . 0 ) )  

I ( ( p a y  >= 1000.0)  && ( s t a t u s  == I s ' ) )  

Note that c h l  and s t a t u s  are assumed to be char-type variables in these examples. The remaining variables are assumed 
to be numeric (either integer or floating-point). 

Since the relational and equality operators have a higher precedence than the logical operators, some of the 
parentheses are not needed in the above expressions (see Table 3-1 in Sec. 3.5). Thus, we could have written these 
expressions as 

count <= 100 && ch l  I =  I * '  

balance < 1000.0 I I sta tus  == ' R '  

answer < 0 1 1  answer > 5 . 0  && answer <= 10 .0  

l ( p a y  >= 1000.0 && sta tus  == Is') 

It is a good idea, however, to include pairs of parentheses if there is any doubt about the operator precedences. This is 
particularly true of expressions that are relatively complicated, such as the third expression above. 

The conditional operator ? : also makes use of an expression that is either true or false (see Sec. 3.5). An 
appropriate value is selected, depending on the outcome of this logical expression. This operator is equivalent 
to a simple if- else structure (see Sec. 6.6). 

EXAMPLE 6.3 Suppose sta tus  is a char-type variable and balance is a floating-point variable. We wish to assign 
the character C (current) to sta tus  if balance has a value of zero, and 0 (overdue) if balance has a value that is greater 
than zero. This can be accomplished by writing 

s t a t u s  = (balance == 0) ? 'C' : '0' 

Finally, recall that there are three different kinds of statements in C: expression statements, compound 
statements and control statements (see Sec. 2.8). An expression statement consists of an expression, followed 
by a semicolon (see Sec. 2.7). A compound statement consists of a sequence of two or more consecutive 
statements enclosed in braces ({ and }). The enclosed statements can be expression statements, other 
compound statements or control statements. Most control statements contain expression statements or 
compound statements, including embedded compound statements. 

EXAMPLE 6.4 Here is an elementary compound statement which we have seen before, in Example 3.31. 

{ 
i n t  lower,  upper; 

lower = g e t c h a r ( )  ; 
upper = toupper(1ower);  
putchar(upper);  

1 
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Here is a more complicated compound statement 

{ 
f l o a t  sum = 0,  sumsq = 0, sumsqrt = 0,  x; 

s c a n f ( " % f ' ,  & x ) ;  
wh i le  ( x  != 0) { 

sum += x; 
sumsq += x*x;  
sumsqrt += s q r t ( x ) ;  
scanf ( " % f " ,  &x) ; 

1 

This last example contains one compound statement embedded within another. 

The control statements presented within this chapter make extensive use of logical expressions and 
compound statements. Assignment operators, such as the one used in the above example (i.e., +=), will also 
be utilized. 

6.2 BRANCHING: THE i f  - e lse  STATEMENT 

The if - else statement is used to carry out a logical test and then take one of two possible actions, 
depending on the outcome of the test (i.e., whether the outcome is true or false). 

The else portion of the if - else statement is optional. Thus, in its simplest general form, the statement 
can be written as 

if ( expression) statement 

The expression must be placed in parentheses, as shown. In this form, the statement will be executed 
only if the expression has a nonzero value (i.e., if expression is true). If the expression has a value of 
zero (i.e., if expression is false), then the statement will be ignored. 

The statement can be either simple or compound. In practice, it is often a compound statement which 
may include other control statements. 

EXAMPLE 6.5 Several representative i f  statements are shown below. 

if( x  c 0) p r i n t f  ( " % f  x ) ;' I ,  

i f  (pastdue > 0)  

c r e d i t  = 0; 

i f  (x  c= 3.0)  { 

y = 3 * pow(x, 2 ) ;  

p r i n t f  ( "%f\ n " , y)  ; 
1 

i f  ( (balance < 1000.) 1 1  (s ta tus  == ' R I ) )  
p r i n t f  ( "%f balance) ;' I ,  

i f  ( ( a  >= 0) && ( b  <= 5 ) )  { 

xmid = ( a  + b )  / 2;  

ymid = sqr t (xmid) ;  

1 
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The first statement causes the value of the floating-point variable x to be printed (displayed) if its value is negative. 
In the second statement, a value of zero is assigned to c r e d i t  if the value of pastdue exceeds zero. The third statement 
involves a compound statement, in which y is evaluated and then displayed if the value of x does not exceed 3. In the 
fourth statement we see a complex logical expression, which causes the value of balance to be displayed if its value is 
less than 1000 or if s t a t u s  has been assigned the character ' R . 

The last statement involves both a complex logical expression and a compound statement. Thus, the variables xmid 
and ymid will both be assigned appropriate values if the current value of a is nonnegative and the current value of b does 
not exceed 5 .  

The general form of an if statement which includes the else clause is 

if (expression) statement 7 else statement 2 

If the expression has a nonzero value (i.e., if expression is true), then statement 7 will be executed. 
Otherwise (i.e., if expression is false), statement 2will be executed. 

EXAMPLE 6.6 Here are several examples illustrating the full i f  - e l s e  statement. 

if( s t a t u s  == ' S O )  
t a x  = 0.20 * pay; 

e l s e  
t a x  = 0 . 1 4  * pay; 

i f  (pastdue > 0)  { 

p r i n t f ( ' a c c o u n t  number %d i s  overduen, accountno); 
c r e d i t  = 0; 

1 
e l s e  

c r e d i t  = 1000.0; 

i f  ( x  <= 3 )  

y = 3 * pow(x, 2 ) ;  

e l s e  
y = 2 * pow(x - 3 ) ,  2 ) ;  

p r i n t f  ( "%f\ n u ,  balance) ; 

i f  ( c i r c l e )  { 

s c a n f ( " % f " ,  &rad ius) ;  
a rea  = 3.14159 * rad ius  * radius;  
p r i n t f ( " A r e a  o f  c i r c l e  = %fn,a r e a ) ;  

1 
e l s e  { 

scanf ( " % f  %f &length,  &width) ;' I ,  

a rea  = l e n g t h  * width;  
p r i n t f ( " A r e a  o f  rec tang le  = % f * ,a r e a ) ;  

1 

In the first example the value of t a x  is determined in one of two possible ways, depending on the character that has been 
assigned to the variable status.  Notice the semicolon at the end of each statement, particularly the first statement ( tax  = 
0.2 * pay; ). A more concise way to accomplish the same thing is to write 

t a x  = ( s t a t u s  == I S ' )  ? (0.20 * pay) : (0 .14  * pay);  

though this approach is not as clear. 
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The second example examines the past-due status of an account. If the value of pastdue exceeds zero, a message is 
displayed and the credit limit is set at zero; otherwise, the credit limit is set at 1000.0. In the third example, the value of y 
is computed differently, depending on whether or not the corresponding value of x exceeds 3. 

The fourth example shows how an area can be calculated for either of two different geometric figures. If circle is 
assigned a nonzero value, the radius of a circle is read into the computer, the area is calculated and then displayed. If the 
value of circle is zero, however, then the length and width of a rectangle are read into the computer, the area is 
calculated and then displayed. In each case, the type of geometric figure is included in the label that accompanies the 
value of the area. 

It is possible to nest (i.e., embed) if - e l s e  statements, one within another. There are several different 
forms that nested if - e l s e  statements can take. The most general form of two-layer nesting is 

if e7 if e2 s7 
e l s e  s2 

e l s e  if e3 s3 
e l s e  s4 

where e I, e2 and e3 represent logical expressions and s 7, s2,s3and s4 represent statements. Now, one 
complete if - e l s e  statement will be executed if e7 is nonzero (true), and another complete if - e l s e  
statement will be executed if e 7 is zero (false). It is, of course, possible that s7, s2,s3and s4 will contain 
other if - e l s e  statements. We would then have multilayer nesting. 

Some other forms of two-layer nesting are 

if e7 s7 
e l s e  if e2 s2 

if e7 s7 
e l s e  if e2 s2 

e l s e  s3 

if e7 if e2 sl 
e l s e  s2 

e l s e  s3 

if e7 if e 2  s7 
e l s e  s2 

In the first three cases the association between the e l s e  clauses and their corresponding expressions is 
straightforward. In the last case, however, it is not clear which expression (e7 or e 2 )  is associated with the 
e l s e  clause. The answer is e2. The rule is that the e l s e  clause is always associated with the closest 
preceding unmatched (i.e., else-less) if. This is suggested by the indentation, though the indentation itself is 
not the deciding factor. Thus, the last example is equivalent to 

if e7 { 
if e2 s7 e l s e  s2 

1 

If we wanted to associate the e l s e clause with e 7 rather than e2,we could do so by writing 

if e7 { 
if e2 s7 

1 
e l s e  s2 

This type of nesting must be carried out carefully in order to avoid possible ambiguities. 
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In some situations it may be desirable to nest multiple if - else statements, in order to create a situation 
in which one of several different courses of action will be selected. For example, the general form of four 
nested if - else statements could be written as 

if e l  sl 
else if e2 s2 

else if e3 s3 
else if e4 s4 

else s5 


When a logical expression is encountered whose value is nonzero (true), the corresponding statement will be 
executed and the remainder of the nested if - else statements will be bypassed. Thus, control will be 
transferred out of the entire nest once a true condition is encountered. 

The final else clause will apply if none of the expressions is true. It can be used to provide a default 
condition or an error message. 

EXAMPLE 6.7 Here is an illustration of three nested i f  - e l s e  statements. 

i f  ( ( t i m e  >= 0 . )  && ( t ime < 1 2 . ) )  p r in t f ( 'Good Morning");  
e l s e  if( ( t i m e  >= 1 2 . )  && ( t ime < 1 8 . ) )  p r i n t f ( " G o o d  Af te rnoon") ;  

e l s e  i f  ( ( t i m e  >= 1 8 . )  && ( t ime < 2 4 . ) )  p r in t f ( "Good Evening");  
e l s e  p r i n t f ( " T i m e  i s  out o f  r a n g e " ) ;  

This example causes a different message to be displayed at various times of the day. Specifically, the message Good 
Morning will be displayed if t ime has a value between 0 and 12; Good Afternoon will be displayed if t ime has a value 
between 12 and 18; and Good Evening will be displayed if t ime has a value between 18 and 24. An error message 
(Time i s  out  o f  range) will be displayed if the value of t ime is less than zero, or greater than or equal to 24. 

6.3 LOOPING: THE w h i l e  STATEMENT 

The while statement is used to carry out looping operations, in which a group of statements is executed 
repeatedly, until some condition has been satisfied. 

The general form of the while statement is 

while ( expression) statement 

The statement will be executed repeatedly, as long as the expression is true (Le., as long expression 
has a nonzero value). This statement can be simple or compound, though it is usually a compound 
statement. It must include some feature that eventually alters the value of the expression, thus providing a 
stopping condition for the loop. 

EXAMPLE 6.8 Consecutive Integer Quantities Suppose we want to display the consecutive digits 0, 1, 2, . . . ,9, 
with one digit on each line. This can be accomplished with the following program. 

# inc lude  <stdio.h> 

main ( ) / *  d i s p l a y  the  i n t e g e r s  0 through 9 * /  

{ 
i n t  d i g i t  = 0; 

w h i l e  ( d i g i t  <= 9) { 

p r i n t f  ( "%d\n" ,  d i g i t )  ; 
+ + d i g i t ;  

1 
1 
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Initially, d i g i t  is assigned a value of 0. The w h i l e  loop then displays the current value of d i g i t ,  increases its value by 
1 and then repeats the cycle, until the value of d i g i t  exceeds 9. The net effect is that the body of the loop will be 
repeated 10 times, resulting in 10 consecutive lines of output. Each line will contain a successive integer value, beginning 
with 0 and ending with 9. Thus, when the program is executed, the following output will be generated. 

0 

1 

2 

3 

4 

5 
6 

7 

8 

9 


This program can be written more concisely as 

# inc lude  <s td io .h>  

main ( ) / *  d i s p l a y  the  i n t e g e r s  0 through 9 * /  

i n t  d i g i t  = 0; 

w h i l e  ( d i g i t  <= 9) 

p r i n t f  ( " % d \ n " ,  d i g i t + + )  ; 
1 

When executed, this program will generate the same output as the first program. 

In some looping situations, the number of passes through the loop is known in advance. The previous 
example illustrates this type of loop. Sometimes, however, the number of passes through the loop is not 
known in advance. Rather, the looping action continues indefinitely, until the specified logical condition has 
been satisfied. The w h i l e  statement is particularly well suited for this second type of loop. 

EXAMPLE 6.9 Lowercase to Uppercase Text Conversion In this example we will read a line of lowercase text 
character-by-character and store the characters in a char-type array called l e t t e r .  The program will continue reading 
input characters until an end-of-line (EOF) character has been read. The characters will then be converted to uppercase, 
using the library function toupper, and displayed. 

Two separate w h i l e  loops will be used. The first will read the text from the keyboard. Note that the number of 
passes through this loop is not known in advance. The second whi le  loop will perform the conversion and write out the 
converted text. It will make a known number of passes, since the number of characters to be displayed will be determined 
by counting the number of passes through the first loop. 

The complete program is shown below. 

/ *  convert  a l i n e  o f  lowercase t e x t  t o  uppercase * /  

# inc lude  < s t d i o .  h> 
#include <ctype.h> 

#def ine  EOL ' \ n '  

main ( ) 

{ 
char l e t t e r [ 8 0 ] ;  
i n t  t a g ,  count = 0; 
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/ *  read i n  the  lowercase t e x t  * /  
w h i l e  ( ( l e t t e r [ c o u n t ]  = g e t c h a r ( ) )  I =  EOL) ++count; 
t a g  = count; 

/ *  d i s p l a y  t h e  uppercase t e x t  * /  
count = 0; 
w h i l e  (count < t a g )  { 

putchar(toupper(letter[count])); 

++count; 

1 
1 

Notice that count is initially assigned a value of zero. Its value increases by 1 during each pass through the first loop. 
The final value of count, at the conclusion of the first loop, is then assigned to tag.  The value of tag determines the 
number of passes through the second loop. 

The first w h i l e  loop, i.e., 

w h i l e  ( ( l e t t e r [ c o u n t ]  = g e t c h a r ( ) )  != EOL) ++count; 

is written very concisely. This single-statement loop is equivalent to the following: 

l e t t e r [ c o u n t ]  = g e t c h a r ( ) ;  
w h i l e  ( l e t t e r [ c o u n t ]  != EOL) { 

count = count + 1 ;  

l e t t e r [ c o u n t ]  = g e t c h a r ( ) ;  

1 

This latter form will be more familiar to those readers experienced with other high-level programming languages, such as 
Pascal or BASIC. Either form is correct, though the original form is more representative of typical C programming style. 

When the program is executed, any line of text entered into the computer will be displayed in uppercase. Suppose, 
for example, that the following line of text had been entered: 

Fourscore and seven years ago our f a t h e r s  brought f o r t h  . . . 

The computer would respond by printing 

FOURSCORE AND SEVEN YEARS AGO OUR FATHERS BROUGHT FORTH . . . 

EXAMPLE 6.10 Averaging a List of Numbers Let us now use a while statement to calculate the average of a list of 
n numbers. Our strategy will be based on the use of a partial sum that is initially set equal to zero, then updated as each 
new number is read into the computer. Thus, the problem very naturally lends itself to the use of a whi le  loop. 

The calculations will be carried out in the following manner. 

1. Assign a value of 1 to the integer variable count. This variable will be used as a loop counter. 

2. Assign a value of 0 to the floating-point variable sum. 

3. Read in the value for the integer variable n. 

4. Carry out the following steps repeatedly, as long as count does not exceed n. 

(a) Read in one of the numbers in the list. Each number will be represented by the floating-point variable x. 
(b) Add the value of x to the current value of sum. 
(c) Increase the value of count by 1, 

5 .  Divide the value of sum by n to obtain the desired average. 

6. Write out the calculated value for the average. 

Here is the actual C program. Notice that the input operations are all accompanied by prompts that ask the user for 
the required information. 
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/ *  ca lcu late the average o f  n numbers * /  

# include <stdio.h> 

main( ) 

i n t  n, count = 1; 

f l o a t  x, average, sum = 0; 

/ *  i n i t i a l i z e  and read i n  a value f o r  n * /  
pr in t f ( "How many numbers? " ) ;  

scanf ( "%d",  an) ; 

/ *  read i n  the numbers * /  
whi le  (count <= n) { 

p r i n t f  ( " x  = " ) ;  

scan f ( "%f " ,  & x ) ;  
sum += x; 
++count; 

1 

/ *  ca lcu late the average and d isp lay the answer * /  
average = surnln; 
p r i n t f ( " \ n T h e  average i s  % f \ n " ,  average); 

1 

Notice that the whi le  loop contains a compound statement which, among other things, causes the value of count to 
increase. Eventually, this will cause the logical expression 

count <= n 

to become false, thus terminating the loop. Also, note that the loop will not be executed at all if n is assigned a value that 
is less than 1 (which, of course, would make no sense). 

Now suppose that the program will be used to process the following six values: 1, 2, 3, 4, 5 ,  6. Execution of the 
program will produce the following interactive dialog. (Note that the user's responses have been underlined.) 

How many numbers? 6 
x = l  
x = 2  
x = a .  
x = 4  
x = 5  
x = 6  

The average i s  3.500000 

6.4 MORE LOOPING: THE do - w h i l e  STATEMENT 

When a loop is constructed using the while statement described in Sec. 6.3, the test for continuation of the 
loop is carried out at the beginning of each pass. Sometimes, however, it is desirable to have a loop with the 
test for continuation at the end of each pass. This can be accomplished by means of the do - while statement. 

The general form of the do - while statement is 

do statement while (expression); 
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The statement will be executed repeatedly, as long as the value of expression is true (i.e., is nonzero). 
Notice that statement will always be executed at least once, since the test for repetition does not occur until 
the end of the first pass through the loop. The statement can be either simple or compound, though most 
applications will require it to be a compound statement. It must include some feature that eventually alters the 
value of expression so the looping action can terminate. 

For many applications it is more natural to test for continuation of a loop at the beginning rather than at 
the end of the loop. For this reason, the do - while statement is used less frequently than the while 
statement described in Sec. 6.3. For illustrative purposes, however, the programming examples shown in Sec. 
6.3 are repeated below using the do - while statement for the conditional loops. 

EXAMPLE6.11 ConsecutiveInteger Quantities In Example 6.8 we saw two complete C programs that use the 
while statement to display the consecutive digits 0, 1,2, . . . ,9. Here is another program to do the same thing, using the 
do - while statement in place of the while statement. 

#include <stdio.h> 


main() / *  display the integers 0 through 9 * /  

{ 
int digit = 0; 

do 

printf('%d\n", digit++); 

while (digit <= 9); 

1 

As in the earlier example, digit is initially assigned a value of 0. The do - while loop displays the current value of 
digit, increases its value by 1, and then tests to see if the current value of digit exceeds 9. If so, the loop terminates; 
otherwise, the loop continues, using the new value of digit. Note that the test is carried out at the end of each pass 
through the loop. The net effect is that the loop will be repeated 10 times, resulting in 10 successive lines of output. Each 
line will appear exactly as shown in Example 6.8. 

Comparing this program with the second program presented in Example 6.8, we see about the same level of 
complexity in both programs. Neither of the conditional looping structures (i.e., while or do - while) appears more 
desirable than the other. 

EXAMPLE 6.12 Lowercase to Uppercase Text Conversion Now let us rewrite the program shown in Example 6.9, 
which converts lowercase text to uppercase, so that the two while loops are replaced by do - while loops. As in the 
earlier program, our overall strategy will be to read in a line of lowercase text on a character-by-character basis, store the 
characters in a char-type array called letter, and then write them out in uppercase using the library function toupper. 
We will make use of a do - while statement to read in the text on a character-by-character basis, and another do - while 
statement to convert the characters to uppercase and then write them out. 

Here is the complete C program. 

/ *  convert a line of lowercase text to uppercase * /  

#include <stdio.h> 

#include <ctype.h> 


#define EOL .'\n' 

main ( ) 

{ 
char letter[80]; 

int tag, count = - 1 ;  

/ *  read in the lowercase text * /  
do ++count; while ((letter[count] = getchar()) I =  EOL); 

tag = count; 
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/ *  display the uppercase text * /  
count = 0; 
do t 

putchar(toupper(letter[count])); 

++count; 


} while (count c tag); 

We again see two different types of loops, even though they are both written as do - while loops. In particular, the 
number of passes through the first loop will not be known in advance, but the second loop will execute a known number 
of passes, as determined by the value assigned to tag. 

Notice that the first loop, i.e., 

do ++count; while ((letter[count] = getchar()) I =  EOL);  

is simple and concise, but the second loop, 

do .( 
putchar(toupper(letter[count])); 

++count; 


} while (count < tag); 

is somewhat more complex. Both loops resemble the corresponding while loops presented in Example 6.9. Note, 
however, that the first loop in the present program begins with a value of -1 assigned to count,whereas the initial value 
of count was 0 in Example 6.9. 

When the program is executed, it behaves in exactly the same way as the program shown in Example 6.9. 
Before leaving this example, we mention that the last loop could have been written more concisely as 

do 

putchar(toupper(letter[count++])); 


while (count c tag); 

This may appear a bit strange to beginners, though it is characteristic of the programming style that is commonly used by 
experienced C programmers. 

EXAMPLE6.13 Averaginga List ofNumbers The program shown in Example 6.10 can easily be rewritten to 
illustrate the use of the do - while statement. The logic will be the same, except that the test to determine if all n numbers 
have been entered into the computer will not be made until the end of the loop rather than the beginning. Thus the 
program will always make at least one pass through the loop, even if n is assigned a value of 0 (which would make no 
sense). 

Here is the modified version of the program. 

/ *  calculate the average of n numbers * /  

#include cstdio.h> 


main ( ) 
t 

int n, count = 1 ;  
float x ,  average, sum = 0; 

/ *  initialize and read in a value for n * /  
printf ( "How many numbers? " )  ; 
scanf ( "%d", an) ; 
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/ *  read i n  the  numbers * /  

do .( 
p r i n t f ( " x  = " ) ;  

s c a n f ( " % f " ,  & x ) ;  
sum += x ;  
++count; 

1 w h i l e  (count <= n ) ;  

/ *  c a l c u l a t e  the  average and d isp lay  the  answer * /  
average = sum/n; 
p r i n t f  ( I' \nThe average i s  %f average) ;\,I8, 

k 


When the program is executed it will behave exactly the same way as the earlier version shown in Example 6.10. 

6.5 STILL MORE LOOPING: THE f o r  STATEMENT 

The f o r  statement is the third and perhaps the most commonly used looping statement in C. This statement 
includes an expression that specifies an initial value for an index, another expression that determines whether 
or not the loop is continued, and a third expression that allows the index to be modified at the end of each 
pass. 

The general form of the f o r  statement is 

f o r  ( expression 1; expression 2;  expression 3)  statement 

where expression 1 is used to initialize some parameter (called an index) that controls the looping action, 
expression Zrepresents a condition that must be true for the loop to continue execution, and expression 
3is used to alter the value of the parameter initially assigned by expression 1. Typically, expression 1 
is an assignment expression, expression 2 is a logical expression and expression 3 is a unary 
expression or an assignment expression. 

When the f o r  statement is executed, expression 2is evaluated and tested at the beginning of each pass 
through the loop, and expression 3 is evaluated at the end of each pass. Thus, the f o r  statement is 
equivalent to 

expression 1; 
whi le  (expression 2) { 

s t a  temen t 
expression 3; 

1 

The looping action will continue as long as the value of expression 2 is not zero, that is, as long as the 
logical condition represented by expression 2 is true. 

The f o r  statement, like the while and the do - while statements, can be used to carry out looping 
actions where the number of passes through the loop is not known in advance. Because of the features that are 
built into the f o r  statement, however, it is particularly well suited for loops in which the number of passes is 
known in advance. As a rough rule of thumb, while loops are generally used when the number of passes is 
not known in advance, and f o r  loops are generally used when the number of passes is known in advance. 

EXAMPLE 6.14 Consecutive Integer Quantities We have already seen several different versions of a C program that 
will display the consecutive digits 0, 1,2, . . . ,9, with one digit on each line (see Examples 6.8 and 6.11). Here is another 
program which does the same thing. Now, however, we will make use of the f o r  statement rather than the w h i l e  
statement or the do - w h i l e  statement, as in the earlier examples. 
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#include <stdio.h> 

main()  / *  disp lay  the  numbers 0 through 9 * /  

{ 
i n t  d i g i t ;  

f o r  ( d i g i t  = 0; d i g i t  <= 9; + + d i g i t )  
p r i n t f ( ’ % d \ n H ,  d i g i t ) ;  

The first line of the f o r  statement contains three expressions, enclosed in parentheses. The first expression assigns 
an initial value 0 to the integer variable d i g i t ;  the second expression continues the looping action as long as the current 
value of d i g i t  does not exceed 9 at the beginning of each pass; and the third expression increases the value of d i g i t  by 
1 at the end of each pass through the loop. The p r i n t f  function, which is included in the f o r  loop, produces the desired 
output, as shown in Example 6.8. 

From a syntactic standpoint all three expressions need not be included in the f o r  statement, though the 
semicolons must be present. However, the consequences of an omission should be clearly understood. The 
first and third expressions may be omitted if other means are provided for initializing the index andor altering 
the index. If the second expression is omitted, however, it will be assumed to have a permanent value of 1 
(true); thus, the loop will continue indefinitely unless it is terminated by some other means, such as a break or 
a r e t u r n  statement (see Secs. 6.8 and 7.2). As a practical matter, most f o r  loops include all three 
expressions. 

EXAMPLE 6.15 Consecutive Integer Quantities Revisited Here is still another example of a C program that 
generates the consecutive integers 0, 1, 2, . . . ,9, wiih one digit on each line. We now use a f o r  statement in which two 
of the three expressions are omitted. 

#include <stdio.h> 

main()  / *  disp lay  the  numbers 0 through 9 * /  

{ 
i n t  d i g i t  = 0; 

f o r  ( ;  d i g i t  <= 9; ) 

p r i n t f ( ” % d \ n ’ ,  d i g i t + + ) ;  

This version of the program is more obscure than that shown in Example 6.14, and hence less desirable. 
Note the similarity between this program and the second program in Example 6.8, which makes use of a whi le  loop. 

EXAMPLE 6.16 Lowercase to Uppercase Text Conversion Here once again is a C program that converts lowercase 
text to uppercase. We have already seen other programs that do this, in Examples 6.9 and 6.12. Now, however, we make 
use of a f o r  loop rather than a whi le  loop or a do - whi le  loop. 

As before, our overall strategy will be to read in a line of lowercase text on a character-by-character basis, store the 
characters in a char-type array called l e t t e r ,  and then write them out in uppercase using the library function toupper. 
Two separate loops will be required: one to read and store the lowercase characters, the other to display the characters in 
uppercase. Note that we will now use a f o r  statement to build a loop in which the number of passes is not known in 
advance. 

Here is the complete C program. 
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/ *  convert a l i n e  o f  lowercase t e x t  t o  uppercase * /  

#include <stdio.h> 
#include <ctype.h> 

#def ine EOL '\,I 

main( ) 

char l e t t e r [ 8 0 ] ;  
i n t  tag, count; 

/ *  read i n  the lowercase t e x t  * /  
f o r  (count = 0; ( l e t t e r [ c o u n t ]  = getchar())  I =  EOL; ++count) 

I 

tag = count; 

/ *  d isp lay the uppercase t e x t  * /  
f o r  (count = 0; count < tag; ++count) 

p u t c h a r ( t o u p p e r ( l e t t e r [ c o u n t ] ) ) ;  

1 

Comparing this program with the corresponding programs given in Examples 6.9 and 6.12, we see that the loops can 
be written more concisely using the f o r  statement than with whi le  or do - whi le statements. 

EXAMPLE 6.17 Averaging a List of Numbers Now let us modifL the program given in Example 6.10, which 
calculates the average of a list of n numbers, so that the looping action is accomplished by means of a f o r  statement. The 
logic will be essentially the same, though some of the steps will be carried out in a slightly different order. In particular: 

1. Assign a value of 0 to the floating-point variable sum. 

2. Read in a value for the integer variable n. 

3. Assign a value of 1 to the integer variable count, where count is an index that counts the number of passes through 
the loop. 

4. Carry out the following steps repeatedly, as long as the value of count does not exceed n. 

(a) Read in one of the numbers in the list. Each number will be represented by the floating-point variable x. 

(b) Add the value of x to the current value of sum. 

(c) Increase the value of count by 1. 

5. Divide the value of sum by n to obtain the desired average. 

6. Write out the calculated value for the average. 

Here is the complete C program. Notice that steps 3 and 4 are combined in the f o r  statement, and that steps 3 and 
4(c) are both carried out in the first line (first and third expressions, respectively). Also, notice that the input operations 
are all accompanied by prompts that ask the user for the desired information. 

/ *  ca lcu late the average o f  n numbers * /  

#include <stdio.h> 

main( ) 

i n t  n, count; 
f l o a t  x, average, sum = 0; 

/ *  i n i t i a l i z e  and read i n  a value f o r  n * /  
p r i n t f ( "How many numbers? " ) ;  

scanf ( "%d", an) ; 
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/ *  read i n  the  numbers * /  
f o r  (count = 1;  count <= n; ++count) { 

p r i n t f ( " x  = " ) ;  

scanf ( "%fI' , &x)  ; 
sum += x ;  

1 

/ *  c a l c u l a t e  the  average and d i s p l a y  the  answer * /  
average = sum/n; 
p r i n t f ( ' \ n T h e  average i s  % f \ n ' ,  average); 

Comparing this program to the corresponding programs shown in Examples 6.10 and 6.13, we again see a more 
concise loop specification when the f o r  statement is used rather than w h i l e  or do - while.  Now, however, the f o r  
statement is somewhat more complex than in the preceding programming examples. In particular, notice that the 
statement part of the loop is now a compound statement. Moreover, we must assign an initial value to sum explicitly, 
before entering the f o r  loop. 

When the program is executed it will behave exactly as the earlier versions, presented in Examples 6.10 and 6.13. 

6.6 NESTED CONTROL STRUCTURES 

Loops, like if - else statements, can be nested, one within another. The inner and outer loops need not be 
generated by the same type of control structure. It is essential, however, that one loop be completely 
embedded within the other -there can be no overlap. Each loop must be controlled by a different index. 

Moreover, nested control structures can involve both loops and if - else statements. Thus, a loop can 
be nested within an if - else statement, and an if - else statement can be nested within a loop. The nested 
structures may be as complex as necessary, as determined by the program logic. 

EXAMPLE 6.18 Repeated Averaging of a List of Numbers Suppose we want to calculate the average of several 
consecutive lists of numbers. If we know in advance how many lists are to be averaged, then we can use a f o r  statement 
to control the number of times that the inner (averaging) loop is executed. The actual averaging can be accomplished 
using any of the three methods presented earlier, in Examples 6.10, 6.13 and 6.17 (using a while,  a do - whi le ,  or a f o r  
loop). 

Let us arbitrarily use the f o r  statement to carry out the averaging, as in Example 6.17. Thus, we will proceed in the 
following manner. 

1. Read in a value of loops, an integer quantity that indicates the number of lists that will be averaged. 

2. Repeatedly read in a list of numbers and determine its average. That is, calculate the average of a list of numbers for 
each successive value of loopcount ranging from 1 to loops. Follow the steps given in Example 6.14 to calculate 
each average. 

Here is the actual C program. 

/ *  c a l c u l a t e  averages f o r  s e v e r a l  d i f f e r e n t  l i s t s  o f  numbers * /  

# inc lude  <s td io .h>  

main ( ) 

{ 
i n t  n ,  count,  loops,  loopcount; 
f l o a t  x ,  average, sum; 

/ *  read i n  the  number o f  l i s t s  * /  
p r i n t f  ('How many l i s t s ?  " ) ; 
scanf ("%d" &loops) ; 
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/ *  o u t e r  l o o p  (process each l i s t  o f  numbers * /  
f o r  ( loopcount  = 1; loopcount <= loops;  ++loopcount) { 

/ *  i n i t i a l i z e  and read i n  a va lue f o r  n * /  
sum = 0; 
p r i n t f ( " \ n L i s t  number %d\nHow many numbers? " ,  loopcount ) ;  
scanf ( " % d " ,  an) ; 

/ *  read i n  t h e  numbers * /  
f o r  (count = 1; count <= n; ++count) { 

p r i n t f  ( " x  = " ) ;  

scanf ( "%f & x )  ;' I ,  

sum += x;  
} / *  end i n n e r  l o o p  * /  

/ *  c a l c u l a t e  t h e  average and d i s p l a y  t h e  answer * /  
average = sum/n; 
p r i n t f  ( \nThe average i s  %f\ n u ,  average) ; 

} / *  end o u t e r  l o o p  * /  

} 

This program contains several interesting features. First, it contains two f o r  statements, one embedded within the 
other. Each f o r  statement includes a compound statement, consisting of several individual statements enclosed in braces. 
Also, a different index is used in each f o r  statement (the indices are loopcount and count, respectively). 

Note that sum must now be initialized within the outer loop, rather than within the declaration. This allows sum to be 
reset to zero each time a new set of data is encountered (i.e., at the beginning of each pass through the outer loop). 

The input data operations are all accompanied by prompts, indicating to the user what data are required. Thus, we see 
pairs of p r i n t f  and scanf functions at several places throughout the program. Two of the p r i n t f  functions contain 
multiple newl ine characters, to control the line spacing of the output. This causes the output associated with each set of 
data (each pass through the outer loop) to be easily identified. 

Finally, note that the program is organized into separate identifiable segments, with each segment preceded by a 
blank space and a comment. 

When the program is executed using three simple sets of data, the following dialog is generated. As usual, the user's 
responses to the input prompts have been underlined. 

How many l i s t s ?  3 

L i s t  number 1 

How many numbers? 4 
x = 1 . 5  
x = 2 . 5  

x = 6 .2  

x = 3.0 

The average i s  3.300000 

L i s t  number 2 

How many numbers? 3 
x = 4  

x = -2 
x = 7  

The average i s  3.000000 
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L i s t  number 3 
How many numbers? 3 
x = 5.4  

x = 8 .0  
x = 2 . 2  

x = 1.7  
x = -3 .9 

The average i s  2.680000 

EXAMPLE 6.19 Converting Several Lines of Text to Uppercase This example illustrates the use of two different 
types of loops, one nested within the other. Let us extend the lowercase to uppercase conversion programs presented in 
Examples 6.9, 6.12 and 6.16 so that multiple lines of lowercase text can be converted to uppercase, with the conversion 
taking place one line at a time. In other words, we will read in a line of lowercase text, display it in uppercase, then 
process another line, and so on. The procedure will continue until a line is detected in which the first character is an 
asterisk. 

We will use nested loops to carry out the computation. The outer loop will be used to process multiple lines of text. 
Two separate inner loops will be embedded within the outer loop. The first will read in a line of text, and the second will 
display the converted uppercase text. Note that these inner loops are not nested. Let us arbitrarily utilize a w h i l e  
statement for the outer loop, and a f o r  statement for each of the inner loops. 

In general terms, the computation will proceed as follows. 

1. Assign an initial value of 1 to the outer loop index ( l inecount).  

2. Carry out the following steps repeatedly, for each successive line of text, as long as the first character in the line is 
not an asterisk. 

(a) Read in a line of text and assign the individual characters to the elements of the char-type array l e t t e r .  A line 
will be defined as a succession of characters that is terminated by an end-of-line (newline) designation. 

( 6 )  Assign the character count (including the end-of-line character) to tag. 

(c) Display the line in uppercase, using the library function toupper to carry out the conversion. Then write out 
two newline characters so that the next line of input will be separated from the current output by a blank line, 
and increment the line counter ( l inecount).  

3. Once an asterisk has been detected as the first character of a new line, write out Good bye and terminate the 
computation. 

Here is the complete C program. 

/ *  convert  s e v e r a l  l i n e s  o f  t e x t  t o  uppercase 
continue the  conversion u n t i l  the  f i r s t  character  i n  a l i n e  i s  an a s t e r i s k  ( * )  * /  

# inc lude  < s t d i o .  h> 
# inc lude  <ctype.h> 

#def ine  EOL ' \ n o  

main ( ) 

1 
char l e t t e r ( 8 0 1 ;  
i n t  t a g ,  count; 

w h i l e ( ( l e t t e r [ O ]  = g e t c h a r ( ) )  I= ' * I )  { 

/ *  read i n  a l i n e  o f  t e x t  * /  
f o r  (count = 1 ;  ( l e t t e r [ c o u n t ]  = g e t c h a r ( ) )  I =  EOL; ++count) 

I 

t a g  = count; 
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/ *  d i sp lay  the  l i n e  o f  t e x t  * /  
f o r  (count = 0; count < tag; ++count) 

putchar(toupper(letter[count])); 
p r i n t f ( " \ n \ n " ) ;  

} / *  end ou ter  loop  * /  

p r i n t f ( " G o o d  bye" ) ;  

1 

A typical interactive session, illustrating the execution of the program, is shown below. Note that the input text 
supplied by the user is underlined, as usual. 

Now i s  the  t ime f o r  a l l  good men to come t o  the  a i d  . A 

NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE A I D  . . . 
Fourscore and seven vears s o our fa the rs  brouaht f o r t h  . I 

FOURSCORE AND SEVEN YEARS AGO OUR FATHERS BROUGHT FORTH . . . 

* -
Good bye 

It should be understood that the decision to use a wh i le  statement for the outer loop and f o r  statements for the inner 
loops is arbitrary. Other loop structures could also have been selected. 

Many programs involve both looping and branching. The various control structures are often nested, one 
within another, as illustrated in the following three examples. 

EXAMPLE 6.20 Encoding a String of Characters Let us write a simple C program that will read in a sequence of 
ASCII characters and write out a sequence of encoded characters in its place. If a character is a letter or a digit, we will 
replace it with the next character in the character set, except that Z will be replaced by A, z by a, and 9 by 0. Thus 1 
becomes 2, C becomes D, p becomes q, and so on. Any character other than a letter or a digit will be replaced by a period 

(4. 
The computation will begin by reading in the characters. The scanf function will be used for this purpose. All the 

characters, up to but not including the newline (\n) character that is used to terminate the input, will be entered and stored 
in an 80-element, character-type array called l i n e .  

The characters will then be encoded and displayed individually within a f o r  loop. The loop will process each of the 
characters in l i n e ,  until the escape character \O, which designates the end of the character sequence, is encountered. 
(Recall that the escape sequence \O is automatically added at the end of each string.) Several nested i f  - e l se  statements 
will be included within the loop, to carry out the appropriate encoding. Each encoded character will then be displayed 
using the putchar function. 

The complete C program is shown below. 

/ *  read i n  a s t r i n g ,  then replace each character w i t h  an equ iva len t  encoded charac ter  * /  

# inc lude <stdio.h> 

main( ) 

{ 
char l i n e [ 8 0 ] ;  
i n t  count ; 

/ *  read i n  the  e n t i r e  s t r i n g  * /  

p r i n t f ( " E n t e r  a l i n e  o f  t e x t  below:\n") ;  
s ~ a n f ( ~ % [ ~ \ n ] " ,l i n e ) ;  
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/ *  encode each individual character and display it * /  

for (count = 0; line[count] I =  ' \ O n ;  ++count) { 

if (((line[count] >= '0')&& (line[countJ < '9'))1 1  
((line[count] >= 'A') && (line[count] < ' Z ' ) )  I I 
((line[count] >= 'a') && (line[count] < 'z'))) 

putchar(line[countJ + 1); 
else if (line(count] == ' 9 ' ) putchar('0'); 

else if (line[count] == ' Z ' )  putchar('A'); 
else if (line[count] == ' z ' )  putchar('a'); 

else putchar('.'); 


Execution of this program generates the following representative dialog. The input provided by the user is again 
underlined. 

Enter a line of text below: 

-The White House, 1600 Pennsvlvania Avenue. Washinaton, 

Uif.Xijuf.Ipvtf..271l.Qfootzmwbo]b.Bwfovf..Xbtijohupo..ED 


EXAMPLE 6.21 Repeated Compound Interest Calculations with Error Trapping In Example 5.2 we saw a 
complete C program to carry out simple compound interest calculations, as outlined in Example 5.1. However, the 
program in Example 5.2 did not allow for repetitive execution (i.e., for several successive calculations, using different 
input data for each calculation), nor did it attempt to detect errors in the input data. Let us now add these features to the 
earlier program. 

In particular, let us embed the earlier calculations within a while statement, which will continue to execute as long as 
the value entered for the principal (P) is positive. Thus, a zero value for P will be interpreted as a stopping condition. We 
will include a message explaining the stopping condition when prompting for the value of P. 

In addition, let us include an error trap that will test the value of each input quantity to determine if it is negative, 
since a negative value would not make any sense and should be interpreted as an error. Each test will be carried out with a 
separate if statement. If an error (i.e., a negative value) is detected, a message will be written asking the user to reenter 
the data. 

Here is the entire C program. 

/ *  simple compound interest problem * /  

#include <stdio.h> 

#include <math.h> 


main ( ) 

t 
float p, r, n, i,f ; 

/ *  read initial value for the principal * /  

printf("P1ease enter a value for the principal (P) ' I ) ;  

printf("\n(To end program, enter 0 for the principal): " ) ;  

scanf ("%f I ,  &p) ; 
if (P 0) t 

printf('\nERROR - Please try again: ' I ) ;  

scanf ( '%f I' , &p) ; 
1 
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w h i l e  (p  > 0) { / *  main l o o p  * /  

/ *  read remain ing i n p u t  data * I  

p r i n t f ( " \ n P l e a s e  e n t e r  a value f o r  t h e  i n t e r e s t  r a t e  ( r ) :  " ) ;  

scanf ( "%f & r ) ;" I ,  

i f  ( r  < 0) { 
printf( ' \nERROR - Please t r y  again:  I " ) ;  

scanf ( " % f " ,  & r )  ; 

1 
p r i n t f ( " \ n P l e a s e  e n t e r  a va lue f o r  t h e  number o f  years ( n ) :  " ) ;  
scanf ( "%f an) ;I " ,  

i f  ( n  < 0) { 

printf("\nERROR - Please t r y  again:  " ) ;  

scanf ( "%f an) ;" I ,  

1 

/ *  c a l c u l a t e  i,then f * /  

i= r /100;  
f = p * pow((1 + i ) ,  n ) ;  

/ *  d i s p l a y  t h e  ou tpu t  * /  

p r i n t f ( I" \nThe f i n a l  va lue (F)  i s :  %. 2 f  \no" ,  f )  ; 

/ *  read p r i n c i p a l  f o r  next  pass * /  

p r i n t f ( " \ n \ n P l e a s e  e n t e r  a va lue f o r  t h e  p r i n c i p a l  (P) " ) ;  

p r i n t f ( " \ n ( T o  end program, en ter  0 f o r  t h e  p r i n c i p a l ) :  ' ) ;  

scanf ( "%f" , &p) ; 
if(P < 0) { 

printf("\nERROR - Please t r y  again:  " ) ;  

scanf ( " % f n ,  &p) ; 
1 

} / *  end w h i l e  l o o p  * /  

1 

A typical interactive session is shown below. Note that the user's responses are underlined. 

Please e n t e r  a va lue f o r  t h e  p r i n c i p a l  (P) 
(To end program, e n t e r  0 f o r  t h e  p r i n c i p a l ) :  1000 

Please e n t e r  a va lue f o r  t h e  i n t e r e s t  r a t e  ( r ) :  6 

Please e n t e r  a va lue f o r  t h e  number o f  years ( n ) :  a 
The f i n a l  va lue (F)  i s :  3207.14 

Please e n t e r  a va lue f o r  t h e  p r i n c i p a l  (P) 
(To end program, e n t e r  0 f o r  t h e  p r i n c i p a l ) :  5004 

Please e n t e r  a va lue f o r  t h e  i n t e r e s t  r a t e  ( r ) :  -7 .5 

ERROR - Please t r y  again: 7.5 
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Please enter  a value f o r  the  number o f  years ( n ) :  12 

The f i n a l  value (F)  i s :  11908.90 

Please enter  a value f o r  the  p r i n c i p a l  (P) 
(To end program, enter  0 f o r  the  p r i n c i p a l ) :  Q 

Notice that two sets of input data are provided. The first set of data is entered correctly, resulting in a calculated future 
value of 3207.14 (as in Example 5.4). In the second data set, a negative value is initially supplied for the interest rate (r). 
This is detected as an error, resulting in an error message and a request for another value. Once the corrected value is 
supplied, the remaining program execution proceeds as expected. 

After the second data set has been processed, the user enters a value of 0 for the principal, in response to the prompt. 
This causes the execution of the program to terminate. 

Remember that the error trapping used in this program applies only to negative floating-point quantities entered as 
input data. Another type of error occurs if a letter or punctuation mark is entered for one of the required input quantities. 
This will produce a type mismatch in the scanf function, resulting in an input error. Individual compilers deal with this 
type of error differently, thus preventing a simple, general error trap. 

The following program is more comprehensive in nature. It includes most of the programming features 
that we have encountered earlier in this book. 

EXAMPLE 6.22 Solution of an Algebraic Equation For the more mathematically inclined reader, this example 
illustrates how computers can be used to solve algebraic equations, including those that cannot be solved by more direct 
methods. Consider, for example, the equation 

x5 + 3x2 - 10 = 0. 

This equation cannot be rearranged to yield an exact solution for x. However, we can determine the solution by a repeated 
trial-and-error procedure (called an iterative procedure) that successively refines an initial guess. 

We begin by rearranging the equation into the form 

x = (10 - 3 x 2 p  

Our procedure will then be to guess a value for x, substitute this value into the right-hand side of the rearranged equation, 
and thus calculate a new value for x. If this new value is equal (or very nearly equal) to the old value, then we will have 
obtained a solution to the equation. Otherwise, this new value will be substituted into the right-hand side and still another 
value obtained for x, and so on. This procedure will continue until either the successive values of x have become 
sufficiently close (i.e., until the computation has converged), or until a specified number of iterations has been exceeded. 
This last condition prevents the computation from continuing indefinitely in the event that the computed results do not 
converge. 

To see how the method works, suppose we choose an initial value of x = 1.0. Substituting this value into the right- 
hand side of the equation, we obtain 

x = [10- 3( 1 .0)2]0*2 = 1.47577 

We then substitute this new value of x into the equation, resulting in 

x = [10 - 3( 1.47577)2]0.2= 1.28225 

Continuing this procedure, we obtain 

x = [10 - 3( 1.213225)~IO.~ = 1.38344 

x = [10 - 3(1.38344)2]0*2= 1.33613 

and so on. Notice that the successive values of x appear to be converging to some final answer. 
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The success of the method depends on the value chosen for the initial guess. If this value is too large in magnitude, 
then the quantity in brackets will be negative, and a negative value cannot be raised to a fractional power. Therefore we 
should test for a negative value of 10 - 3x2 whenever we substitute a new value of x into the right-hand side. 

In order to write a program outline, let us define the following symbols. 

count = an iteration counter (count will increase by 1 at each successive iteration) 

guess = the value of x substituted into the right-hand side of the equation 

r o o t  = the newly calculated value ofx 

t e s t  = the quantity (10 - 3x2) 

e r r o r  = the absolute difference between root  and guess 

f l a g  = an integer variable that signifies whether or not to continue the iteration 

We will continue the computation until one of the following conditions is satisfied. 

1. The value of e r r o r  becomes less than 0.00001, in which case we have obtained a satisfactory solution. 

2. Fifty iterations have been completed (i.e., count = 50). 

3. The variable t e s t  takes on a negative value, in which case the computation cannot be continued. 

Let us monitor the progress of the computation by writing out each successive value of root .  

We can now write the following program outline. 

1. For convenience, define the symbolic constants TRUE and FALSE. 

2. Declare all variables, and initialize the integer variables f l a g  and count (assign TRUE to f l a g  and 0 to count). 

3. Read in a value for the initial guess. 

4. Carry out the following looping procedure, while f l a g  remains TRUE. 

(a) Increase the value of count by 1. 

(b) Assign FALSE to f l a g  if the new value of count equals 50. This will signify the last pass through the 
loop. 

(c )  Examine the value of t e s t .  If its value is positive, proceed as follows. 

(i) Calculate a new value for root;  then write out the current value for count, followed by the current 
value for root .  

(ii) Evaluate e r r o r ,  which is the absolute value of the difference between root  and guess. If this value 
is greater than 0.00001, assign the current value of root  to guess and proceed with another 
iteration. Otherwise write out the current values of root  and count, and set f l a g  to FALSE. The 
current value of root  will be considered to be the desired solution. 

(d) If the current value of t e s t  is not positive, then the computation cannot proceed. Hence, write an 
appropriate error message (e.g., Numbers out  o f  range) and set f l a g  to FALSE. 

5 .  Upon completion of step 4, write an appropriate error message (e.g., Convergence not  obtained) if count 
has a value of 50 and the value of e r r o r  is greater than 0.00001. 

Now let us express the program outline in the form of pseudocode, in order to simplifi the transition from a general 
outline to a working C program. 

# inc lude  f i l e s  

#def ine  symbolic constants 

main ( ) 

t 
/ *  v a r i a b l e  dec lara t ions  and i n i t i a l i z a t i o n  * /  

/ *  read i n p u t  parameters * /  
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w h i l e  ( f l a g )  { 

/ *  increment count * I  

/ *  f l a g  becomes FALSE i f  count = 50 * /  

/ *  eva lua te  t e s t  * I  

i f  ( t e s t  > 0) { 

/ *  eva lua te  r o o t  * I  
/ *  d i s p l a y  count and loop * /  
/ *  eva lua te  e r r o r  * /  

i f  ( e r r o r  > 0.00001) guess = r o o t ;  
e l s e  { 

/ *  f l a g  becomes FALSE * /  
/ *  d i s p l a y  t h e  f i n a l  answer ( r o o t  and count) * /  

e l s e  { 
/ *  f l a g  becomes FALSE * /  
/ *  numbers ou t  o f  range - w r i t e  e r r o r  message * /  

} / *  end w h i l e  * /  

i f  ( (count  == 50) && ( e r r o r  > 0.00001)) 

/ *  convergence n o t  obta ined - w r i t e  e r r o r  message * /  

Here is the complete C program. 

/ *  determine the  r o o t s  o f  an a l g e b r a i c  equat ion us ing  an i t e r a t i v e  procedure * /  

# inc lude <s td io .h> 
# i n c l u d e  <math.h> 

#def ine  TRUE 1 

#def ine  FALSE 0 

main( ) 

i n t  f l a g  = TRUE, count = 0; 
f l o a t  guess, r o o t ,  t e s t ,  e r r o r ;  

/ *  read i n p u t  parameters * /  

p r i n t f  ( I n i t i a l  guess: ) ;U 

scanf ( "%f, &guess) ;U 

w h i l e  ( f l a g )  { / *  begin t h e  main l o o p  * /  
++count ; 
i f  (count  == 50) f l a g  = FALSE; 

t e s t  = 10. - 3. * guess * guess; 
i f  ( t e s t  > 0) { / *  another i t e r a t i o n  * /  

r o o t  = pow(test ,  0 .2) ;  
p r i n t f ( " \ n I t e r a t i o n  number: %2d", count ) ;  
p r i n t f  ( '  x= % 7 . 5 f U ,  r o o t ) ;  
e r r o r  = f a b s ( r o o t  - guess); 
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i f  ( e r r o r  > 0.00001) guess = r o o t ;  / *  repeat  t h e  c a l c u l a t i o n  * I  
e l s e  { / *  d i s p l a y  t h e  f i n a l  answer * I  

f l a g  = FALSE; 
p r i n t f ( " \ n \ n R o o t =  %7.5fn, r o o t ) ;  
p r i n t f ( '  No. o f  i t e r a t i o n s =  %2d", count)  ; 

1 
1 
e l s e  { I *  e r r o r  message * /  

f l a g  = FALSE; 
p r i n t f  ("\nNumbers ou t  o f  range - t r y  another i n i t i a l  guess") ;  

1 
1 
i f  ( (count  == 50) && ( e r r o r  > 0.00001))  / *  another e r r o r  message * /  

p r in t f ( " \n \nConvergence no t  obta ined a f t e r  50 i t e r a t i o n s " ) ;  

Notice that the program contains a w h i l e  statement and several i f  - e l s e  statements. A f o r  statement could easily 
have been used instead of the w h i l e  statement. Also, notice the nested i f  - e l s e  statements near the middle of the 
program. 

The output that is generated for an initial guess of x = 1 is shown below, with the user's responses underlined. 
Notice that the computation has converged to the solution x = 1 .35195 after 16 iterations. The printed output shows the 
successive values of x becoming closer and closer, leading to the final solution. 

I n i t i a l  guess: 1 

I t e r a t i o n  number: 1 X= I.47577 

I t e r a t i o n  number: 2 X= 1.28225 

I t e r a t  i o n  number : 3 X= 1 ,38344 

I t e r a t i o n  number : 4 X= 1.33613 

I t e r a t i o n  number: 5 X= 1.35951 

I t e r a t  i o n  number : 6 X= 1 .34826 

I t e r a t i o n  number: 7 X= 1.35375 
I t e r a t i o n  number: 8 X= 1.35109 

I t e r a t i o n  number : 9 X= 1.35238 
I t e r a t i o n  number: 10 X= 1.35175 

I t e r a t i o n  number: 11 X= I.35206 

I t e r a t i o n  number : 12 X= 1.35191 

I t e r a t i o n  number: 13 X= 1.35198 
I t e r a t i o n  number: 14 X= 1.35196 
I t e r a t i o n  number: 15 X= 1 .35196 

I t e r a t i o n  number: 16 X= 1.35195 

Root= 1.35195 No. o f  i t e r a t i o n s =  16 

Now suppose that a value of x = 10 had been selected as an initial guess. This value generates a negative number 
for t e s t  in the first iteration. Therefore the output would appear as follows. 

I n i t i a l  guess: 10 
Numbers ou t  o f  range - t r y  another i n i t i a l  guess 

It is interesting to see what happens when the initial guess is once again chosen as x = 1, but the maximum number 
of iterations is changed from 50 to 10. You are encouraged to try this and observe the result. 

you should underdstand that there are many other iterative methods for solving algebraic equations. Most converge 
faster than the method described above (i.e., they require fewer iterations to obtain a solution), though the mathematics is 
more complicated. 



146 CONTROL STATEMENTS [CHAP. 6 

6.7 THE switch STATEMENT 

The swi tch  statement causes a particular group of statements to be chosen from several available groups, 
The selection is based upon the current value of an expression which is included within the swi tch  statement. 

The general form of the switch statement is 

swi tch  (expression) statement 

where expression results in an integer value. Note that expression may also be of type char, since 
individual characters have equivalent integer values. 

The embedded statement is generally a compound statement that specifies alternate courses of action. 
Each alternative is expressed as a group of one or more individual statements within the overall embedded 
st a  temen t. 

For each alternative, the first statement within the group must be preceded by one or more cuse labels 
(also called case prefixes). The case labels identifL the different groups of statements (i.e., the different 
alternatives) and distinguish then from one another. The case labels must therefore be unique within a given 
swi tch  statement. 

In general terms, each group of statements is written as 

case expression : 
statement I 
statement 2 
. . . . .  
statement n 

or, when multiple case labels are required, 

case expression 7 :  
case expression 2 :  

. . . . .  
case expression m :  

statement 7 
statement 2 
. . . a . 

statement n 

where expression 7,  expression 2, . . . , expression m represent constant, integer-valued 
expressions. Usually, each of these expressions will be written as either an integer constant or a character 
constant. Each individual statement following the case labels may be either simple or complex. 

When the swi tch  statement is executed, the expression is evaluated and control is transferred directly 
to the group of statements whose case-label value matches the value of the expression. If none of the case- 
label values matches the value of the expression, then none of the groups within the swi tch  statement will 
be selected. In this case control is transferred directly to the statement that follows the swi tch  statement. 

EXAMPLE 6.23 A simple switch statement is illustrated below. In this example, choice is assumed to be a char-type 
variable. 

switch (choice = g e t c h a r ( ) )  { 

case ' r ' : 
case 'RI: 

p r i n t f  ( "RED") ; 
break;  
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case ' w ' :  
case 'W': 

p r i n t f  ( "WHITE"); 
break; 

case ' b l :  
case ' B ' :  

p r i n t f ( " B L U E " ) ;  

1 

Thus, RED will be displayed if choice represents either r or R ,  WHITE will be displayed if choice represents either w or W, 
and BLUE will be displayed if choice represents either b or B. Nothing will be displayed if any other character has been 
assigned to choice. 

Notice that each group of statements has two case labels, to account for either upper or lowercase. Also, note that 
each of the first two groups ends with the break statement (see Sec. 6.8). The break statement causes control to be 
transferred out of the switch statement, thus preventing more than one group of statements from being executed. 

One of the labeled groups of statements within the switch statement may be labeled default. This 
group will be selected if none of the case labels matches the value of the expression. (This is a convenient 
way to generate error messages or error correction routines.) The default group may appear anywhere 
within the switch statement-it need not necessarily be placed at the end. If none of the case labels matches 
the value of the expression and the default group is not present (as in the above example), then no action 
will be taken by the switch statement. 

EXAMPLE 6.24 Here is a variation of the switch statement presented in Example 6.23. 

switch (choice = toupper (ge tchar ( ) ) )  { 

case ' R I :  

p r i n t f  ("RED") ; 
break; 

case ' W ' :  
p r in t f ( "WH1TE") ;  
break; 

case ' B ' :  
p r i n t f  ( ' 'BLUE"); 
break; 

d e f a u l t  : 
p r i n t f ( " E R R 0 R " ) ;  

1 

The switch statement now contains a d e f a u l t  group (consisting of only one statement), which generates an error 
message if none of the case labels matches the original expression. 

Each of the first three groups of statements now has only one case label. Multiple case labels are not necessary in this 
example, since the library function toupper causes all incoming characters to be converted to uppercase. Hence, choice 
will always be assigned an uppercase character. 

EXAMPLE 6.25 Here is another typical switch statement. In this example f l a g  is assumed to be an integer variable, 
and x and y are assumed to be floating-point variables. 
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switch ( f l a g )  { 

case -1: 
y = a b s ( x ) ;  
break;  

case 0: 

y = s q r t ( x ) ;  
break; 

case 1 :  

y = x; 
break;  

case 2: 

case 3: 
y = 2 * ( x  - 1 ) ;  

break ; 

d e f a u l t  : 
y = 0; 

1 

In this example y will be assigned some value that is related to the value of x if f l a g  equals -1, 0, 1, 2 or 3. The exact 
relationship between y and x will depend upon the particular value of f l a g .  If f l a g  represents some other value, 
however, then y will be assigned a value of 0. 

Notice that the case labels are numeric in this example. Also, note that the third group of statements has two case 
labels, whereas each of the other groups have only one case label. And finally, notice that a default group (consisting of 
only one statement) is included within this switch statement. 

In a practical sense, the switch statement may be thought of as an alternative to the use of nested if -
e l s e  statements, though it can only replace those i f  - e lse  statements that test for equality. In such 
situations, the use of the switch statement is generally much more convenient. 

EXAMPLE 6.26 Calculating Depreciation Let us consider how to calculate the yearly depreciation for some 
depreciable item, such as a building, a machine, etc. There are three commonly used methods for calculating depreciation, 
known as the straight-line method, the double-declining-balance method, and the sum-ofithe-years ’-digits method. We 
wish to write a C program that will allow us to select any one of these methods for each set of calculations. 

The computation will begin by reading in the original (undepreciated) value of the item, the life of the item (i.e., the 
number of years over which it will be depreciated) and an integer that indicates which method will be used. The yearly 
depreciation and the remaining (undepreciated) value of the item will then be calculated and written out for each year. 

The straight-line method is the easiest to use. In this method the original value of the item is divided by its life (total 
number of years). The resulting quotient will be the amount by which the item depreciates each year. For example, if an 
$8000 item is to be depreciated over 10 years, then the annual depreciation would be $8000/10 = $800. Therefore, the 
value of the item would decrease by $800 each year. Notice that the annual depreciation is the same each year when using 
straight-line depreciation. 

When using the double-declining-balance method, the value of the item will decrease by a constant percentage each 
year. Hence the actual amount of the depreciation, in dollars, will vary from one year to the next. To obtain the 
depreciation factor, we divide 2 by the life of the item. The depreciation factor is multiplied by the value of the item at the 
beginning ofeach year (not the original value of the item) to obtain the annual depreciation. 

Suppose, for example, that we wish to depreciate an $8000 item over 10 years, using the double-declining-balance 
method. The depreciation factor will be 2/10 = 0.20. Hence the depreciation for the first year will be 0.20 x $8000 = 

$1600. The second year’s depreciation will be 0.20 x ($8000 - $1600) = 0.20 x $6400 = $1280; the third year’s 
depreciation will be 0.20 x $5120 = $1024, and so on. 
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In the sum-of-the-years’-digitsmethod the value of the item will decrease by a percentage that is digerent each year. 
The depreciation factor will be a fraction whose denominator is the sum of the digits from 1 to n, where n represents the 
life of the item. If, for example, we consider a 10-year lifetime, the denominator will be 1 + 2 + 3 + - * + 10 = 55 .  For 
the first year the numerator will be n, for the second year it will be (n  - l), for the third year (n - 2), and so on. The yearly 
depreciation is obtained by multiplying the depreciation factor by the original value of the item. 

To see how the sum-of-the-years’-digits method works, we again depreciate an $8000 item over 10 years. The 
depreciation for the first year will be (10/55)x $8000 = $1454.55;for the second year it will be (9/55) x $8000 = 

$1309.09; and so on. 
Now let us define the following symbols, so that we can write the actual program. 

v a l  = the  current value of the item 

t a g  = the original value of the item (i.e., the original value of va l )  

deprec = the annual depreciation 

n = the  number of years over which the item will be depreciated 

year = a counter ranging from 1 to n 

choice = an integer indicating which method to use 

Our C program will follow the outline presented below. 

1. Declare all variables, and initialize the integer variable choice to 0 (actually, we can assign any value other 
than 4 to choice). 

2. Repeat all of the following steps as long as the value of choice is not equal to 4. 

(a)  Read a value for choice which indicates the type of calculation to be carried out. This value can only be 
1,2,  3 or 4. (Any other value will be an error.) 

(b)  If choice is assigned a value of 1 , 2  or 3, read values for v a l  and n. 

(c )  Depending on the value assigned to choice, branch to the appropriate part of the program and cany out 
the indicated calculations. In particular, 

( i )  If choice is assigned a value of 1, 2 or 3, calculate the yearly depreciation and the new value of the 
item on a year-by-year basis, using the appropriate method indicated by the value of choice. Print 
out the results as they are calculated, on a year-by-year basis. 

(i i)  If choice is assigned a value of 4,write out a “goodbye” message and end the computation by 
terminating the whi le  loop. 

(i i i)  If choice is assigned any value other than 1,2,3or 4,write out an error message and begin another 
pass through the whi le  loop. 

Now let us express this outline in pseudocode. 

# inc lude  f i l e s  

main ( ) 

i 
/ *  v a r i a b l e  dec lara t ions  and i n i t i a l i z a t i o n  * /  

w h i l e  (choice I =  4 )  { 

/ *  generate menu and read choice * /  

i f  (choice >= 1 && choice <= 3) 
/ *  read v a l  and n * /  

switch (choice)  { 

case 1 :  / *  s t r a i g h t - l i n e  method * /  

/ *  w r i t e  out  t i t l e  * /  
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/ *  c a l c u l a t e  d e p r e c i a t i o n  * /  

/ *  f o r  each year: 
c a l c u l a t e  a new value 
w r i t e  o u t  year, deprec ia t ion ,  va lue * /  

case 2: / *  doub le-dec l in ing-ba lance method * /  

/ *  w r i t e  o u t  t i t l e  * /  

/ *  f o r  each year: 
c a l c u l a t e  d e p r e c i a t i o n  
c a l c u l a t e  a new value 
w r i t e  o u t  year, deprec ia t ion ,  va lue * /  

case 3: / *  s u m - o f - t h e - y e a r s ' - d i g i t s  method * /  

/ *  w r i t e  ou t  t i t l e  * /  

/ *  t a g  o r i g i n a l  va lue * /  

/ *  f o r  each year: 
c a l c u l a t e  d e p r e c i a t i o n  
c a l c u l a t e  a new value 
w r i t e  o u t  year, deprec ia t ion ,  va lue * /  

case 4: / *  end o f  computation * /  

/ *  w r i t e  "goodbye" message * /  

/ *  w r i t e  ou t  t i t l e  * /  

d e f a u l t  : / *  generate e r r o r  message * /  

/ *  w r i t e  e r r o r  message * /  

} 

Most of the pseudocode is straightforward, though a few comments are in order. First, we see that a w h i l e  statement 
is used to repeat the entire set of calculations. Within this overall loop, the s w i t c h  statement is used to select a particular 
depreciation method. Each depreciation method uses a f o r  statement to carry out the required calculations. 

At this point it is not difficult to write a complete C program, as shown below. 

/ *  c a l c u l a t e  d e p r e c i a t i o n  us ing  one o f  t h r e e  d i f f e r e n t  methods * /  

## inc lude <s td io .h> 

main( ) 

{ 
i n t  n, year, choice = 0; 

f l o a t  v a l ,  tag ,  deprec; 

w h i l e  (choice != 4) { 

/ *  read i n p u t  da ta  * /  

p r i n t f ( ' \ n M e t h o d :  (1-SL 2-DDB 3-SYD 4-End) ' ) ;  

scanf ( "%d" ,  &choice) ;  
i f  (choice >= 1 && choice <= 3) { 

p r i n t f ( " 0 r i g i n a l  va lue:  " ) ;  

scanf ( "%f &va l )  ;' I ,  
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p r i n t f  ("Number o f  years: ' )  ; 
scanf ( "%dn, an) ; 

1 

switch (choice) { 

case 1: / *  s t r a i g h t - l i n e  method * /  

p r i n t f ( " \ n S t r a i g h t - L i n e  Method\n\n'); 
deprec = va l /n ;  
f o r  (year = 1; year <= n; ++year) { 

v a l  -= deprec; 
p r i n t f ( " E n d  o f  Year %2dn, year) ;  
p r i n t f ( "  Depreciation: %7 .2 fuJ  deprec); 
p r i n t f ( n  Current Value: %8.2f \nnJ v a l ) ;  

1 
break; 

case 2: / *  double-decl ining-balance method * /  

printf("\nDouble-Declining-Balance Method\n\n"); 
f o r  (year = 1; year <= n; ++year) { 

deprec = 2*val /n;  
v a l  -= deprec; 
p r i n t f  ("End o f  Year %2dn year); 
p r i n t f ( '  Depreciat ion: %7.2fn,  deprec); 
p r i n t f  ( ' I  Current Value: %8.2f \,If va l )  ; 

1 
break; 

case 3: / *  sum-of- the-years ' -d ig i ts  method * /  

printf("\nSum-Of-The-Years\'-DigitsMethod\n\nn); 
tag = va l ;  
f o r  (year = 1; year <= n; ++year) { 

deprec = (n-year+l)*tag / (n*(n+1)/2); 
v a l  -= deprec; 
p r i n t f ( n E n d  o f  Year %2dYJ year) ;  
p r i n t f ( "  Depreciat ion: %7.2fu, deprec); 
p r i n t f ( "  Current Value: %8.2f \nM, va l ) ;  

1 
break; 

case 4: / *  end of computation * /  

printf("\nGoodbye, have a n ice day l \nn ) ;  
break; 

de fau l t  : / *  generate e r r o r  message * /  

p r i n t f ( " \ n I n c o r r e c t  data en t r y  - please t r y  again\n") ;  
} / *  end switch * /  

} / *  end whi le  * /  
1 

The calculation of the depreciation for the sum-of-the-years'-digitsmethod may be somewhat obscure. In particular, 
the term (n-year+l ) in the numerator requires some explanation. This quantity is used to count backward (from n down 
to 1) as year progresses forward (from 1 to n). These declining values are required by the sum-of-the-yea.rs'-digits 
method. We could, of course, have set up a backward-counting loop instead, i.e. 
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f o r  (year  = n; year >= 1; --year) 

but then we would have required a corresponding forward-counting loop to write out the results of the calculations on a 
yearly basis. Also, the term (n*  ( n + l  ) /2 )  which appears in the denominator is a formula for the sum of the first n digits; 
i.e.,l + 2 + .  . . + n .  

The program is designed to be run interactively, with prompts for the required input data. Notice that the program 
generates a menu with four choices, to calculate the depreciation using one of the three methods or to end the computation. 
The computer will continue to accept new sets of input data, and carry out the appropriate calculations for each data set, 
until a value of 4 is selected from the menu. The program automatically generates an error message and returns to the 
menu if some value other than I ,  2, 3 or 4 is entered in response to the menu request. 

Some representative output is shown below. In each case, an $8000 item is depreciated over a 10-year period, using 
one of the three methods. The error message that is generated by an incorrect data entry is also illustrated. Finally, the 
computation is terminated in response to the last menu selection. 

Method: (1-SL 2-DDB 3-SYD 4-End) 1 
O r i g i n a l  va lue:  8000 

Number of years: 10 

S t r a i g h t - L i n e  Method 

End of Year 1 Deprec ia t ion :  800.00 Current  Value: 7200.00 

End of Year 2 Deprec ia t ion :  800.00 Current  Value: 6400.00 

End of Year 3 Deprec ia t ion :  800.00 Current  Value: 5600.00 

End of Year 4 Deprec ia t ion :  800.00 Current  Value: 4800.00 

End o f  Year 5 Deprec ia t ion :  800.00 Current  Value: 4000.00 

End of Year 6 Deprec ia t ion :  800.00 Current  Value: 3200.00 

End of Year 7 Deprec ia t ion :  800.00 Current  Value: 2400.00 

End of Year 8 Deprec ia t ion :  800.00 Current  Value: 1600.00 

End of Year 9 Deprec ia t ion :  800.00 Current  Value: 800.00 

End o f  Year 10 Deprec ia t ion :  800.00 Current  Value: 0.00 

Method: (1-SL 2-DDB 3-SYD 4-End) 2 
O r i g i n a l  va lue:  8000 

Number o f  years: 10 

Double-Declining-Balance Method 

End of Year 1 Depreciat ion:1600.00 Current  Value: 6400.00 

End of Year 2 Deprec ia t ion :1280.00 Current  Value: 5120.00 

End of Year 3 Depreciat ion:1024.00 Current  Value: 4096.00 

End of Year 4 Deprec ia t ion : 81 9.20 Current  Value: 3276.80 

End of Year 5 Deprec ia t ion :  655.36 Current  Value: 2621.44 

End of Year 6 Deprec ia t ion :  524.29 Current  Value : 2097.15 

End of Year 7 Deprec ia t ion :  419.43 Current  Value: 1677.72 

End of Year 8 Deprec ia t ion :  335.54 Current  Value: 1342.18 

End of Year 9 Deprec ia t ion :  268.44 Current  Value: 1073.74 

End o f  Year 10 Deprec ia t ion :  214.75 Current  Value: 858.99 

Method: (1-SL 2-DDB 3-SYD 4-End) 3 
O r i g i n a l  va lue:  8000 
Number of years: 10 

Sum-of-the-Years'-DigitsMethod 
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End o f  Year 1 Depreciation:1454.55 Current Value: 6545.45 
End o f  Year 2 Depreciation:1309.09 Current Value: 5236.36 
End o f  Year 3 Depreciation:1163.64 Current Value: 4072.73 

End o f  Year 4 Depreciat ion:1018.18 Current Value: 3054.55 

End o f  Year 5 Depreciat ion: 872.73 Current Value: 2181.82 

End o f  Year 6 Depreciat ion: 727.27 Current Value: 1454.55 

End o f  Year 7 Depreciat ion: 581.82 Current Value: 872.73 
End o f  Year 8 Depreciat ion: 436.36 Current Value: 436.36 

End o f  Year 9 Depreciat ion: 290.91 Current Value: 145.45 
End o f  Year 10 Depreciat ion: 145.45 Current Value: 0.00 

Method: (1-SL 2-DDB 3-SYD 4-End) 3 

I nco r rec t  data en t r y  - please t r y  again 

Method: (1-SL 2-DDB 3-SYD 4-End) 4 

Goodbye, have a n ice  day! 

Notice that the double-declining-balance method and the sum-of-the-years'-digits method result in a large annual 
depreciation during the early years, but a very small annual depreciation in the last few years of the item's lifetime. Also, 
we see that the item has a value of zero at the end of its lifetime when using the straight-line method and the sum-of-the- 
years'-digits method, but a small value remains undepreciated when using the double-declining-balance method. 

6.8 THE break STATEMENT 

The break statement is used to terminate loops or to exit from a switch. It can be used within a f o r ,  whi le ,  
do -wh i l e ,  or swi tch  statement. 

The break statement is written simply as 

break; 

without any embedded expressions or statements. 
We have already seen several examples of the use of the break statement within a sw i t ch  statement, in 

Sec. 6.7. The break statement causes a transfer of control out of the entire swi tch  statement, to the first 
statement following the swi tch  statement. 

EXAMPLE 6.27 Consider once again the switch statement originally presented in Example 6.24. 

swi tch  (choice = toupper (ge tchar0) )  { 

case ' R I :  

p r i n t f  ( "RED" ) ; 
break; 

case ' W ' :  
pr int f ("WH1TE");  
break; 

case I B ' :  

p r i n t f  ( "BLUE") ; 
break; 

de fau l t  : 
p r i n t f  ( I'ERROR"); 
break; 

1 
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Notice that each group of statements ends with a break statement, in order to transfer control out of the switch 
statement. The break statement is required within each of the first three groups, in order to prevent the succeeding groups 
of statements from executing. The last group does not require a break statement, since control will automatically be 
transferred out of the switch statement after the last group has been executed. This last break statement is included, 
however, as a matter of good programming practice, so that it will be present if another group of statements is added later. 

If a break statement is included in a while,  do - whi le  or f o r  loop, then control will immediately be 
transferred out of the loop when the break statement is encountered. This provides a convenient way to 
terminate the loop if an error or other irregular condition is detected. 

EXAMPLE 6.28 Here are some illustrations of loops that contain break statements. In each situation, the loop will 
continue to execute as long as the current value for the floating-point variable x does not exceed 100. However, the 
computation will break out of the loop if a negative value for x is detected. 

First, consider a w h i l e  loop. 

s c a n f ( * % f * ,  & x ) ;  
w h i l e  ( x  <= 100) { 

i f  ( x  < 0)  { 
printf ("ERR0R - NEGATIVE VALUE FOR X ' ) ;  

break;  

1 

/ *  process the  nonnegative value o f  x * /  
, . . . .  
scanf ( "f', &x)  ; 

Now consider a do - w h i l e  loop that does the same thing. 

do { 
s c a n f ( " % f " ,  & x ) ;  
i f  ( x  < 0) { 

printf ("ERR0R - NEGATIVE VALUE FOR X I ' ) ;  

break;  

/ *  process the  nonnegative value o f  x * /  
. . . . .  

} w h i l e  ( x  <= 100); 

Finally, here is a f o r  loop that is similar 

f o r  (count = 1 ;  x <= 100; ++count) { 

s c a n f ( " % f * ,  & x ) ;  
i f  ( x  < 0) { 

printf ("ERR0R - NEGATIVE VALUE FOR X ' ) ;  
break; 

1 

/ *  process the  nonnegative value o f  x * /  
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In the event of several nested whi le ,  do - whi le ,  f o r  or swi tch  statements, a break statement will 
cause a transfer of control out of the immediate enclosing statement, but not out of the outer surrounding 
statements. We have seen one illustration of this in Example 6.26, where a switch statement is embedded 
within a w h i l e  statement. Another illustration is shown below. 

EXAMPLE 6.29 Consider the following outline of a whi le  loop embedded within a f o r  loop. 

f o r  (count = 0; count <= n; ++count) { 

. . . . .  
w h i l e  (c  = g e t c h a r ( )  I =  ' \ , I )  { 

i f  ( c  = break;I * ' )  

If the character variable c is assigned an asterisk (*), then the w h i l e  loop will be terminated. However, the f o r  loop will 
continue to execute. Thus, if the value of count is less than n when the breakout occurs, the computer will increment 
count and make another pass through the f o r  loop. 

6.9 THE cont inue STATEMENT 

The cont inue statement is used to bypass the remainder of the current pass through a loop. The loop does 
not terminate when a cont inue statement is encountered. Rather, the remaining loop statements are skipped 
and the computation proceeds directly to the next pass through the loop. (Note the distinction between 
cont inue and break.) 

The cont inue statement can be included within a whi le ,  a do - w h i l e  or a f o r  statement. It is written 
simply as 

cont inue;  

without any embedded statements or expressions. 

EXAMPLE 6.30 Here are some illustrations of loops that contain continue statements. 

First, consider a do - w h i l e  loop. 

do { 
scan'f ( "%f & x )  ;' I ,  

if( x  < 0) { 

printf ("ERR0R - NEGATIVE VALUE FOR X " ) ;  
cont inue;  

1;  

/ *  process the  nonnegative value o f  x * /  

. . . . .  
} w h i l e  ( x  <= 100); 

Here is a similar f o r  loop. 

f o r  (count = 1;  x <= 100; ++count) { 

scanf ( "%f &x)  ;' I ,  

i f  ( x  < 0) { 

printf ("ERR0R - NEGATIVE VALUE FOR X " ) ;  
cont inue;  
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/ *  process the  nonnegative value o f  x * /  

In each case, the processing of the current value of x will be bypassed if the value of x is negative. Execution of the loop 
will then continue with the next pass. 

It is interesting to compare these structures with those shown in Example 6.28, which make use of the break 
statement instead of the continue statement. (Why is a modification of the whi le  loop shown in Example 6.28 not 
included in this example?) 

EXAMPLE 6.31 Averaging a List of Nonnegative Numbers In Example 6.17 we saw a complete C program that 
uses a f o r  loop to calculate the average of a list of n numbers. Let us now modify this program so that it processes only 
nonnegative numbers. 

The earlier program requires two minor changes to accommodate this modification. First, the f o r  loop must include 
an i f  statement to determine whether or not each new value of x is nonnegative. A continue statement will be included 
in the i f  Statement to bypass the processing of negative values of x. Secondly, we require a special counter (navg) to 
determine how many nonnegative numbers have been processed. This counter will appear in the denominator when the 
average is calculated (i.e., the average will be determined as average = sumlnavg). 

Here is the actual C program. It is interesting to compare it with the program shown in Example 6.17. 

/ *  c a l c u l a t e  the  average o f  the nonnegative numbers i n  a l i s t  o f  n numbers * /  

# inc lude  <s td io .h>  

main ( ) 

t 
i n t  n ,  count,  navg = 0; 
f l o a t  x ,  average, sum = 0; 

/ *  i n i t i a l i z e  and read i n  a value f o r  n * /  
p r i n t f ( " H o w  many numbers? " ) ;  

s c a n f ( " % d " ,  &n); 

/ *  read i n  the  numbers * /  
f o r  (count = 1;  count <= n; ++count) { 

p r i n t f  ( " x  = " ) ;  

s c a n f ( " % f " ,  & x ) ;  
i f  ( x  < 0) continue; 
sum += x ;  
++navg; 

1 

/ *  c a l c u l a t e  the  average and w r i t e  out  the  answer * /  
average = sum/navg; 
p r i n t f ( " \ n T h e  average i s  % f \ n " ,  average);  

} 

When the program is executed with nonnegative values for x, it behaves exactly like the earlier version presented in 
Example 6.17. When some of the x ' s  are assigned negative values, however, the negative values are ignored in the 
calculation of the average. 

A sample interactive session is shown below. As usual, the user's responses are underlined. 
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How many numbers? 6 
x = l  
x = A  
x = 2  
x = G  
x = 2  
x = S  

The average i s  2.000000 

This is the correct average of the positive numbers. Note that the average would be zero if all of the numbers had been 
averaged. 

6.10 THE COMMA OPERATOR 

We now introduce the comma operator (,) which is used primarily in conjunction with the f o r  statement. 
This operator permits two different expressions to appear in situations where only one expression would 
ordinarily be used. For example, it is possible to write 

f o r  ( expression 7a, expression 7b; expression 2; expression 3)  statement 

where expression l a  and expression 7b are the two expressions, separated by the comma operator, 
where only one expression (expression I )  would normally appear. These two expressions would typically 
initialize two separate indices that would be used simultaneously within the f o r  loop. 

Similarly, a f o r  statement might make use of the comma operator in the following manner. 

f o r  ( expression 7; expression 2; expression 3a, expression 36) statement 

Here expression 3a and expression 3b, separated by the comma operator, appear in place of the usual 
single expression. In this application the two separate expressions would typically be used to alter (e.g., 
increment or decrement) two different indices that are used simultaneously within the loop. For example, one 
index might count forward while the other counts backward. 

EXAMPLE 6.32 Searching for Palindromes A palindrome is a word, phrase or sentence that reads the same way 
either forward or backward. For example, words such as noon, peep, and madam are palindromes. If we disregard 
punctuation and blank spaces, then the sentence Rise to vote, sir! is also a palindrome. 

Let us write a C program that will enter a line of text containing a word, a phrase or a sentence, and determine 
whether or not the text is a palindrome. To do so, we will compare the first character with the last, the second character 
with the next to last, and so on, until we have reached the middle of the text. The comparisons will include punctuation 
and blank spaces. 

In order to outline a computational strategy, let us define the following variables. 

l e t t e r  = a c ha racte r-type array containing as many as 80 elements. These elements will be the characters in 
the line of text. 

t a g  = an i n t e g e r  variable indicating the number of characters assigned to l e t t e r ,  excluding the escape 
character \O at the end. 

count = an i n t e g e r  variable used as an index when moving forward through l e t t e r .  

countback = an integer variable used as an index when moving backward through l e t t e r .  

f l a g  = an i n t e g e r  variable that will be used to indicate a true/false condition. True will indicate that a 
palindrome has been found. 

loop = an i n t e g e r  variable whose value will always equal 1, thus appearing always to be true. The intent 
here is to continue execution of a main loop, until a particular stopping condition causes a breakout. 
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We can now outline our overall strategy as follows. 

1. Define the symbolic constants EOL (end-of-line), TRUE and FALSE. 

2. Declare all variables and initialize loop (i.e., assign TRUE to loop). 

3. Enter the main loop. 

(a) Assign TRUE to f lag,  in anticipation of finding a palindrome. 

(6)  Read in the line of text on a character-by-character basis, and store in l e t t e r .  

(c)  Test to see if the uppercase equivalents of the first three characters are E, N and D, respectively. If so, 
break out of the main loop and exit the program. 

(6) Assign the final value of count, less I ,  to tag. This value will indicate the number of characters in the 
line of text, not including the final escape character \ 0. 

(e) Compare each character in the first half of l e t t e r  with the corresponding character in the second half. If 
a mismatch is found, assign FALSE to f l a g  and break out of the (inner) comparison loop. 

(f) If flag is TRUE, display a message indicating that a palindrome has been found. Otherwise, display a 
message indicating that a palindrome has not been found. 

4. Repeat step 3 (i.e., make another pass through the outer loop), thus processing another line of text. 

Here is the corresponding pseudocode. 

#include f i l e s  

#define symbolic constants 

main( ) 

{ 

/ *  declare a l l  var iab les and i n i t i a l i z e  as required * /  

whi le  ( loop) { 

f l a g  = TRUE; / *  a n t i c i p a t i n g  a palindrome * /  

/ *  read i n  a l i n e  o f  t e x t  and store i n  l e t t e r  * /  

/ *  break out o f  while loop i f  f i r s t  three characters 
of l e t t e r  s p e l l  END ( t e s t  uppercase equivalents) * /  

/ *  assign number o f  characters i n  t e x t  t o  tag * /  

f o r  ( (count = 0, countback = tag ) ;  count <= ( tag  - 1 ) /  2;(++count, --countback)) { 

i f  ( l e t t e r [ c o u n t ]  I =  le t ter [countback] )  { 

f l a g  = FALSE; 

/ *  not a palindrome - break out o f  for  loop * /  

1 
1 

/ *  d isp lay a message i n d i c a t i n g  whether o r  not l e t t e r  contains a palindrome * /  

The program utilizes the comma operator within a f o r  loop to compare each character in the first half of l e t t e r  
with the corresponding character in the second half. Thus, as count increases from 0 to ( t ag  - 1) / 2, countback 
decreases from tag to ( t ag  / 2) + 1. Note that integer division (resulting in a truncated quotient) is involved in 
establishing these limiting values. 
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Also, observe that there will be two distinct comma operators within the f o r  statement. Each comma operator and its 
associated operands are enclosed in parentheses. This is not necessary, but it does emphasize that each operand pair 
comprises one argument within the f o r  statement. 

The complete C program is shown below. 

/ *  search f o r  a palindrome * /  

#include <stdio.h> 
#include <ctype.h> 

#def ine EOL ' \ n '  
#def ine TRUE 1 

#def ine FALSE 0 

main ( ) 

{ 
char l e t t e r [ 8 0 ] ;  
i n t  tag,  count, countback, f l a g ,  loop = TRUE; 

/ *  main loop * /  

wh i le  ( loop) { 
f l a g  = TRUE; 

/ *  read the t e x t  * /  

p r in t f ( "P1ease enter a word, phrase o r  sentence below:\n") ;  
f o r  (count = 0; ( l e t t e r [ c o u n t ]  = ge tchar ( ) )  I =  EOL; ++count) 

1 

i f  ( ( toupper ( l e t te r [O ] )  == ' E ' )  && ( t o u p p e r ( l e t t e r [ l ] )  == I N ' )  && 
( t o u p p e r ( l e t t e r [ 2 ] )  == I D ' ) )  break; 

t ag  = count - 1; 

/ *  ca r ry  out the search * /  

f o r  ( (count = 0, countback = tag) ;  count <= tag/2;  
(++count, --countback)) { 

i f  ( l e t t e r [ c o u n t ]  I =  l e t te r [countback ] )  { 

f l a g  = FALSE; 
break; 

1 
} 

/ *  d i sp lay  message * I  

f o r  (count = 0; count <= tag; ++count) 
pu tcha r ( l e t te r [ coun t ] ) ;  

i f  ( f l a g )  p r i n t f ( "  IS a pal indrome\n\n"); 
e lse  p r i n t f ( "  i s  NOT a pal indrome\n\n"));  

1 
1 

A typical interactive session is shown below, indicating the type of output that is generated when the program is 
executed. As usual, the user's responses are underlined. 

Please enter a word, phrase o r  sentence below: 
mu 

TOOT IS a palindrome 
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Please e n t e r  a word, phrase o r  sentence below: 
FALSE 

FALSE is NOT a palindrome 

Please e n t e r  a word, phrase o r  sentence below: 
PULLUP 

PULLUP IS a palindrome 

Please e n t e r  a word, phrase o r  sentence below: 
ABLE W& I ERE I SAW ELBA 

ABLE WAS I ERE I SAW ELBA IS a palindrome 

Please e n t e r  a word, phrase o r  sentence below: 
-END 

Remember that the comma operator accepts two distinct expressions as operands. These expressions will 
be evaluated from left to right. In situations that require the evaluation of the overall expression (i.e., the 
expression formed by the two operands and the comma operator), the type and value of the overall expression 
will be determined by the type and value of the right operand. 

Within the collection of C operators, the comma operator has the lowest precedence. Thus, the comma 
operator falls within its own unique precedence group, beneath the precedence group containing the various 
assignment operators (see Appendix C). Its associativity is left to right. 

6.11 THE goto  STATEMENT 

The g o t o  statement is used to alter the normal sequence of program execution by transferring control to some 
other part of the program. In its general form, the goto statement is written as 

g o t o  label;  

where label is an identifier that is used to label the target statement to which control will be transferred. 
Control may be transferred to any other statement within the program. (To be more precise, control may 

be transferred anywhere within the current function. We will introduce functions in the next chapter, and 
discuss them thoroughly in Chapter 7.) The target statement must be labeled, and the label must be followed 
by a colon. Thus, the target statement will appear as 

label:  statement 

Each labeled statement within the program (more precisely, within the current function) must have a unique 
label; i.e., no two statements can have the same label. 

EXAMPLE 6.33 The following skeletal outline illustrates how the goto statement can be used to transfer control out of a 
loop if an unexpected condition arises. 

/ *  main loop * /  

scanf ( "%fI" , & x )  ; 
w h i l e  ( x  <= 100) { 

. . . . .  
i f  ( x  < 0) goto errorcheck;  
. . . . .  
scanf ( "%fI" , & x )  ; 

1 
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/ *  e r r o r  d e t e c t i o n  r o u t i n e  * /  

errorcheck:  { 

p r i n t f  ("ERROR - NEGATIVE VALUE FOR X " ) ;  

In this example control is transferred out of the while loop, to the compound statement whose label is errorcheck, if a 
negative value is detected for the input variable x. 

The same thing could have been accomplished using the break statement, as illustrated in Example 6.28. The use of 
the break statement is actually the preferred approach. The use of the goto statement is presented here only to illustrate 
the syntax. 

All of the popular general-purpose programming languages contain a goto statement, though modern 
programming practice discourages its use. The goto statement was used extensively, however, in early 
versions of some older languages, such as Fortran and BASIC. The most common applications were: 

1. Branching around statements or groups of statements under certain conditions. 

2. Jumping to the end of a loop under certain conditions, thus bypassing the remainder of the loop during the 
current pass. 

3. Jumping completely out of a loop under certain conditions, thus terminating the execution of a loop. 

The structured features in C enable all of these operations to be carried out without resorting to the goto 
statement. For example, branching around statements can be accomplished with the i f  - e l s e  statement; 
jumping to the end of a loop can be carried out with the cont inue statement; and jumping out of a loop is 
easily accomplished using the break statement. The use of these structured features is preferrable to the use 
of the goto statement, because the use of goto tends to encourage (or at least, not discourage) logic that skips 
all over the program whereas the structured features in C require that the entire program be written in an 
orderly, sequential manner. For this reason, use of the goto statement should generally be avoided. 

Occasional situations do arise, however, in which the goto statement can be useful. Consider, for 
example, a situation in which it is necessary to jump out of a doubly nested loop if a certain condition is 
detected. This can be accomplished with two i f  - break statements, one within each loop, though this is 
awkward. A better solution in this particular situation might make use of the goto statement to transfer out of 
both loops at once. The procedure is illustrated in the following example. 

EXAMPLE 6.34 Converting Several Lines of Text to Uppercase Example 6.19 presents a program to convert 
several successive lines of text to uppercase, processing one line of text at a time, until the first character in a new line is 
an asterisk (*). Let us now modifL this program to detect a break condition, as indicated by two successive dollar signs 
($$) anywhere within a line of text. If the break condition is encountered, the program will print the line of text 
containing the dollar signs, followed by an appropriate message. Execution of the program will then terminate. 

The logic will be the same as that given in Example 6.19, except that an additional loop will now be added to test for 
two consecutive dollar signs. Thus the program will proceed as follows. 

1. Assign an initial value of 1 to the outer loop index ( l inecount).  

2. Carry out the following steps repeatedly, for successive lines of text, as long as the first character in the line is 
not an asterisk. 

(a) Read in a line of text and assign the individual characters to the elements of the char-type array l e t t e r .  
A line will be defined as a succession of characters that is terminated by an end-of-line (i.e, a newline) 
designation. 

(b)  Assign the character count, including the end-of-line character, to tag. 
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(c)  Display the line in uppercase, using the library function toupper to carry out the conversion. Then 
display two newline characters (so that the next line of input will be separated from the current output by a 
blank line), and increment the line counter (linecount). 

(d) Test all successive characters in the line for two successive dollar signs. If two successive dollar signs are 
detected, then display a message indicating that a break condition has been found and jump to the 
terminating condition at the end of the program (see below). 

3. Once an asterisk has been detected as the first character of a new line, write out "Good bye." and terminate the 
computation. 

Here is the complete C program. 

/ *  convert severa l  l i n e s  o f  t e x t  t o  uppercase 

Continue conversion u n t i l  the f i r s t  character i n  a l i n e  i s  an as te r i sk  ( * ) .  
Break out o f  the program sooner i f  two successive d o l l a r  signs ($$) are detected * /  

# include <stdio.h> 
#include <ctype.h> 

#def ine EOL ' \ n '  

main ( ) 

t 
char l e t t e r [ 8 0 ] ;  
i n t  tag, count, l inecount  = 1; 

wh i le  ( ( l e t t e r ( O 1  = ge tchar ( ) )  I =  I * ' )  { 

/ *  read i n  a l i n e  o f  t e x t  * /  
f o r  (count = 1; ( l e t t e r [ c o u n t ]  = ge tchar ( ) )  != EOL; ++count) 

9 

t ag  = count; 

I *  d isp lay  the  l i n e  o f  t e x t  * /  
f o r  (count = 0; count < tag; ++count) 

putchar(toupper(letter[count])); 

p r i n t f ( ' \ n \ n " ) ;  
++l inecount; 

/ *  t e s t  f o r  a break cond i t ion  * /  
f o r  (count=l ;  count < tag; ++count) 

I $ 'i f  ( l e t t e r [ c o u n t - 1 J  == && l e t t e r [ c o u n t ]  == I $ ' )  { 

printf('BREAK CONDITION DETECTED - TERMINATE EXECUTION\n\n"); 
goto end; 

} 

I. 
end: p r i n t f  ("Good bye")  ; 

1 

It is interesting to compare this program with the corresponding program presented earlier, in Example 6.19. The 
present program contains an additional f o r  loop embedded at the end of the whi le  loop. This f o r  loop examines 
consecutive pairs of characters for a break condition ($$), after the entire line has already been written out in uppercase. If 
a break condition is encountered, then control is transferred to the final p r i n t f  statement ("Good bye') which is now 
labeled end. Note that this transfer of control causes a breakout from the i f  statement, the current f o r  loop, and the outer 
whi le  loop. 

You should run this program, using both the regular terminating condition (an asterisk at the start of a new line) and 
the breakout condition. Compare the results obtained with the output shown in Example 6.19. 
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Review Questions 

6.1 What is meant by branching? 


6.2 What is meant by selection? 


6.3 What is meant by looping? Describe two different forms of looping. 


6.4 Summarize the rules associated with the use of the four relational operators, the two equality operators, the two 

logical connectives and the unary negation operator. What types of operands are used with each type of operator? 

6.5 How are char-type constants and char-type variables interpreted when used as operands with a relational operator? 


6.6 How do expression statements differ from compound statements? Summarize the rules associated with each. 


6.7 What is the purpose of the i f  - e l se  statement? 


6.8 Describe the two different forms of the i f  - e l se  statement. How do they differ? 


6.9 Compare the use of the i f  - e l se  statement with the use of the 7 : operator. In particular, in what way can the 7 : 

operator be used in place of an i f  - e l se  statement? 

6.10 Summarize the syntactic rules associated with the i f  - e l se  statement 


6.11 How are nested i f  - e l se  statements interpreted? In particular, how is the following interpreted? 


i f  e7 i f  e2 s7 
e l se  s2 

Which logical expression is associated with the e l se  clause? 

6.12 What happens when an expression is encountered whose value is nonzero within a group of nested i f  - e l s e  

statements? 

6.13 What is the purpose of the while statement? When is the logical expression evaluated? What is the minimum 

number of times that a while loop can be executed? 

6.14 How is the execution of a while loop terminated? 


6.15 Summarize the syntactic rules associated with the while statement. 


6.16 What is the purpose of the do - while statement? How does it differ from the while statement? 


6.17 What is the minimum number of times that a do - while loop can be executed? Compare with a while loop and 

explain the reasons for the differences. 

6.18 Summarize the syntactic rules associated with the do - while statement. Compare with the while statement. 


6.19 What is the purpose of the for statement? How does it differ from the while statement and the do - while 

statement? 

6.20 How many times will a f o r  loop be executed? Compare with the while loop and the do - while loop. 


6.21 What is the purpose of the index in a for statement? 


6.22 Can any of the three initial expressions in the for statement be omitted? If so, what are the consequences of each 

omission? 

6.23 Summarize the syntactic rules associated with the for statement. 


6.24 What rules apply to the nesting of loops? Can one type of loop be embedded within another? 


6.25 Can loops be nested within i f  - e l se  statements? Can i f  - e l se  statements be nested within loops? 


6.26 What is the purpose of the switch statement? How does this statement differ from the other statements described 

in this chapter? 

6.27 What are case labels (case prefixes)? What type of expression must be used to represent a case label? 


6.28 Summarize the syntactic rules associated with the use of the switch statement. Can multiple case labels be 

associated with one alternative? 

6.29 What happens when the value of the expression in the switch statement matches the value of one of the case 

labels? What happens when the value of this expression does not match any of the case labels? 
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6.30 Can a default alternative be defined within a swi tch  statement? If so, how would the default alternative be 
labeled? 

6.31 Compare the use of the s w i t c h  statement with the use of nested if- e l s e  statements. Which is more 
convenient? 

6.32 What is the purpose of the break statement? Within which control statements can the break statement be 
included? 

6.33 Suppose a break statement is included within the innermost of several nested control statements. What happens 
when the break statement is executed? 

6.34 What is the purpose of the cont inue statement? Within which control statements can the cont inue statement be 
included? Compare with the break statement. 

6.35 What is the purpose of the comma operator? Within which control statement does the comma operator usually 
appear? 

6.36 In situations that require the evaluation of an expression containing the comma operator, which operand will 
determine the type and the value of the entire expression (i.e.y the expression to the left of the comma operator or 
the expression to the right)? 

6.37 What is the precedence of the comma operator compared with other C operators? 

6.38 What is the purpose of the goto  statement? How is the associated target statement identified? 

6.39 Are there any restrictions that apply to where control can be transferred within a given C program? 

6.40 Summarize the syntactic rules associated with the goto  statement. 

6.41 Compare the syntax associated with statement labels with that of case labels (case prefixes). 

6.42 Why is the use of the goto  statement generally discouraged? Under what conditions might the goto  statement be 
helpful? What types of usage should be avoided, and why? Discuss thoroughly. 

Problems 

6.43 Explain what happens when the following statement is executed. 

i f  (abs(x )  .Z xmin) x = ( x  > 0) 7 xmin : -xmin; 

Is this a compound statement? Is a compound statement embedded within this statement? 

6.44 IdentifL all compound statements that appear within the following program segment. 

t 
sum = 0; 

do t 
scanf ( "%d" & i )  ; 
i f  ( i  < 0)  { 
i= -1; 

+ + f l a g; 

} 
sum += i; 

} w h i l e  ( i  I =  0);  

1 
6.45 Write a loop that will calculate the sum of every third integer, beginning with i= 2 (icy calculate the sum 2 + 5 + 

8 + 11  + - ) for all values of ithat are less than 100. Write the loop three different ways. 

(a) Using a w h i l e  statement. 

( 6 )  Using a do - w h i l e  statement. 

(c) Using a f o r  statement. 
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6.46 Repeat Prob. 6.45 calculating the sum of every nth integer, beginning with the value assigned to n s t a r t  (i.e., for 
i= n s t a r t ,  n s t a r t  + n,  n s t a r t  + 2*n, n s t a r t  + 3*n,  etc.). Continue the looping process for all 
values of ithat do not exceed nstop. 

6.47 Write a loop that will examine each character in a character-type array called t e x t ,  and write out the ASCII 
equivalent (i.e, the numerical value) of each character. Assume that the number of characters in the array is 
specified in advance by the integer variable n. Write the loop three different ways. 

(a) Using a while statement. 

(b) Using a do - whi le  statement. 

(c) Using a f o r  statement. 

6.48 Repeat Prob. 6.47 assuming that the number of characters in the array is not specified in advance. Continue the 
looping action until an asterisk (*) is encountered. Write the loop three different ways, as before. 

6.49 Generalize Prob. 6.45 by generating a series of loops, each loop generating the sum of every j th integer, where j 
ranges from 2 to 13. Begin each loop with a value of i= 2, and increase iby j until itakes on the largest 
possible value that is less than 100. (In other words, the first loop will calculate the sum 2 + 4 + 6 + * - * + 98; the 
second loop will calculate the sum 2 + 5 + 8 + - * * + 98; the third loop will calculate the sum 2 + 6 + 10 + - - + 
98; and so on. The last loop will calculate the sum 2 + 15 + 28 + - * * + 93.) Display the value of each complete 
sum. 

Use a nested loop structure to solve this problem, with one loop embedded within another. Calculate each 
sum with the inner loop, and let the outer loop control the value of j that is used by each pass through the inner 
loop. Use a f o r  statement to structure the outer loop, and use each of the three different loop statements (wh i le ,  
do - w h i l e  and f o r )  for the inner loop. Develop a separate solution for each type of inner loop. 

6.50 Write a loop that will generate every third integer, beginning with i= 2 and continuing for all integers that are less 
than 100. Calculate the sum of those integers that are evenly divisible by 5. Use two different methods to carry 
out the test. 

(a) Use the conditional operator (?:). 

(b) Use an i f  - e l s e  statement. 

6.51 Generalize Prob. 6.50 by generating every nth integer, beginning with n s t a r t  (i.e., i = n s t a r t , n s t a r t  + n,  
n s t a r t  + 2*n,  n s t a r t  + 3*n, etc.). Continue the looping process for all values of ithat do not exceed 
nstop. Calculate the sum of those integers that are evenly divisible by k, where k represents some positive 
integer. 

6.52 Write a loop that will examine each character in a character-type array called t e x t  and determine how many of 
the characters are letters, how many are digits, how many are whitespace characters, and how many are other kinds 
of characters (e.g., punctuation characters). Assume that t e x t  contains 80 characters. 

6.53 Write a loop that will examine each character in a character-type array called t e x t  and determine how many of 
the characters are vowels and how many are consonants. (Hint: First determine whether or not a character is a 
letter; if so, determine the type of letter.) Assume that t e x t  contains 80 characters. 

6.54 Write a switch statement that will examine the value of an integer variable called f l a g  and print one of the 
following messages, depending on the value assigned to f l a g .  

(a) HOT, if f l a g  has a value of 1 

(b) LUKE WARM, if f l a g  has a value of 2 

(c) COLD, if f l a g  has a value of 3 

(d) OUT OF RANGE if f l a g  has any other value 

6.55 Write a switch statement that will examine the value of a char-type variable called c o l o r  and print one of the 
following messages, depending on the character assigned to color .  

(a) RED, if either r or R is assigned to color ,  

(b) GREEN, if either g or G is assigned to color ,  
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(c) BLUE, if either b or B is assigned to color, 

(d) BLACK, if color is assigned any other character. 

6.56 Write an appropriate control structure that will examine the value of a floating-point variable called temp and 
print one of the following messages, depending on the value assigned to temp. 

(a) ICE, if the value of temp is less than 0. 

(b) WATER, if the value of temp lies between 0and 100. 

(c) STEAM, if the value of temp exceeds 100. 

Can a switch statement be used in this instance? 

6.57 Write a for loop that will read the characters in a character-type array called text and write the characters 
backwards into another character-type array called backtext. Assume that text contains 80 characters. Use the 
comma operator within the for loop. 

6.58 Describe the output that will be generated by each of the following C programs. (Note the similarities in the 
programs that are shown across from each other.) 

(a)  #include estdio. h> (b )  #include estdio. h> 

main ( ) main ( ) 

int i = 0, x = 0; int i = 0, x = 0; 

while (i < 20) { do { 
if (i % 5 == 0) { if (i % 5 == 0) { 

x += i; x++; 
printf("%d " ,  x); printf("%d " ,  x ) ;  

1 1 
++i ; ++i ; 

1 } while (i < 20); 
printf('\nx = %d", x); printf("\nx = %d", x ) ;  

} 1 

(c) #include estdio. h> (d) #include <stdio.h> 

main ( ) main ( ) 

{ { 
int i = 0, x = 0; int i = 0, x = 0; 

for (i = 1 ;  i < 10; i *= 2) { for (i = 1 ;  i < 10; ++i) { 

x++; if (i % 2 == 1 )  
' I ,printf('%d x); x += i; 

1 else 
printf("\nx = %d*, x); x- - * 

' I ,1 printf ("%d x) ; 
1 
printf('\nx = %dm, x ) ;  
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(e) #include <stdio. h> U> #include <stdio.h> 

main ( ) main ( ) 

i 1 
int i = 0, x = 0; int i = 0, x = 0; 

fo r  (i = 1 ;  i .C 10; ++i) { for (i = 1 ;  i < 10; ++i) { 
if (i % 2 == 1 )  if (i % 2 == 1 )  

x += i; x += i; 
else else 

x - - X - - ;  
printf ("%d ' I ,  x); printf("%d * ,  x); 
continue ; break; 

1 f 
printf ("\nx = %d", x) ; printf("\nx = %d", x); 

1 1 

(g) #include <stdio.h> 

main ( ) 

{ 
int i, j, x = 0; 

fo r  (i = 0; i < 5; ++i) 
f o r  (j = 0; j < i; ++j) { 

x += (i + j - 1); 
printf(*%d * ,  x); 

1 
printf("\nx = %dm, x); 

(h)  #include <stdio. h> ( i )  #include <stdio. h> 

main ( ) main ( ) 

{ i 
int i, j, x = 0; int i, j, x = 0; 

for (i = 0; i < 5; ++i) for (i = 0; i < 5; ++i) { 
for (j = 0; j < i; ++j) { for (j = 0; j < i; ++j) 

x += (i + j - 1); x += (i + j - 1); 
printf ("%d I#,x) ; printf("%d " ,  x); 
break; break; 

1 1 
printf ("\nx = %d", x) ; printf("\nx = %du, x); 

1 1 
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0) #include cstd io .  h> 

main( ) 

{ 
i n t  i,j ,  k, x = 0; 

f o r  ( i  = 0; i< 5; ++i )  
f o r  ( j  = 0; j c i;++j) { 

k = ( 1  + j - 1) ;  

i f  ( k  % 2 == 0) 
x += k; 

e lse 
i f  (k % 3 == 0) 

x += k - 2; 

p r i n t f ( " % d  ' I ,  x) ;  

p r i n t f  ( " \ nx  = %do',x )  ; 
1 

(k) #include <std io .  h> ( f )  #include cstdio.h> 

main ( ) main( ) 

i n t  i,j ,  k, x = 0; i n t  i,j ,  k, x = 0; 

f o r  (i= 0; i 5; ++i)  f o r  (i= 0; ic 5; ++i) 
f o r  ( j  = 0; j < i;++j) { f o r  ( j  = 0; j < i;++j) { 

switch ( i  + j - 1 )  { switch (i+ j - 1 )  { 

case -1: case -1: 

case 0: case 0: 

x += 1; x += 1; 

break; break; 

case 1: case 1: 

case 2: case 2: 

case 3: case 3: 
x += 2; x += 2; 

break; 

de fau l t  : defaul t  : 
x += 3; x += 3; 

1 1 
p r i n t f ( " % d  ' I ,  x ) ;  p r i n t f ( " % d  ' I ,  x ) ;  

1 1 
p r i n t f ( l I \ n x  = %dH,x ) ;  p r i n t f  ( " \ n x  = %d", x )  ; 

1 
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Programming Problems 

6.59 Modify the programs given in Examples 6.9,6.12and 6.16 so that each program does the following: 

( a )  Read in a line of uppercase text, store it in an appropriate array, and then write it out in lowercase. 

( 6 )  Read in a line of mixed text, store it in an appropriate array, and then write it out with all lowercase and 
uppercase letters reversed, all digits replaced by O S ,  and all other characters (nonletters and nondigits) 
replaced by asterisks (*). 

6.60 Compile and execute the programs given in Examples 6.10,6.13 and 6.17, using the following 10 numbers: 

27.5, 13.4, 53.8, 29.2, 74.5, 87.0, 39.9, 47.7, 8.1, 63.2 

6.61 Compile and execute the program given in Example 6.31 using the following 10 numbers: 

27.5, -13.4, 53.8, -29.2, 74.5, 87.0, 39.9, -47.7, -8.1, 63.2 

Compare the calculated result with the results obtained for the last problem. 

6.62 Modify the program given in Example 6.10 so that the size of the list of numbers being averaged is not specified 
in advance. Continue looping (i.e., reading in a new value for x and adding it to sum) until a value of zero is 
entered. Thus, x = 0 will signal a stopping condition. 

6.63 Repeat Problem 6.62 for the program given in Example 6.17. 

6.64 Rewrite the depreciation program given in Example 6.26 to use the i f  - else statement instead of the switch 
statement. Test the program using the data given in Example 6.26. Which version do you prefer? Why? 

6.65 The equation 

x 5 + 3 2 - 1 0 = 0  

which was presented in Example 6.22, can be rearranged into the form 

x = ,,/(10-x5)/3 

Rewrite the program presented in Example 6.22 to make use of the above form of the equation. Run the program 
and compare the calculated results with those presented in Example 6.22. Why are the results different? (Do 
computers always generate correct answers?) 

6.66 Modify the program given in Example 6.22, which solves for the roots of an algebraic equation, so that the while 
statement is replaced by a do - while statement. Which structure is best suited for this particular problem? 

6.67 Modify the program given in Example 6.22, which solves for the roots of an algebraic equation, so that the while 
statement is replaced by a f o r  statement. Compare the use of the f o r ,  while and do - while statements. Which 
version do you prefer, and why? 

6.68 Add an error-trapping routine similar to that given in Example 6.21 to the depreciation program in Example 6.26. 
The routine should generate an error message, followed by a request to reenter the data, whenever a nonpositive 
input value is detected. 

6.69 Write a complete C program for each of the problems presented below. Use whatever control structures are most 
appropriate for each problem. Begin with a detailed outline. Rewrite the outline in pseudocode if the translation 
into a working C program is not obvious. Be sure to use good programming style (comments, indentation, etc.). 

( a )  Calculate the weighted average of a list of n numbers, using the formula 

xavg =fi x1 +f2 9 + - - +f&.J 
where thef’s are fractional weighting factors, i.e., 

Test your program with the following data: 
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1’’ 

i =  1 f = 0.06 x = 27.5 

2 0.08 13.4 

3 0.08 53.8 

4 0.10 29.2 

0.10 74.55 

6 0.10 87.0 

7 0.12 39.9 

8 0.12 47.7 

9 0.12 8.1 

10 0.12 63.2 

( b )  Calculate the cumulative product of a list of n numbers. Test your program with the following six data 
items: 6.2, 12.3, 5.0, 18.8, 7.1, 12.8. 

(c) Calculate the geometric average of a list of numbers, using the formula 

xavg = ~ ~ 1 ~ 2 x 3* * * X,J 

Test your program using the values of x given in part (6) above. Compare the results obtained with the 
arithmetic average of the same data. Which average is larger? 

(6) Determine the roots of the quadratic equation 

ax? + bx + c = 0 

using the well-known quadratic formula 

-b* Jb2  - 4ac 
a - 


2a 

(see Example 5.6). Allow for the possibility that one of the constants has a value of zero, and that the 
quantity b2 - 4ac is less than or equal to zero. Test the program using the following sets of data: 

a = 2  b = 6  c = l  

3 3 0 

1 3 1 

0 12 -3 

3 6 3 

2 -4 3 

( e )  The Fibonacci numbers are members of an interesting sequence in which each number is equal to the sum 
of the previous two numbers. In other words, 

Fi = Fi-1 + Fi-2 

where Fi refers to the ith Fibonacci number. By definition, the first two Fibonacci numbers equal 1; i.e., 

F i = F 2 = 1 .  

Hence, 

F3 = F2 + F1 = 1 + 1 = 2 

F4 = F3 + F2 = 2 + 1 = 3 

Fs = F4 + F3 = 3  + 2 =  5 

and so on. 
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Write a program that will determine the first n Fibonacci numbers. Test the program with n = 7, n = 

10,n= 17andn=23. 

A prime number is a positive integer quantity that is evenly divisible (without a remainder) only by 1 or by 
itself. For example, 7 is a prime number, but 6 is not. 

Calculate and tabulate the first n prime numbers. (Hint: A number, n, will be a prime if the 
remainders of n/2, n/3, n/4,. . . ,n/& are all nonzero.) Test your program by calculating the first 100 
prime numbers. 

Write an interactive program that will read in a positive integer value and determine the following: 

( i )  If the integer is a prime number. 

(i i)  If the integer is a Fibonacci number. 

Write the program in such a manner that it will execute repeatedly, until a zero value is detected for the 
input quantity. Test the program with several integer values of your choice. 

Calculate the sum of the first n odd integers (i.e., 1 + 3 + 5 + - - - + 2n - 1). Test the program by 
calculating the sum of the first 100 odd integers (note that the last integer will be 199). 

The sine of x can be calculated approximately by summing the first n terms of the infinite series 

sinx=x-x3/3! +x5/5! -x7/7! + * * 

where x is expressed in radians (Note: 7t radians = 180'). 
Write a C program that will read in a value for x and then calculate its sine. Write the program two 

different ways: 

( i )  Sum the first n terms, where n is a positive integer that is read into the computer along with the 
numerical value for x. 

(i i)  Continue adding successive terms in the series until the value of the next term becomes smaller (in 
magnitude) than 10-5. 

Test the program for x = 1, x = 2 and x = -3. In each case, display the number of terms used to obtain the 
final answer. 

Suppose that P dollars are borrowed from a bank, with the understanding that A dollars will be repaid each 
month until the entire loan has been repaid. Part of the monthly payment will be interest, calculated as i 
percent of the current unpaid balance. The remainder of the monthly payment will be applied toward 
reducing the unpaid balance. 

Write a C program that will determine the following information: 

(i) The amount of interest paid each month. 

( i i )  The amount of money applied toward the unpaid balance each month. 

(iii) The cumulative amount of interest that has been paid at the end of each month. 

( iv )  The amount of the loan that is still unpaid at the end of each month. 

( v )  The number of monthly payments required to repay the entire loan. 

(vi)  The amount of the last payment (since it will probably be less than A). 

Test your program using the following data: P = $40,000; A = $2,000; i = 1% per month. 

A class of students earned the following grades for the six examinations taken in a C programming course. 

Name ExamScoresI-1 
Adams 45 80 80 95 55 75 

Brown 60 50 70 75 55 80 

Davis 40 30 10 45 60 55 

Fisher 0 5 5 0 10 5 

Hamilton 90 85 100 95 90 90 
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Name h S c o r e s b f = m d  
Jones 95 90 80 95 85 80 

Ludwig 35 50 55 65 45 70 

Osborne 75 60 75 60 70 80 

Prince 85 75 60 85 90 100 

Richards 50 60 50 35 65 70 

Smith 70 60 75 70 55 75 

Thomas 10 25 35 20 30 10 

Wolfe 25 40 65 75 85 95 

Zorba 65 80 70 100 60 95 

Write an interactive C program that will accept each student’s name and exam grades as input, determine an 
average grade for each student, and then display the student’s name, the individual exam grades and the 
calculated average. 

Modify the program written for part (k) above to allow for unequal weighting of the individual exam 
grades. In particular, assume that each of the first four exams contributes 15 percent to the final score, and 
each of the last two exams contributes 20 percent. 

Extend the program written for part (0 above so that an overall class average is determined in addition to 
the individual student averages. 

Write a C program that will allow the computer to be used as an ordinary desk calculator. Consider only 
the common arithmetic operations (addition, subtraction, multiplication and division). Include a memory 
that can store one number. 

Generate the following “pyramid” of digits, using nested loops. 

1 
232 

34543 
4567654 

567898765 
67890109876 

7890123210987 
890123454321098 

90123456765432109 
0123456789876543210 

Do not simply write out 10 multidigit strings. Instead, develop a formula to generate the appropriate 
output for each line. 

Generate a plot of the function 

= e-o. I t  sin 0 . 3  

on a printer, using an asterisk (*) for each of the points that makes up the plot. Have the plot run vertically 
down the page, with one point (one asterisk) per line. (Hint: Each printed line should consist of one 
asterisk, preceded by an appropriate number of blank spaces. Determine the position of the asterisk by 
rounding the value of y to the nearest integer, scaled to the maximum number of characters per line.) 

Write an interactive C program that will convert a positive integer quantity to a roman numeral (e.g., 12 
will be converted to XII, 14 will be converted to XIV, and so on). Design the program so that it will 
execute repeatedly, until a value of zero is read in from the keyboard. 
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( r )  Write an interactive C program that will convert a date, entered in the form mm - dd - yy (example: 4- 12-99) 
into an integer that indicates the number of days beyond January 1, 1980. If the year does not extend 
beyond 1999 (i.e., if yy 5 99), we can make use of the following relationships: 

( i )  The day of the current year can be determined approximately as 

day = ( i n t )  (30.42 * (mm - 1 ) )  + dd 

(i i)  If mm == 2 (February), increase the value of day by 1. 

(iii) If mm > 2 and mm < 8 (March, April, May, June or July), decrease the value of day by 1. 

(iv) If yy % 4 == 0 and mm > 2 (leap year), increase the value of day by 1. 

( v )  Increase the value of day by 1461 for each full 4-year cycle beyond 1-1-80. 

(vi)  Increase day by 365 for each additional full year beyond the completion of the last full 4-year cycle, 
then add 1 (for the most recent leap year). 

Test the program with today’s date, or any other date of your choice. 

(s) Extend part ( r )  above to accommodate calendar years beyond the year 1999 (Example 10.28 presents a 
solution to a more advanced version of this problem). 



Chapter 7 


Functions 

We have already seen that C supports the use of library functions, which are used to carry out a number of 
commonly used operations or calculations (see Sec. 3.6). However, C also allows programmers to define their 
own fhctions for carrying out various individual tasks. This chapter concentrates on the creation and 
utilization of such programmer-defined functions. 

The use of programmer-defined functions allows a large program to be broken down into a number of 
smaller, self-contained components, each of which has some unique, identifiable purpose. Thus a C program 
can be modularized through the intelligent use of such functions. (C does not support other forms of modular 
program development, such as the procedures in Pascal or the subroutines in Fortran.) 

There are several advantages to this modular approach to program development. For example, many 
programs require that a particular group of instructions be accessed repeatedly, from several different places 
within the program. The repeated instructions can be placed within a single function, which can then be 
accessed whenever it is needed. Moreover, a different set of data can be transferred to the function each time 
it is accessed. Thus, the use of a finction avoids the need for redundant (repeated) programming of the same 
instructions. 

Equally important is the logical clarity resulting fiom the decomposition of a program into several 
concise functions, where each function represents some well-defined part of the overall problem. Such 
programs are easier to write and easier to debug, and their logical structure is more apparent than programs 
which lack this type of structure. This is especially true of lengthy, complicated programs. Most C programs 
are therefore modularized in this manner, even though they may not involve repeated execution of the same 
tasks. In fact the decomposition of a program into individual program modules is generally considered to be 
an important part of good programming practice. 

The use of functions also enables a programmer to build a customized library of frequently used routines 
or of routines containing system-dependent features. Each routine can be programmed as a separate function 
and stored within a special library file. If a program requires a particular routine, the corresponding library 
function can be accessed and attached to the program during the compilation process. Hence a single function 
can be utilized by many different programs. This avoids repetitive programming between programs. It also 
promotes portability since programs can be written that are independent of system-dependent features. 

In this chapter we will see how functions are defined and how they are accessed from various places 
within a C program. We will then consider the manner in which information is passed to a function. Our 
discussion will include the use offinction prototypes, as recommended by the current ANSI standard. And 
finally, we will discuss an interesting and important programming technique known as recursion, in which a 
function can access itself repeatedly. 

7.1 A BRIEF OVERVIEW 

Afinction is a self-contained program segment that carries out some specific, well-defined task. Every C 
program consists of one or more fbnctions (see Sec. 1.5). One of these functions must be called main. 
Execution of the program will always begin by carrying out the instructions in main. Additional functions 
will be subordinate to main, and perhaps to one another. 

If a program contains multiple fhctions, their definitions may appear in any order, though they must be 
independent of one another. That is, one function definition cannot be embedded within another. 

A function will carry out its intended action whenever it is accessed (i.e., whenever the function is 
"called") from some other portion of the program. The same function can be accessed from several different 

I74 
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places within a program. Once the function has carried out its intended action, control will be returned to the 
point from which the function was accessed. 

Generally, a finction will process information that is passed to it f iom the calling portion of the program, 
and return a single value. Information is passed to the function via special identifiers called arguments (also 
called parameters), and returned via the r etu rn statement. Some functions, however, accept infonnation but 
do not return anything (as, for example, the library function p r i n t f ) ,  whereas other functions (e.g., the 
library function scanf) return multiple values. 

EXAMPLE 7.1 Lowercase to Uppercase Character Conversion In Example 3.3 1 we saw a simple C program that 
read in a single lowercase character, converted it to uppercase using the library function toupper, and then displayed the 
uppercase equivalent. We now consider a similar program, though we will define and utilize our own function for 
carrying out the lowercase to uppercase conversion. 

Our purpose in doing this is to illustrate the principal features involved in the use of functions. Hence, you should 
concentrate on the overall logic, and not worry about the details of each individual statement just yet. 

Here is the complete program. 

/ *  convert  a lowercase character  t o  uppercase using a programmer-defined f u n c t i o n  * /  

# inc lude  <s td io .h>  

char lower-to-upper(char c l )  / *  funct ion  d e f i n i t i o n  * /  

char c2; 

c 2  = ( c l  >= ' a '  && c l  <= ' 2 ' )  7 ( ' A '  + c l  - ' a ' )  : c l ;  
r e t u r n ( c 2 ) ;  

1 

main ( ) 

1 
char lower,  upper; 

p r i n t f ( " P 1 e a s e  e n t e r  a lowercase character :  " ) ;  

scanf ( *%c" &lower) ; 
upper = lower-to-upper( lower)  ; 
p r i n t f  ( \nThe uppercase equivalent  is %c\n\n", upper) ; 

1 

This program consists of two functions-the required main function, preceded by the programmer-defined function 
lower-t 0-uppe r .  Note that lower-t o-uppe r carries out the actual character conversion. This function converts only 
lowercase letters; all other characters are returned intact. A lowercase letter is transferred into the function via the 
argument c l ,  and the uppercase equivalent, c2, is returned to the calling portion of the program (i.e., to main) via the 
r e t u r n  statement. 

Now consider the main function, which follows lower-to-upper. This function reads in a character (which may or 
may not be a lowercase letter) and assigns it to the char-type variable lower. Function main then calls the function 
lower-t o-uppe r, transferring the lowercase character (lower) to lower-t o-u ppe r, and receiving the equivalent 
uppercase character (upper) from lower-t 0-uppe r .  The uppercase character is then displayed, and the program ends. 
Notice that the variables lower and upper in main correspond to the variables c l  and c2 within lower-to-upper. 

We will consider the rules associated with function definitions and function accesses in the remainder of 
this chapter. 
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7.2 DEFINING A FUNCTION 

A function defrnition has two principal components: the first line (including the argument declarations), and 
the body of the function. 

The first line of a function definition contains the type specification of the value returned by the function, 
followed by the function name, and (optionally) a set of arguments, separated by commas and enclosed in 
parentheses. Each argument is preceded by its associated type declaration. An empty pair of parentheses 
must follow the function name if the function definition does not include any arguments. 

In general terms, the first line can be written as 

data- type name( type 1 arg 7, type 2 arg 2, . . ., type n arg n )  

where data - type represents the data type of the item that is returned by the function, name represents the 
function name, and type I,type 2, . . . , type n represent the data types of the arguments arg I ,  arg 2, 
. . . , arg n. The data types are assumed to be of type int if they are not shown explicitly. However, the 
omission of the data types is considered poor programming practice, even if the data items are integers. 

The arguments are called formal arguments, because they represent the names of data items that are 
transferred into the function from the calling portion of the program. They are also known as parameters or 
formal parameters. (The corresponding arguments in the function reference are called actual arguments, 
since they define the data items that are actually transferred. Some textbooks refer to actual arguments simply 
as arguments, or as actual parameters.) The identifiers used as formal arguments are "local" in the sense that 
they are not recognized outside of the function. Hence, the names of the formal arguments need not be the 
same as the names of the actual arguments in the calling portion of the program. Each formal argument must 
be of the same data type, however, as the data item it receives from the calling portion of the program. 

The remainder of the function definition is a compound statement that defines the action to be taken by 
the function. This compound statement is sometimes referred to as the boafy of the function. Like any other 
compound statement, this statement can contain expression statements, other compound statements, control 
statements, and so on. It should include one or more return statements, in order to return a value to the 
calling portion of the program. 

A function can access other functions. In fact, it can even access itself (this process is known as recursion 
and is discussed in Sec. 7.6). 

EXAMPLE 7.2 Consider the function lower-to-upper, which was originally presented in Example 7.1. 

char lower-to-upper(char c l )  / *  programmer-defined conversion f u n c t i o n  * /  

char c2;  

c2 = ( c l  >= ' a '  && c l  <= ' z ' )  ? ( ' A '  + c l  - ' a ' )  : c l ;  
r e t u r n ( c 2 ) ;  

1 

The first line contains the function name, lower-to-upper, followed by the formal argument c l ,  enclosed in 
parentheses. Thefirnction name is preceded by the data type char, which describes the data item that is returned by the 
function. In addition, the formal argument c l  is preceded by the data type char. This later data type, which is included 
within the pair of parentheses, refers to the formal argument. The formal argument, c 1, represents the lowercase character 
that is transferred to the function from the calling portion of the program. 

The body of the function begins on the second line, with the declaration of the local char-type variable c2. (Note the 
distinction between the formal argument c l ,  and the local variable c2.) Following the declaration of c2 is a statement 
that tests whether c l  represents a lowercase letter and then carries out the conversion. The original character is returned 
intact if it is not a lowercase letter. Finally, the r e t u r n  statement (see below) causes the converted character to be 
returned to the calling portion of the program. 
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Information is returned from the function to the calling portion of the program via the r e t u r n  statement. 
The r e t u r n  statement also causes the program logic to return to the point from which the function was 
accessed. 

In general terms, the r e t u r n statement is written as 

r e t u r n  expression, 

The value of the expression is returned to the calling portion of the program, as in Example 7.2 above. The 
expression is optional. If the expression is omitted, the r e t u r n statement simply causes control to revert 
back to the calling portion of the program, without any transfer of information. 

Only one expression can be included in the r e t u r n  statement. Thus, a function can return only one value 
to the calling portion of the program via re turn.  

A function definition can include multiple r e t u r n  statements, each containing a different expression. 
Functions that include multiple branches often require multiple returns. 

EXAMPLE 7.3 Here is a variation of the function lower-to-upper, which appeared in Examples 7.1 and 7.2. 

char lower-to-upper(char cl) / *  programmer-defined conversion function * /  

{ 
if (cl >= 'a' && ct <= 'z') 

return('A' + CI -
else 


return(c1); 

1 

This function utilizes the if - else statement rather than the conditional operator. It is somewhat less compact than 
the original version, though the logic is clearer. In addition, note that this form of the function does not require the local 
variable c2. 

This particular function contains two different return statements. The first returns an expression that represents the 
uppercase equivalent of the lowercase character ;the second returns the original lowercase character, unchanged. 

The r e t u r n  statement can be absent altogether fiom a function definition, though this is generally 
regarded as poor programming practice. If a function reaches the end without encountering a r e t u r n  
statement, control simply reverts back to the calling portion of the program without returning any information. 
The presence of an empty r e t u r n  statement (without the accompanying expression) is recommended in such 
situations, to clarify the logic and to accommodate future modifications to the function. 

EXAMPLE 7.4 The following function accepts two integer quantities and determines the larger value, which is then 
displayed. The function does not return any information to the calling program. 

maximum(int x, int y) / *  determine the larger of two integer quantities * /  

1 
int z; 


z = (x >= y) 7 x : y; 
printf ('\n\nMaximum value = %d" , z); 
return ; 

} 

Notice that an empty return statement is included, as a matter of good programming practice. The function would still 
work properly, however, if the return statement were not present, 
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EXAMPLE 7.5 Thefactorid of a positive integer quantity, n, is defined as n!= 1 x 2 x 3 x * - x n. Thus, 2! = 1 x 2 = 

2; 3 ! = l x 2 x 3 = 6 ;  4 ! = 1  x 2 x 3 x 4 = 2 4 ; a n d s o o n .  
The function shown below calculates the factorial of a given positive integer n. The factorial is returned as a long 

integer quantity, since factorials grow in magnitude very rapidly as n increases. (For example, 8! = 40,320. This value, 
expressed as an ordinary integer, m v  be too large for some computers.) 

long int factorial(int n) / *  calculate the factorial of n * /  

{ 
int i; 

long int prod = 1 ;  

if (n > 1 )  
for (i = 2; i <= n; ++i) 

prod *= i; 
return(prod); 


1 

Notice the long int type specification that is included in the first line of the function definition. The local variable 
prod is declared to be a long integer within the function. It is assigned an initial value of 1, though its value is 
recalculated within a for loop. The final value of prod,which is returned by the function, represents the desired value of 
n factorial. 

If the data type specified in the first line is inconsistent with the expression appearing in the r e t u r n  
statement, the compiler will attempt to convert the quantity represented by the expression to the data type 
specified in the first line. This could result in a compilation error, or it may involve a partial loss of data (e.g., 
due to truncation). In any event, inconsistencies of this type should be avoided. 

EXAMPLE 7.6 The following function definition is identical to that in Example 7.5 except that the first line does not 
include a type specification for the value that is returned by the function. 

factorial(int n) / *  calculate the factorial of n * /  

{ 
int i; 

long int prod = 1 ;  

if (n > 1 )  
for (i = 2; i <= n; ++i) 

prod *= i; 
return(prod); 


1 

The function expects to return an ordinary integer quantity, since there is no explicit type declaration in the first line 
of the function definition. However the quantity being returned (prod) is declared as a long integer within the function. 
This inconsistency can result in an error. (Some compilers will generate a diagnostic error and then stop without 
completing the compilation.) The problem can be avoided, however, by adding a long int type declaration to the first 
line of the function definition, as in Example 7.5. 

The keyword v o i d  can be used as a type specifier when defining a function that does not return anything, 
or when the function definition does not include any arguments. The presence of this keyword is not 
mandatory, but it is good programming practice to make use of this feature. 

EXAMPLE 7.7 Consider once again the function presented in Example 7.4, which accepts two integer quantities and 
displays the larger of the two. Recall that this function does not return anything to the calling portion of the program. 
Therefore. the function can be written as 
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vo id  maximum(x, y )  / *  determine the  l a r g e r  o f  two i n t e g e r  q u a n t i t i e s  * /  

i n t  x ,  y; 

1 
i n t  z ;  

z = ( x  >= y )  7 x : y; 
pr intf ( ' \n \nMaximum value = %dn, z ) ;  
r e t u r n ;  

1 

This function is identical to that shown in Example 7.4 except that the keyword void has been added to the first line, 
indicating that the function does not return anything. 

7.3 ACCESSING A FUNCTION 

A function can be accessed (i.e., called) by specifLing its name, followed by a list of arguments enclosed in 
parentheses and separated by commas. If the function call does not require any arguments, an empty pair of 
parentheses must follow the name of the function. The function call may be a part of a simple expression 
(such as an assignment statement), or it may be one of the operands within a more complex expression. 

The arguments appearing in the function call are referred to as actual arguments, in contrast to the formal 
arguments that appear in the first line of the function definition. (They are also known simply as arguments, 
or as actual parameters.) In a normal function call, there will be one actual argument for each formal 
argument. The actual arguments may be expressed as constants, single variables, or more complex 
expressions. However, each actual argument must be of the same data type as its corresponding formal 
argument. Remember that it is the value of each actual argument that is transferred into the function and 
assigned to the corresponding formal argument. 

If the function returns a value, the function access is often written as an assignment statement; e.g., 

y = polynomial(x); 

This function access causes the value returned by the function to be assigned to the variable y. 
On the other hand, if the function does not return anything, the function access appears by itself; e.g., 

display(a, b, c); 

This function access causes the values of a, b and c to be processed internally (i.e., displayed) within the 
fbnction. 

EXAMPLE 7.8 Consider once again the program originally shown in Example 7.1, which reads in a single lowercase 
character, converts it to uppercase using a programmer-defined function, and then displays the uppercase equivalent. 

/ *  convert  a lowercase character  t o  uppercase using a programmer-defined f u n c t i o n  * /  

# inc lude  <s td io .h>  

char lower-to-upper(char c l )  / *  funct ion  d e f i n i t i o n  * /  

c 
char c2; 

C2 = (C l  >= ' a '  && c l  <= 'z') 7 ( ' A '  + c l  - ' a ' )  : c l ;  
r e t u r n ( c 2 ) ;  

1 
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vo id  main(void)  

char lower,  upper; 

p r i n t f ( " P 1 e a s e  e n t e r  a lowercase character :  " ) ;  
scanf ( "%c", &lower) ; 
upper = lower-to-upper(1ower); 
p r i n t f ( ' \ n T h e  uppercase equivalent  i s  % c \ n \ n " ,  upper);  

1 

Within this program, main contains only one call to the programmer-defined function lower-to-upper. The call is a 
part of the assignment expression upper = lowe r-to-uppe r ( lower ) . 

The function call contains one actual argument, the char-type variable lower.  Note that the corresponding formal 
argument, c l ,  within the function definition is also a char-type variable. 

When the function is accessed, the value of lower to be transferred to the function. This value is represented by c l  
within the function. The value of the uppercase equivalent, c2, is then determined and returned to the calling portion of 
the program, where it is assigned to the char-type variable upper. 

The last two statements in main can be combined to read 

p r i n t f ( " \ n T h e  uppercase equivalent  i s  % c \ n \ n " ,  lower-to-upper(1ower)); 

The call to lower-to-upper is now an actual argument for the library function p r i n t f .  Also, note that the variable 
upper is no longer required. 

Finally, notice the manner in which the first line of main is written, i.e., void main ( v o i d ) .  This is permitted under 
the ANSI standard, though some compilers do not accept the void return type. Hence, many authors (and many 
programmers) write the first line of main as main(void) ,  or simply main( ) .  We will follow the latter designation 
throughout the remainder of this book. 

There may be several different calls to the same function from various places within a program. The 
actual arguments may differ from one function call to another. Within each function call, however, the actual 
arguments must correspond to the formal arguments in the function definition; i.e., the number of actual 
arguments must be the same as the number of formal arguments, and each actual argument must be of the 
same data type as its corresponding formal argument. 

EXAMPLE 7.9 Largest of Three Integer Quantities The following program determines the largest of three integer 
quantities. This program makes use of a function that determines the larger of two integer quantities. The function is 
similar to that defined in Example 7.4, except that the present function returns the larger value to the calling program 
rather than displaying it. 

The overall strategy is to determine the larger of the first two quantities, and then compare this value with the third 
quantity. The largest quantity is then displayed by the main part of the program. 

/ *  determine the  l a r g e s t  o f  th ree  i n t e g e r  q u a n t i t i e s  * /  

# inc lude  <s td io .h>  

i n t  maximum(int x ,  i n t  y )  / *  determine the  l a r g e r  o f  two i n t e g e r  q u a n t i t i e s  * /  

{ 
i n t  z ;  

z = ( x  >= y )  ? x : y; 
r e t u r n ( z ) ;  

1 



CHAP. 71 FUNCTIONS 181 

main ( ) 

int a, b, c, d; 


/ *  read t h e  integer quantities * /  
printf("\na = " ) ;  

scanf ( "%dn , &a) ; 
printf ("\nb = " I )  ; 
scanf ( "%d" , &b) ; 
printf("\nc = " ) ;  

scanf ( lf%d", &c) ; 
/ *  calculate and display the maximum value * /  

d = maximum(a, b); 
printf("\n\nmaximum = %d", maximum(c, d)); 

1 

The function maximum is accessed from two different places in main. In the first call to maximum the actual 
arguments are the variables a and b, whereas the arguments are c and d in the second call (d is a temporary variable 
representing the maximum value of a and b). 

Note the two statements in main that access maximum, i.e., 

d = maximum(a, b); 
printf("\n\nmaximum = %dU, maximum(c, d)); 

These two statements can be replaced by a single statement; e.g., 

printf("\n\nmaximum = %d", maximum(c, maximum(a, b))); 

In this statement we see that one of the calls to maximum is an argument for the other call. Thus the calls are embedded, 
one within the other, and the intermediary variable, d, is not required. Such embedded function calls are permissible, 
though their logic may be unclear. Hence, they should generally be avoided by beginning programmers. 

7.4 FUNCTION PROTOTYPES 

In the programs that we have examined earlier in this chapter, the programmer-defined function has always 
preceded main. Thus, when these programs are compiled, the programmer-defined function will have been 
defined before the first function access. However, many programmers prefer a "top-down" approach, in 
which main appears ahead of the programmer-defined function definition. In such situations the fbnction 
access (within main) will precede the function definition. This can be confusing to the compiler, unless the 
compiler is first alerted to the fact that the function being accessed will be defined later in the program. A 
finctionprototype is used for this purpose. 

Function prototypes are usually written at the beginning of a program, ahead of any programmer-defined 
functions (including main). The general form of a function prototype is 

data-type name( type I arg I ,  type 2 arg 2, . . . , type n arg n ) ;  

where data- type represents the data type of the item that is returned by the function, name represents the 
function name, and type 7, type 2, . . . , type n represent the data types of the arguments arg I ,  arg 2, 
. . . , arg n. Notice that a function prototype resembles the first line of a function definition (though a 
function prototype ends with a semicolon). 

The names of the arguments within the function prototype need not be declared elsewhere in the program, 
since these are "dummy" argument names that are recognized only within the prototype. In fact, the argument 
names can be omitted (though it is not a good idea to do so);however, the argument data types are essential. 
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In practice, the argument names are usually included and are often the same as the names of the actual 
arguments appearing in one of the hnction calls. The data types of the actual arguments must conform to the 
data types of the arguments within the prototype. 

Function prototypes are not mandatory in C. They are desirable, however, because they further facilitate 
error checking between the calls to a function and the corresponding function definition. 

EXAMPLE 7.10 Calculating Factorials Here is a complete program to calculate the factorial of a positive integer 
quantity. The program utilizes the function factorial, defined in Example 7.5. Note that the function definition 
precedes main, as in the earlier programming examples within this chapter. 

/ *  calculate the factorial of an integer quantity * /  

#include <stdio.h> 


long int factorial(int n) 


/ *  calculate the factorial of n * /  

{ 
int i; 

long int prod = 1 ;  

if (n > 1 )  
for (i = 2; i <= n; ++i) 

prod *= i; 
return(prod); 


1 

main ( ) 

{ 
int n; 


/ *  read in the integer quantity * /  

printf ("\nn = " ) ; 
scanf("%d', &n); 


/ *  calculate and display the factorial * /  

printf("\nn! = %Id", factorial(n)); 
1 

The programmer-defined function (factorial) makes use of an integer argument (n) and two local variables-m 
ordinary integer (i)and a long integer (prod). Since the function returns a long integer, the type declaration long int 
appears in the first line of the function definition. 

Here is another version of the program, written top-down (ie, with main appearing ahead of factorial). Notice 
the presence of the function prototype at the beginning of the program. The function prototype indicates that a function 
called factorial,which accepts an integer quantity and returns a long integer quantity, will be defined later in the 
program. 

/ *  calculate the factorial o f  an integer quantity * /  

#include <stdio.h> 


long int factorial(int n); / *  function prototype * /  
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main ( ) 

{ 
int n; 


/ *  read in the integer quantity * /  

printf("\nn = " ) ;  

scanf ( I1%d", an) ; 

/ *  calculate and display the factorial * /  

printf("\nnl = %IdN, factorial(n)); 
1 

long int factorial(int n) 


/ *  calculate the factorial of n * /  

int i; 

long int prod = 1 ;  

if (n > 1 )  
for (i = 2; i <= n; ++i) 

prod *= i; 
return(prod); 


1 

Function calls can span several levels within a program. That is, function A can call function B, which 
can call function C, etc. Also, function A can call function C directly, and so on. 

EXAMPLE 7.11 Simulation of a Game of Chance (Shooting Craps) Here is an interesting programming problem 
that includes multiple function calls at several different levels. Both library functions and programmer-defined functions 
are required. 

Craps is a popular dice game in which you throw a pair of dice one or more times until you either win or lose. The 
game can be simulated on a computer by generating random numbers rather than actually throwing the dice. 

There are two ways to win in craps. You can throw the dice once and obtain a score of either 7 or 11; or you can 
obtain a 4, 5, 6, 8, 9 or 10 on the first throw and then repeat the same score on a subsequent throw before obtaining a 7. 
Conversely, there are two ways to lose. You can throw the dice once and obtain a 2,3  or 12; or you can obtain a 4, 5,6, 8, 
9 or 10 on the first throw and then obtain a 7 on a subsequent throw before repeating your original score. 

We will develop the game interactively, so that one throw of the dice will be simulated each time you press the Enter 
key. A message will then appear indicating the outcome of each throw. At the end of each game, you will be asked 
whether or not you want to continue to play. 

Our program will require a random number generator that produces uniformly distributed integers between 1 and 6. 
(By uniformly distributed we mean that any integer between 1 and 6 is just as likely to appear as any other integer.) Most 
versions of C include a random number generator in their library routines. These random number generators typically 
return a floating-point number that is uniformly distributed between 0 and 1, or an integer quantity that is uniformly 
distributed between 0 and some very large integer value. 

We will employ a random number generation routine called rand, which returns a uniformly distributed integer 
between 0 and 215 - 1 (i.e., between 0 and 32,767). We then convert each random integer quantity to a floating-point 
number, x, which varies from 0 to 0.99999- * * . To do so, we write 

x = rand() / 32768.0 

Note that the denominator is written as a floating-point constant. This forces the quotient, and hence x, to be a floating- 
point quantity. 
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The expression 

( i n t )  ( 6  * x )  

will result in a truncated integer whose value will be uniformly distiibutd between 0 and 5 .  Thus, we obtain the desired 
value simpiy by adding I ;  i.e., 

n = 1 + ( i n t )  ( 6  * x )  

This value will represent the random outcome of roliing one die. If we repeat this process a second time and add the 
results, we obtain the result of rolling two dice. 

The following function utilizes the above strategy to simulate one throw of a pair of dice. 

i n t  th row(vo id )  i *  s imu la te  one throw o f  a p a i r  o f  d i c e  * /  

{ 
f l o a t  x l ,  x2; / *  r a n d o m f l o a t i n g - p o i n t  numbers between 0 and 1 * /  
i n t  n l ,  n2; / *  random i n t e g e r s  between 1 and 6 * /  

x l  = r a n d ( )  / 32768.0; 
x2 = r a n d ( )  / 32768.0; 

n l  = 1 + ( i n t )  ( 6  * x l ) ;  / *  s imulate f i r s t  d i e  * /  
n2 = 1 + ( i n t )  ( 6  * x2) ;  / *  s imulate second d i e  * /  

r e t u r n ( n 1  + n2) ;  / *  score i s  sum o f  two d i c e  * /  

1 

~ The function returns the resuit of each throw (an integer quantity whose value varies between 2 and 12). Ncte that this 
final result will not be uniformly distributed, even thoflgh the individual values of n l  and n2 we. 

Now let us define another function, called play, which can simulate m e  complete game of craps. Thus, the dice will 
be thrown as m a y  times as is necessary to establish either a win or a loss. This function will therefore access throw. The 
complete rules of craps will also be built into this function. 

In pseudocode, we can write the function p l a y  as 

v o i d  p l a y ( v o i d )  / *  s imu la te  one complete game * /  

{ 
i n t  s c o r e l ,  score21 

/ *  i n s t r u c t  t h e  user t o  throw t h e  d i c e  * /  

/ *  i n i t i a l i z e  t h e  random number generator  * /  

s c o r e l  = t h r o w ( ) ;  

s w i t c h  ( s c o r e l )  { 

case 7: 
case 11: 

/ *  d i s p l a y  a message i n d i c a t i n g  a w in  on t h e  f i r s t  throw * /  

case 2: 
case 3:  
case 12: 

/ *  d i s p l a y  a message i n d i c a t i n g  a l o s s  on t h e  f i r s t  throw * /  
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case 4 :  

case 5:  

case 6: 

case 0: 

case 9: 
case 10: 

do t 
/ *  i n s t r u c t  the  user t o  throw the  d i ce  again * /  

score2 = th row( ) ;  

} w h i l e  (score2 != scorel  && score2 I =  7 ) ;  

i f  (score2 == sco re l )  

/ *  d i sp lay  a message i n d i c a t i n g  a win * /  

e l se  

/ *  d i sp lay  a message i n d i c a t i n g  a l o s s  * /  
1 

re tu rn ;  

The main routine will control the execution of the game. This routine will consist of a wh i le  loop containing some 
interactive inputloutput and a call to play.  Thus, we can write the pseudocode for main as 

main ( ) 

t 
/ *  dec la ra t i ons  * /  

/ *  i n i t i a l i z e  the  random number generator * /  

/ *  generate a welcoming message * /  

w h i l e  ( / *  p laye r  wants t o  cont inue * /  ) { 

Play ( 1; 

/ *  ask i f  p laye r  wants t o  cont inue * /  

/ *  generate a s i g n - o f f  message * /  

The library function srand will be used to initialize the random number generator. This function requires a positive 
integer, called a seed, which establishes the sequence of random numbers generated by rand. A different sequence will be 
generated for each seed. For convenience, we can include a value for the seed as a symbolic constant within the program. 
(If the program is executed repeatedly with the same seed, the same sequence of random numbers will be generated each 
time. This is helpful when debugging the program.) 

Here is the complete C program, written top-down. 

/ *  s imu la t i on  o f  a craps game * /  

# inc lude <stdio.h> 
# inc lude <s td l i b .h>  
# inc lude <ctype.h> 

#def ine  SEED 12345 
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void p lay(vo id) ;  / *  func t i on  prototype * /  
i n t  throw(void);  / *  funct ion prototype * /  

main( ) 

char answer = ' Y ' ;  

printf('We1come t o  the Game o f  CRAPS\n\n"); 
p r i n t f ( " T o  throw the dice, press Enter \n \n") ;  

srand(SEED); / *  i n i t i a l i z e  the random number generator * /  

/ *  main loop * /  

whi le  (toupper(answer) I =  'NI) { 

Play ( 1; 
p r i n t f ( ' \ n D o  you want t o  play again? (Y/N) " ) ;  

scanf ( % c " ,  &answer) ; 
p r i n t f  ( \ n u ); 

1 
p r i n t f ( " B y e ,  have a n ice day") ;  

vo id  p lay (vo id )  / *  simulate one complete game * /  

i n t  scorel ,  score2; 
char dummy; 

p r i n t f ( ' \ nP lease  throw the dice . . . " ) ;  

scanf ( *%c" ,  &dummy) ; 
p r i n t f ( ' \ n " ) ;  
scorel  = throw() ;  
p r i n t f  ( "  \n%2dn, scorel ) ; 

switch ( sco re l )  { 

case 7: / *  win on f i r s t  throw * /  
case 11: 

p r i n t f ( "  - Congratulat ions! You WIN on the f i r s t  throw\n") ;  
break; 

case 2: / *  lose on f i r s t  throw * /  
case 3: 
case 12: 

p r i n t f ( "  - Sorry, you LOSE on the f i r s t  throw\n") ;  
break; 

case 4: / *  a d d i t i o n a l  throws are required * /  
case 5: 

case 6: 
case 0 :  

case 9: 
case 10: 
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do 1 
p r i n t f ( "  - Throw the dice again . . . " ) ;  

scanf ( "%c" &dummy); 
score2 = throw(); 
p r i n t f ( " \ n % 2 d m ,  score2); 

1 whi le  (score2 != scorel && score2 I =  7) ;  

i f  (score2 == scorel)  
p r i n t f ( "  - You WIN by matching your f i r s t  score\nm);  

e lse 
p r i n t f ( "  - You LOSE by f a i l i n g  t o  match your f i r s t  score\n") ;  

break ; 
1 

re turn;  

1 

i n t  throw(void) / *  simulate one throw o f  a p a i r  o f  d ice * /  

{ 
f l o a t  x l ,  x2; I*  random f l o a t i n g - p o i n t  numbers between 0 and 1 * /  
i n t  n l ,  n2; / *  random integers between 1 and 6 * /  

x l  = rand()  / 32768.0; 
x2 = rand()  / 32768.0; 

n l  = 1 + ( i n t )  (6 * x l ) ;  / *  simulate f i r s t  d ie  * /  
n2 = 1 + ( i n t )  (6 * x2); / *  simulate second d ie  * /  

re turn(n1 + n2); I*  score i s  sum o f  two dice * /  

1 

Notice that main calls srand and play. One argument is passed to srand (the value of the seed), but no arguments 
are passed to play. Also, note that play calls throw from two different places, and throw calls rand from two different 
places. There are no arguments passed from play to throw or from throw to rand. However, rand returns a random 
integer to throw, and throw returns the value of an integer expression (the outcome of one throw of the dice) to play. 
Notice that play does not return any information to main. 

Within play, there are two references to the scanf function, each of which enters a value for the variable dummy. It 
should be understood that dummy is not actually used within the program. The scanf functions are present simply to halt 
the program temporarily, until the user presses the Enter key (to simulate a new throw of the dice). 

This program is designed to run in an interactive environment, such as on a personal computer. A typical set of 
output is shown below. The user's responses are underlined for clarity. 

Welcome t o  the Game o f  CRAPS 

To throw the dice, press Enter (Enter) 

Please throw the dice . . . 

6 - Throw the dice again . . . 
10 - Throw the dice again . . . 

7 - You LOSE by f a i l i n g  t o  match your f i r s t  score 
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Do you want t o  p l a y  again? (Y /N)  y 

Please throw the  d i ce  . . . 

7 - Congra tu la t ions !  You WIN on the  f i r s t  throw 

Do you want t o  p lay  again? ( Y / N )  y 

Please throw the  d i ce  . . . 

11 - Congratulat ions1 You WIN on the  f i r s t  throw 

Do you want t o  p lay  again? (Y/N) y 

Please throw the  d i ce  . . . 

8 - Throw the  d i ce  again . . . 

5 - Throw the  d i ce  again . . . 
7 - You LOSE by f a i l i n g  t o  match your f i r s t  score 

Do you want t o  p l a y  again? ( Y / N )  y 

Please throw the  d i ce  , . . 
6 - Throw the  d i ce  again . . . 
4 - Throw the  d i c e  again . . . 

6 - You WIN by matching your f i r s t  score 

Do you want t o  p lay  again? ( Y / N )  y 

Please throw the  d i ce  . . . 

3 - Sorry, you LOSE on t he  f i r s t  throw 

Do you want t o  p lay  again? ( Y / N )  Q 

Bye, have a n i ce  day 

7.5 PASSING ARGUMENTS TO A FUNCTION 

When a single value is passed to a function via an actual argument, the value of the actual argument is copied 
into the function. Therefore, the value of the corresponding formal argument can be altered within the 
Jirnction, but the value of the actual argument within the calling routine will not change. This procedure for 
passing the value of an argument to a finction is known as passing by value. 
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EXAMPLE 7.12 Here is a simple C program containing a function that alters the value of its argument. 

# inc lude <s td io .h> 

v o i d  m o d i f y ( i n t  a ) ;  / *  func t i on  pro to type * /  

main ( ) 

{ 
i n t  a = 2; 

p r i n t f ( " \ n a  = %d ( f rom main, before c a l l i n g  the  f u n c t i o n ) " ,  a ) ;  
mod i f y (a ) ;  
p r i n t f ( " \ n \ n a  = %d (from main, a f t e r  c a l l i n g  the  f u n c t i o n ) " ,  a ) ;  

1 

v o i d  m o d i f y ( i n t  a )  

{ 
a *= 3; 
p r i n t f ( " \ n \ n a  = %d ( f rom the  func t i on ,  a f t e r  being mod i f i ed ) " ,  a ) ;  
re tu rn ;  

1 

The original value of a (i.e., a = 2) is displayed when main begins execution. This value is then passed to the function 
modify, where it is multiplied by 3 and the new value displayed. Note that it is the altered value of the formal argument 
that is displayed within the function. Finally, the value of a within main (i.e., the actual argument) is again displayed, 
after control is transferred back to main from modify. 

When the program is executed, the following output is generated. 

a = 2 ( f rom main, before c a l l i n g  the f u n c t i o n )  

a = 6 ( f rom the  func t i on ,  a f t e r  being mod i f ied)  

a = 2 ( f rom main, a f t e r  c a l l i n g  the  func t i on )  

These results show that a is not altered within main, even though the corresponding value of a is changed within modify. 

Passing an argument by value has advantages and disadvantages. On the plus side, it allows a single- 
valued actual argument to be written as an expression rather than being restricted to a single variable. 
Moreover, if the actual argument is expressed simply as a single variable, it protects the value of this variable 
from alterations within the function. On the other hand, it does not allow information to be transferred back to 
the calling portion of the program via arguments. Thus, passing by value is restricted to a one-way transfer of 
in formation. 

EXAMPLE 7.13 Calculating Depreciation Let us consider a variation of the depreciation program presented in 
Example 6.26. The overall objective is to calculate depreciation as a function of time using any one of three different 
commonly used methods, as before. Now, however, we will rewrite the program so that a separate function is used for 
each method. This approach offers us a cleaner way to organize the program into its logical components. In addition, we 
will move a block of repeated output instructions into a separate function, thus eliminating some redundant programming 
from the original version of the program. 

We will also expand the generality of the program somewhat, by permitting different sets of depreciation calculations 
to be carried out on the same input data. Thus, at the end of each set of calculations the user will be asked if another set of 
calculations is desired. If the answer is yes, then the user will be asked whether or not to enter new data. 

Here is the new version of the program, written top-down. 
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/ *  calculate depreciation using one of three different methods * /  

#include <stdio.h> 

#include <ctype.h> 


void sl(f loat val, int n) ; / *  funct prototype * /  
void ddb(f1oat val, int n); / *  funct prototype * /  
void syd(f1oat val, int n); / *  funct prototype * /  
void writeoutput(int year, float depreciation, float value); / *  funct prototype * /  

main ( ) 

{ 
int n, choice = 0; 
float val; 

char answer1 = 'Y', answer2 = 'Y'; 

while (toupper(answer1) I =  'NI) { 

/ *  read input data * /  

if (toupper(answer2) I =  IN') { 
printf("\nOriginal value: " ) ;  

scanf ( "%f , &val) ; 
printf ( "Number of years: " ) ; 
scanf ( "%d" an) ; 

} 
printf("\nMethod: (1-SL 2-DDB 3-SYD) " ) ;  

scanf("%d", &choice); 


switch (choice) { 

case 1 :  / *  straight-line method * /  

printf("\nStraight-Line Method\n\n"); 

sl(va1, n); 

break; 


case 2: / *  double-declining-balance method * /  

printf("\nDouble-Declining-BalanceMethod\n\n"); 

ddb(va1, n); 

break; 


case 3: / *  sum-of-the-years'-digits method * /  

printf("\nSum-Of-The-Years\'-DigitsMethod\n\na); 

syd(va1, n); 


1 

printf('\n\nAnother calculation? (Y/N) " ) ;  

scanf ( '%1 s", &answer1 ) ; 
if (toupper(answer1) I =  'NI) { 

printf("Enter a new set of data? (Y/N) ' I ) ;  

scanf ( "1 s", &answer2) ; 

printf("\nGoodbye, have a nice dayl\n"); 
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v o i d  s l ( f 1 o a t  va l ,  i n t  n )  / *  s t r a i g h t - l i n e  method * /  

{ 
f l o a t  deprec; 
i n t  year; 

deprec = v a l l n ;  
f o r  (year = 1; year <= n; ++year) { 

v a l  -= deprec; 
w r i t eou tpu t ( yea r ,  deprec, v a l ) ;  

1 
re tu rn ;  

v o i d  ddb(f1oat va l ,  i n t  n )  / *  double-decl in ing-balance method * /  

{ 
f l o a t  deprec; 
i n t  year; 

f o r  (year = 1; year <= n; ++year) { 

deprec = 2*va l /n ;  
v a l  -=  deprec; 
wr i teoutpu t (year ,  deprec, v a l ) ;  

1 
re tu rn ;  

1 

v o i d  syd( f1oat  va l ,  i n t  n )  / *  sum-o f - the -yea rs ’ -d ig i t s  method * /  

{ 
f l o a t  tag ,  deprec; 
i n t  year; 

t a g  = va l ;  
f o r  (year = 1; year <= n; ++year) { 

deprec = (n -yea r+ l ) * tag  / (n* (n+1) /2 ) ;  
v a l  -= deprec; 
wr i teoutpu t (year ,  deprec, v a l ) ;  

1 
r e t u r n ;  

v o i d  w r i t e o u t p u t ( i n t  year, f l o a t  depreciat ion,  f l o a t  value) / *  d i sp lay  ou tpu t  data * /  

{ 
p r i n t f ( ” E n d  o f  Year %2dm, year) ;  
p r i n t f ( ”  Depreciat ion:  %7.2f” ,  deprec ia t ion) ;  
p r i n t f ( ”  Current Value: %8.2f\nn, va lue) ;  
re tu rn ;  

1 

Notice that the swi tch  statement is still employed, as in Example 6.26, though there are now only three choices 
rather than four. (The fourth choice, which ended the computation in the previous version, is now handled through 
interactive dialog at the end of each set of calculations.) A separate function is now provided for each type of calculation. 
In particular, the straight-line calculations are carried out within function s l ,  the double-declining-balance calculations 
within ddb, and the sum-of-the-years’-digits calculations within syd. Each of these functions includes the formal 
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arguments v a l  and n, which represent the original value of the item and its lifetime, respectively. Note that the value of 
v a l  is altered within each function, although the original value assigned to v a l  remains unaltered within main. It is this 
feature that allows repeated sets of calculations with the same input data. 

The last function, wr i teoutpu t ,  causes the results of each set of calculations to be displayed on a year-by-year 
basis. This function is accessed from s l ,  ddb and syd. In each call to wr i teoutpu t ,  the altered value of v a l  is 
transferred as an actual argument, along with the current year (year) and the current year's depreciation (deprec). Note 
that these quantities are called value, year and deprec iat ion,  respectively, within w r i t e o u t p u t .  

A sample interactive session which makes use of this program is shown below. 

O r i g i n a l  va lue:  800Q 
Number o f  years: 9 

Method: ( 1 - S L  2-DDB 3-SYD)1 

S t r a i g h t - L i n e  Method 

End o f  Year 1 Deprec ia t ion :  800.00 Current  Value: 7200.00 

End o f  Year 2 Deprec ia t ion : 800.00 Current  Value: 6400.00 

End o f  Year 3 Deprec ia t ion : 800.00 Current  Value: 5600.00 
End o f  Year 4 Deprec ia t ion : 800.00 Current  Value: 4800.00 
End o f  Year 5 Deprec ia t ion :  800.00 Current  Value: 4000.00 

End of Year 6 Deprec ia t ion :  800.00 Current  Value: 3200.00 

End o f  Year 7 Deprec ia t ion :  800.00 Current  Value: 2400.00 

End o f  Year 8 Deprec ia t ion :  800.00 Current  Value: 1600.00 

End o f  Year 9 Deprec ia t ion : 800.00 Current  Value : 800.00 

End o f  Year 10 Deprec ia t ion :  800.00 Current  Value: 0.00 

Another c a l c u l a t i o n ?  (Y/N) y 
Enter  a new s e t  o f  data? (Y/N) 

Method: (1-SL 2-DDB 3-SYD)2 

Double-Decl in ing-Balance Method 

End o f  Year 1 Deprec ia t ion :  1600.00 Current  Value : 6400.00 

End of Year 2 Deprec ia t ion : 1280.00 Cur r e n t  Value : 51 20.00 

End o f  Year 3 Deprec ia t ion :  1024.00 Current  Value : 4096.00 

End o f  Year 4 Deprec ia t ion : 819.20 Current  Value : 3276.80 

End o f  Year 5 Oeprec iat  i o n  : 655.36 Current  Value : 2621.44 

End o f  Year 6 Deprec ia t ion :  524.29 Current  Value : 2097.15 

End o f  Year 7 Deprec ia t ion :  419.43 Current  Value : 1677.72 

End o f  Year 8 Deprec ia t ion : 335.54 Current  Value : 1342.18 

End o f  Year 9 Deprec ia t ion :  268.44 Current  Value: 1073.74 

End o f  Year 10 Deprec ia t ion : 214.75 Current  Value : 858.99 

Another c a l c u l a t i o n ?  (Y/N) y 
Enter  a new s e t  o f  data? ( Y / N )  11 

Method: ( 1 - S L  2-DDB 3-SYD)a 

Sum-Of -The-Years ' -D ig i ts  Method 
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End o f  Year 1 Deprec ia t ion : 1454.55 Current  Value: 6545.45 

End o f  Year 2 Deprec ia t ion :  1309.09 Current  Value: 5236.36 

End o f  Year 3 Deprec ia t ion :  1163.64 Current  Value: 4072.73 

End o f  Year 4 Deprec ia t ion :  1018.18 Current  Value: 3054.55 

End o f  Year 5 Deprec ia t ion :  872.73 Current  Value: 2181.82 

End o f  Year 6 Deprec ia t ion :  727.27 Current  Value: 1454.55 

End o f  Year 7 Deprec ia t ion :  581 -82 Current  Value: 872.73 

End o f  Year 8 Deprec ia t ion :  436.36 Current  Value: 436.36 

End o f  Year 9 Deprec ia t ion :  290.91 Current  Value: 145.45 

End o f  Year 10 Deprec ia t ion :  145.45 Current  Value: 0.00 

Another c a l c u l a t i o n ?  (Y/N) y 
Enter  a new s e t  o f  data? (Y/N) y 

O r i g i n a l  va lue:  5000 
Number o f  years:  4 

Method: (1-SL 2-DDB 3-SYD) 1 

S t r a i g h t - L i n e  Method 

End o f  Year 1 Deprec ia t ion :  1250.00 Current  Value: 3750.00 

End o f  Year 2 Deprec ia t ion :  1250.00 Current  Value: 2500.00 

End o f  Year 3 Deprec ia t ion :  1250.00 Current  Value: 1250.00 

End o f  Year 4 Deprec ia t ion :  1250.00 Current  Value: 0.00 

Another c a l c u l a t i o n ?  (Y/N) y 
Enter  a new s e t  o f  data? (Y/N) n 

Method: (1-SL 2-DDB 3-SYD) 2 

Double-Decl in ing-Balance Method 

End o f  Year 1 Deprec ia t ion :  2500.00 Current  Value: 2500.00 
End o f  Year 2 Deprec ia t ion :  1250.00 Current  Value: 1250.00 

End o f  Year 3 Deprec ia t ion :  625.00 Current  Value: 625.00 

End o f  Year 4 Deprec ia t ion :  312.50 Current  Value: 312.50 

Another c a l c u l a t i o n ?  (Y/N) 11 

Goodbye, have a n i c e  day! 

Notice that two different sets of input data are processed. Depreciation is calculated for the first set using all three 
methods, and for the second set using only the first two methods. Thus, it is not necessary to reenter the input data simply 
to recalculate the depreciation using a different method. 

Array arguments are passed differently than single-valued data items. If an array name is specified as an 
actual argument, the individual array elements are not copied. Instead, the location of the array (i.e., the 
location of the first element) is passed to the fbnction. If an element of the array is then accessed within the 
fbnction, the access will refer to the location of that array element relative to the location of the first element. 
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Thus, any alteration to an array element within thefirnction will carry over to the calling routine. We will 
discuss this in greater detail in Chap. 9, when we formally consider arrays. 

There are also other kinds of data structures that can be passed as arguments to a function. We will 
discuss the transfer of such arguments in later chapters, as the additional data structures are introduced. 

7.6 RECURSION 

Recursion is a process by which a b c t i o n  calls itself repeatedly, until some specified condition has been 
satisfied. The process is used for repetitive computations in which each action is stated in terms of a previous 
result. Many iterative (i.e., repetitive) problems can be written in this form. 

In order to solve a problem recursively, two conditions must be satisfied. First, the problem must be 
written in a recursive form, and second, the problem statement must include a stopping condition. Suppose, 
for example, we wish to calculate the factorial of a positive integer quantity. We would normally express this 
problem as n! = 1 x 2 x 3 x . + * x n, where n is the specified positive integer (see Example 7.5). However, we 
can also express this problem in another way, by writing n! = n x (n - I)! This is a recursive statement of the 
problem, in which the desired action (the calculation of n!)is expressed in terms of a previous result [the value 
of (n - l)!, which is assumed to be known]. Also, we know that l !  = 1 by definition. This last expression 
provides a stopping condition for the recursion. 

EXAMPLE 7.14 Calculating Factorials In Example 7.10 we saw two versions of a program that calculates the 
factorial of a given input quantity, using a nonrecursive function to perform the actual calculations. Here is a program that 
carries out this same calculation using recursion. 

/ *  calculate the factorial of an integer quantity using recursion * /  

#include <stdio.h> 


long int factorial(int n); / *  function prototype * /  

main ( ) 

int n; 

long int factorial(int n); 


/ *  read in the integer quantity * /  

printf("n = " ) ;  

scanf ( '%dl', an) ; 

/ *  calculate and display the factorial * /  

printf("n! = %ld\nH, factorial(n)); 

long int factorial(int n) / *  calculate the factorial * /  

if (n <= 1 )  
return( 1 ) ; 

else 

return(n * factorial(n - 1)); 

1 

The main portion of the program simply reads the integer quantity n and then calls the long-integer recursive function 
factorial. (Recall that we use long integers for this calculation because factorials are such large integer quantities, even 
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for modest values of n.) The function f a c t o r i a l  calls itself recursively, with an actual argument (n - 1) that decreases 
in magnitude for each successive call. The recursive calls terminate when the value of the actual argument becomes equal 
to 1. 

Notice that the present form of f a c t o r i a l  is simpler than the function presented in Example 7.10. The close 
correspondence between this function and the original problem definition, in recursive terms, should be readily apparent. 
In particular, note that the i f  - else statement includes a termination condition that becomes active when the value of n is 
less than or equal to 1. (Note that the value of n will never be less than 1 unless an improper initial value is entered into 
the computer.) 

When the program is executed, the function f a c t o r i a l will be accessed repeatedly, once in main and (n- 1) times 
within itself, though the person using the program will not be aware of this. Only the final answer will be displayed; for 
example, 

n !  = 3628800 

When a recursive program is executed, the recursive function calls are not executed immediately. Rather, 
they are placed on a stuck until the condition that terminates the recursion is encountered.* The function calls 
are then executed in reverse order, as they are “popped” off the stack. Thus, when evaluating a factorial 
recursively, the function calls will proceed in the following order. 

n! = n x (n - l)!  

(n  - l)! = (n - 1) x (n - 2)! 

(n  -2)! = (n - 2) x (n - 3)!  

2! = 2  x l !  

The actual values will then be returned in the following reverse order. 

l! = 1 

2! = 2 x l !  = 2 x 1 = 2 

3! = 3  x 2! = 3 x 2 = 6  

4! = 4 x 3! = 4 x 6 = 24 

n!= n  x (n- l)! = * - -

This reversal in the order of execution is a characteristic of all functions that are executed recursively. 
If a recursive function contains local variables, a dzflerent set of local variables will be created during 

each call. The names of the local variables will, of course, always be the same, as declared within the 
function. However, the variables will represent a different set of values each time the function is executed. 
Each set of values will be stored on the stack, so that they will be available as the recursive process 
“unwinds,” i.e., as the various function calls are “popped” off the stack and executed. 

EXAMPLE 7.15 Printing Backwards The following program reads in a line of text on a character-by-character 
basis, and then displays the characters in reverse order. The program utilizes recursion to carry out the reversal of the 
characters. 

* A stuck is a lust-in,first-out data structure in which successive data items are “pushed down” upon preceding data items. The data 
items are later removed (i.e., they are “popped“) from the stack in reverse order, as indicated by the last-in, first-out designation. 
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/ *  read a l i n e  o f  t e x t  and w r i t e  i t  out backwards, using recursion * /  

# inc lude  <s td io .h>  

#def ine  EOLN ' \ n o  

vo id  reverse ( v o i d )  ; / *  funct ion  prototype * I  

main ( ) 

{ 
p r i n t f  ( "P lease  e n t e r  a l i n e  o f  t e x t  be low\n" ) ;  
reverse ( ) ; 

1 

vo id  reverse (vo id )  

I*  read a l i n e  o f  charac ters  and w r i t e  i t  out  backwards * /  

{ 
char c ;  

if( ( c  = g e t c h a r ( ) )  I =  EOLN) r e v e r s e ( ) ;  
p u t c h a r ( c ) ;  
r e t u r n ;  

1 

The main portion of this program simply displays a prompt and then calls the function reverse, thus initiating the 
recursion. The recursive function reverse then proceeds to read single characters until an end-of-line designation ( \n) is 
encountered. Each function call causes a new character (a new value for c) to be pushed onto the stack. Once the end of 
line is encountered, the successive characters are popped off the stack and displayed on a last-in, first-out basis. Thus, the 
characters are displayed in reverse order. 

Suppose the program is executed with the following line of input: 

Now i s  the  t ime f o r  a l l  good men t o  come t o  the  a i d  o f  t h e i r  country1 

Then the corresponding output will be 

lyrtnuoc r i e h t  f o  d i a  eht  o t  emoc o t  nem doog l l a  r o f  emit eh t  s i  WON 

Sometimes a complicated repetitive process can be programmed very concisely using recursion, though 
the logic may be tricky. The following example provides a well-known illustration. 

EXAMPLE 7.16 The Towers of Hanoi The Towers of Hanoi is a well-known children's game, played with three 
poles and a number of different-sized disks. Each disk has a hole in the center, allowing it to be stacked around any of the 
poles. Initially, the disks are stacked on the leftmost pole in the order of decreasing size, i.e., the largest on the bottom and 
the smallest on the top, as illustrated in Fig. 7.1. 

The object of the game is to transfer the disks from the leftmost pole to the rightmost pole, without ever placing a 
larger disk on top of a smaller disk. Only one disk may be moved at a time, and each disk must always be placed around 
one of the poles. 

The general strategy is to consider one of the poles to be the origin, and another to be the destination. The third pole 
will be used for intermediate storage, thus allowing the disks to be moved without placing a larger disk over a smaller one. 
Assume there are n disks, numbered from smallest to largest, as in Fig. 7.1. If the disks are initially stacked on the left 
pole, the problem of moving all n disks to the right pole can be stated in the following recursive manner. 

1. Move the top n - 1 disks from the left pole to the center pole. 
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2. Move the nth disk (the largest disk) to the right pole. 

3. Move the n - 1 disks on the center pole to the right pole. 

The problem can be solved in this manner for any value of n greater than 0 (n=0 repfesents a stopping condition). 

L e f t  Center R igh t  

Fig. 7.1 

In order to program this game we first label the poles so that the left pole is represented as L, the center pole as C and 
the right pole as R. We then construct a recursive function called t r a n s f e r  that will transfer n disks from one pole to 
another. Let us refer to the individual poles with the char-type variables f rom, t o  and temp for the origin, destination, 
and temporary storage, respectively. Thus, if we assign the character L to from, R to t o  and C to temp, we will in effect 
be speciQing the movement of n disks from the leftmost pole to the rightmost pole, using the center pole for intermediate 
storage. 

With this notation, the function will have the following skeletal structure. 

v o i d  t r a n s f e r ( i n t  n, char from, char to ,  char temp) 
/ *  n = number o f  d i sks  

f rom = o r i g i n  
t o  = d e s t i n a t i o n  

temp = temporary storage * /  

i f  ( n  > 0) { 

/ *  move n -1  d i sks  from t h e i r  o r i g i n  t o  the  temporary po le  * /  

/ *  move the  n t h  d i s k  from i t s  o r i g i n  t o  i t s  des t i na t i on  * /  

/ *  move the  n - 1  d i sks  from the  temporary po le  t o  t h e i r  d e s t i n a t i o n  * /  

The transfer of the n - 1 disks can be accomplished by a recursive call to t r ans fe r .  Thus, we can write 

t r ans fe r (n -1 ,  from, temp, t o ) ;  

for the first transfer, and 
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t r ans fe r (n -1 ,  temp, to ,  from); 

for the second. (Note the order of the arguments in each call.) The movement of the nth disk from the origin to the 
destination simply requires writing out the current values off rom and to. Hence, the complete hnction can be written as 
follows. 

void t r a n s f e r ( i n t  n, char from, char to ,  char temp) 

/ *  t rans fe r  n d isks from one pole t o  another * /  

/ *  n = number o f  d isks 
from = o r i g i n  
t o  = dest inat ion 
temp = temporary storage * /  

{ 
i f  (n > 0) { 

/ *  move n-1 d isks from o r i g i n  t o  temporary * /  
t ransfer(n-1,  from, temp, t o ) ;  

/ *  move n th  d isk from o r i g i n  t o  dest inat ion * /  
printf("h4ove d isk %d from %c t o  %c\n* ,  n, from, t o ) ;  

/ *  move n - 1  d isks from temporary t o  dest inat ion * /  
t rans fe r (n -1 ,  temp, to ,  from); 

1 
re turn;  

1 

It is now a simple matter to add the main portion of the program, which merely reads in a value for n and then 
initiates the computation by calling t ransfer .  In this first function call, the actual parameters will be specified as 
character constants, i.e., 

t r ans fe r (n ,  ' L ' ,  ' R ' ,  ' C ' ) ;  

This function call specifies the transfer of all n disks from the l e h o s t  pole (the origin) to the rightmost pole (the 
destination), using the center pole for intermediate storage. 

Here is the complete program. 

/ *  the TOWERS OF HANOI - solved using recursion * /  

#include <stdio.h> 

vo id t r a n s f e r ( i n t  n, char from, char to ,  char temp); / *  f unc t i on  prototype * /  

main( ) 

{ 
i n t  n; 

printf("We1come t o  the TOWERS OF HANOI\n\n*); 
p r i n t f ( "How many disks? " ) ;  

scanf("%d*,  8n); 
p r i n t f ( " \ n " ) ;  
t r a n s f e r ( n , ' L ' , ' R ' , ' C ' ) ;  

1 



199 CHAP. 71 FUNCTIONS 

vo id  t r a n s f e r ( i n t  n, char from, char to ,  char temp) 

/ *  t r a n s f e r  n d isks  from one pole t o  another * /  

/ *  n = number o f  d isks  
from = o r i g i n  
t o  = des t i na t i on  
temp = temporary storage * /  

{ 
i f  (n  > 0) { 

/ *  move n -1  d isks  from o r i g i n  t o  temporary * /  
t rans fe r (n -1 ,  from, temp, t o ) ;  

/ *  move n t h  d i sk  from o r i g i n  t o  des t ina t ion  * /  
p r i n t f ( ”Move  d i sk  %d from %c t o  %c\n”,  n, from, t o ) ;  

/ *  move n -1  d isks  from temporary t o  des t ina t ion  * /  
t rans fe r (n -1 ,  temp, to ,  from); 

It should be understood that the function t r ans fe r  receives a different set of values for its arguments each time the 
function is called. These sets of values will be pushed onto the stack independently of one another, and then popped from 
the stack at the proper time during the execution of the program. It is this ability to store and retrieve these independent 
sets of values that allows the recursion to work. 

When the program is executed for the case where n = 3, the following output is obtained. 

Welcome t o  the  TOWERS OF HANOI 

How many d isks?  3 

Move d i sk  1 from L t o  R 
Move d i sk  2 from L t o  C 
Move d i sk  1 from R t o  C 
Move d i sk  3 from L t o  R 
Move d i sk  1 from C t o  L 

Move d i sk  2 from C t o  R 
Move d i sk  1 from L t o  R 

You should study these moves carefully to verifL that the solution is indeed correct. The logic is very tricky, despite 
the apparent simplicity of the program. 

We will see another programming example that utilizes recursion in Chap. 11, when we discuss linked 
lists. 

The use of recursion is not necessarily the best way to approach a problem, even though the problem 
definition may be recursive in nature. A nonrecursive implementation may be more efficient, in terms of 
memory utilization and execution speed. Thus, the use of recursion may involve a tradeoff between simplicity 
and performance. Each problem should therefore be judged on its own individual merits. 
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Review Questions 

7.1 What is a function? Are functions required when writing a C program? 


7.2 State three advantages to the use of functions. 


7.3 What is meant by a function call? From what parts of a program can a function be called? 


7.4 What are arguments? What is their purpose? What other term is sometimes used for an argument? 


7.5 What is the purpose of the re tu rn statement? 


7.6 What are the two principal components of a function definition? 


7.7 How is the first line of a function definition written? What is the purpose of each item, or group of items? 


7.8 What are formal arguments? What are actual arguments? What is the relationship between formal arguments and 

actual arguments? 

7.9 Describe some alternate terms that are used in place offormal argument and actual argument. 


7.10 Can the names of the formal arguments within a function coincide with the names of other variables defined 

outside of the function? Explain. 

7.11 Can the names of the formal arguments within a function coincide with the names of other variables defined 

within the function? Explain, and compare your answer with the answer to the last question. 

7.12 Summarize the rules governing the use of the re tu rn  statement. Can multiple expressions be included in a 

re tu rn  statement? Can multiple re tu rn statements be included in a function? 

7.13 What relationship must exist between the data type appearing at the beginning of the the first line of the function 

definition and the value returned by the re tu rn statement? 

7.14 Why might a re tu rn  statement be included in a function that does not return any value? 


7.15 What is the purpose of the keyword void? Where is this keyword used? 


7.16 Summarize the rules that apply to a function call. What relationships must be maintained between the actual 

arguments and the corresponding formal arguments in the function definition? Are the actual arguments subject to 
the same restrictions as the formal arguments? 

7.17 Can a function be called from more than one place within a program? 


7.18 What are function prototypes? What is their purpose? Where within a program are function prototypes normally 

placed? 

7.19 Summarize the rules associated with function prototypes. What is the purpose of each item or group of items? 


7.20 How are argument data types specified in a function prototype? What is the value of including argument data 

types in a function prototype? 

7.2 1 When a function is accessed, must the names of the actual arguments agree with the names of the arguments in the 

corresponding function prototype? 

7.22 Suppose function F1 calls function F2 within a C program. Does the order of the function definitions make any 

difference? Explain. 

7.23 Describe the manner in which an actual argument passes information to a function. What name is associated with 

this process? What are the advantages and disadvantages to passing arguments in this manner? 

7.24 What are differences between passing an array to a function and passing a single-valued data item to a function? 


7.25 Suppose an array is passed to a function as an argument. If the value of an array element is altered within the 

function, will this change be recognized within the calling portion of the program? 

7.26 What is recursion? What advantage is there in its use? 


7.27 Explain why some problems can be solved either with or without recursion. 


7.28 What is a stack? In what order is information added to and removed from a stack? 


7.29 Explain what happens when a program containing recursive function calls is executed, in terms of information 

being added to and removed from the stack. 
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7.30 When a program containing recursive function calls is executed, how are the local variables within the recursive 
function interpreted? 

7.31 If a repetitive process is programmed recursively, will the resulting program necessarily be more efficient than a 
nonrecursive version? 

Problems 

7.32 Explain the meaning of each of the following function prototypes, 

(a) i n t  f ( i n t  a)  ; 
(6) double f (double a, i n t  b) ; 
(c) vo id  f (1ong a, shor t  b, unsigned c ) ;  
(d) char f ( vo id )  ; 
(e )  unsigned f (uns igned a, unsigned b ) ;  

7.33 Each of the following is the first line of a function definition. Explain the meaning of each. 

(a) f l o a t  f ( f l o a t  a, f l o a t  b) (c) vo id  f ( i n t  a )  
(6) l ong  f ( l ong  a)  (6) char f ( vo id )  

7.34 Write an appropriate function call (function access) for each of the following functions. 

(a) f l o a t  fo rmula( f1oat  x )  (6) vo id  d i s p l a y ( i n t  a, i n t  b )  

{ { 
f l o a t  y; i n t  c; 

y = 3 * x - 1 ;  c = s q r t ( a  * a + b * b ) ;  
r e t u r n ( y ) ;  p r i n t f ( " c  = % i \ n " ,  c ) ;  

1 1 

7.35 Write the first line of the function definition, including the formal argument declarations, for each of the situations 
described below. 

(a) A function called sample generates and returns an integer quantity. 

(b) A function called r o o t  accepts two integer arguments and returns a floating-point result. 

(c) A function called convert  accepts a character and returns another character. 

(d) A function called t r a n s f e r  accepts a long integer and returns a character. 

(e )  A function called i nverse  accepts a character and returns a long integer. 

U> A function called process accepts an integer and two floating-point quantities (in that order), and returns a 
double-precision quantity. 

(g) A function called value accepts two double-precision quantities and a short-integer quantity (in that 
order). The input quantities are processed to yield a double-precision value which is displayed as a final 
resu1t. 

7.36 Write appropriate function prototypes for each of the skeletal outlines shown below. 

(a) main()  

{ 
i n t  a, b, c; 

c = f u n c t l ( a ,  b ) ;  
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i n t  f u n c t l  ( i n t  x,  i n t  y )  

{ 
i n t  z; 

z = .  . .; 
r e t u r n ( z ) ;  

1 

(b) main() 

{ 
double a, b, c; 

. . .  
c = f u n c t l ( a ,  b ) ;  

. . .  
1 

double functl(doub1e x, double y )  

{ 
double z; 

z = .  . .; 
r e t u r n ( z ) ;  

(c) main() 

i n t  a; 
f l o a t  b; 
long i n t  c; 

. . .  
c = f u n c t l ( a ,  b) ;  

. . .  
1 

long i n t  f u n c t l ( i n t  x, f l o a t  y )  

I 
long i n t  z; 

z = .  . .; 
re tu rn (z ) ;  

1 

. . .  
c = f u n c t l ( a ,  b) ;  

. . .  
d = funct2(a + b, a + c ) ;  

1 
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double functl(doub1e x, double y )  

{ 
double z; 

. . .  
z = 10 * funct2(x,  y ) ;  
re tu rn (z ) ;  

double funct2(double x, double y )  

t 
double z; 

z = .  . .; 
re tu rn (z ) ;  

1 

7.37 Describe the output generated by each of the following programs. 

(a) #include <s td io .  h r  

i n t  f u n c t ( i n t  count) ;  

main ( ) 

{ 
i n t  a, count; 

f o r  (count = 1; count <= 5; ++count) { 

a = func t l ( coun t ) ;  
p r i n t f ( " % d  a ) ;' I ,  

1 
1 

i n t  f u n c t l ( i n t  x )  

{ 
i n t  y; 

y = x * x ;  
re tu rn (y ) ;  

1 

(b)  Show how the preceding program can be written more concisely. 

( c )  #include <s td io .  h> 

i n t  f u n c t l ( i n t  n ) ;  

main ( ) 

{ 
i n t  n = 10; 

p r i n tf ( I' %d'I , f unct 1 ( n) ) ; 
1 

i n t  f u n c t l ( i n t  n )  

{ 
i f  (n  > 0) re tu rn (n  + f u n c t l ( n  - 1 ) ) ;  

1 
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(d) #include <stdio. h> 

int functl(int n ) ;  

main ( ) 
1 

int n = 10; 

printf("%d*, functl(n)); 

1 

int functl(int n) 

{ 

if (n > 0) return(n + functl(n - 2)); 
1 

7.38 Express each of the following algebraic formulas in a recursive form. 

(a) y=(x1  + X 2 + ' . ' + X f l )  

(6)  y =  1 -x+X2/2-X3/6+x4/24 +*..+(-l)"x"/n! 

(4 P = v l  *f2*." * sr) 

Programming Problems 

7.39 Write a function that will calculate and display the real roots of the quadratic equation 

a? + bx + c = 0 

using the quadratic formula 

-b f db2 - 4ac
X= 

2a 

Assume that a, b and c are floating-point arguments whose values are given, and that x l  and x2 are floating-point 
variables. Also, assume that 62 > 4*a*c,so that the calculated roots will always be real. 

7.40 Write a complete C program that will calculate the real roots of the quadratic equation 

& + b x + c = O  

using the quadratic formula, as described in the previous problem. Read the coefficients a, b and c in the main 
portion of the program. Then access the function written for the preceding problem in order to obtain the desired 
solution. Finally, display the values of the coefficients, followed by the calculated values of x 1  and x2.  Be sure 
that all of the output is clearly labeled. 

Test the program using the following data: 

-U -b -C 
2 6 1 
3 3 0 
1 3 1 

7.41 Modify the function written for Prob. 7.39 so that all roots of the quadratic equation 

a ? + b x + c = O  

will be calculated, given the values of a, b and c.  Note that the roots will be repeated (i.e., there will only be one 
real root) if b2 = 4*a*c. Also, the roots will be complex if b2 < 4*u*c. In this case, the real part of each root will 
be determined as 
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-bl( 2*a)  

and the imaginary parts will be calculated as 

*(JZ)i 

where i represents 4-1 

7.42 Modify the C program written for Prob. 7.40 so that all roots of the quadratic equation 

d + b x + c = O  

will be calculated, using the function written for Prob. 7.41. Be sure that all of the output is clearly labeled. Test 
the program using the following data: 

-a -b -C 

2 6 1 
3 3 0 
1 3 1 
0 12 -3 
3 6 3 
2 -4 3 

7.43 Write a function that will allow a floating-point number to be raised to an integer power. In other words, we wish 
to evaluate the formula 

where y and x are floating-point variables and n is an integer variable. 

7.44 Write a complete C program that will read in numerical values for x and n, evaluate the formula 

using the function written for Prob. 7.43, and then display the calculated result. Test the program using the 
following data: 

x -n x_ -n 
2 3 1.5 3 
2 12 1.5 10 
2 -5 1.5 -5 

-3 3 0.2 3 
-3 7 0.2 5 
-3 -5 0.2 -5 

7.45 Expand the function written for Prob. 7.43 so that positive values of x can be raised to any power, integer or 
floating-point. (Hint: Use the formula 

Remember to include a test for inappropriate values of x.) 
Include this function in the program written for Prob. 7.44. Test the program using the data given in Prob. 

7.44, and the following additional data. 

x -n x_ -n 
2 0.2 1.5 0.2 
2 -0.8 1.5 -0.8 

-3 0.2 0.2 0.2 
-3 -0.8 0.2 -0.8 

0.2 0.0 
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7.46 Modify the program for calculating the solution of an algebraic equation, given in Example 6.22, so that each 
iteration is carried out within a separate function. Compile and execute the program to be sure that it runs 
correctly. 

7.47 Modify the program for averaging a list of numbers, given in Example 6.17, so that it makes use of a function to 
read in the numbers and return their sum. Test the program using the following 10 numbers: 

27.5 87.0 
13.4 39.9 
53.8 47.7 
29.2 8.1 
74.5 63.2 

7.48 Modify the program for carrying out compound interest calculations given in Example 5.2 so that the actual 
calculations are carried out in a programmer-defined function. Write the function so that the values of P ,  r and n 
are entered as arguments, and the calculated value of F is returned. Test the program using the following data. 

P r- n-
1000 6 20 
1000 6.25 20 
333.33 8.75 20 
333.33 8.75 22.5 

7.49 For each of the following problems, write a complete C program that includes a recursive function. 

(a) The Legendre polynomials can be calculated by means of the formulas PO = 1 ,  PI = x, 

P, = [(2n - 1) / n] x P,-l - [(n - 1) / n] P,, 

where n = 2, 3, 4, . . . and x is any floating-point number between -1  and 1 .  (Note that the Legendre 
polynomials are floating-point quantities.) 

Generate the first n Legendre polynomials. Let the values of n and x be input parameters. 

(6) Determine the cumulative sum of n floating-point numbers [see Prob. 7.38(a)J. Read a new number into 
the computer during each call to the recursive function. 

(c) Evaluate the first n terms in the series specified in Prob. 7.38(6). Enter n as an input parameter. 

(6) Determine the cumulative product of n floating-point numbers [see Prob. 7.38(c)J. Read a new number into 
the computer during each call to the recursive function. 

Additional programming problems involving the use of functions can be found at the end of Chap. 8. 



Chapter 8 


Program Structure 

This chapter is concerned with the structure of programs consisting of more than one function. We will first 
consider the distinction between “local” variables that are recognized only within a single function, and 
“global” variables that are recognized in two or more functions. We will see how global variables are defined 
and utilized in this chapter. 

We will also consider the issue of static vs. dynamic retention of information by a local variable. That is, 
a local variable normally does not retain its value once control has been transferred out of its defining 
function. In some circumstances, however, it may be desirable to have certain local variables retain their 
values, so that the function can be reentered at a later time and the computation resumed. 

And finally, it may be desirable to develop a large, multifunction program in terms of several independent 
files, with a small number of functions (perhaps only one) defined within each file. In such programs the 
individual functions can be defmed and accessed locally within a single file, or globally within multiple files. 
This is similar to the definition and use of local vs. global variables in a multifunction, single-file program. 

8.1 STORAGE CLASSES 

We have already mentioned that there are two different ways to characterize variables: by data type, and by 
storage class (see Sec. 2.6). Data type refers to the type of information represented by a variable, e.g., integer 
number, floating-point number, character, etc. Storage class refers to the permanence of a variable, and its 
scope within the program, i.e., the portion of the program over which the variable is recognized. 

There are four different storage-class specifications in C: automatic, external, static and register. They 
are identified by the keywords auto,  ex te rn ,  s t a t i c ,  and r e g i s t e r ,  respectively. We will discuss the 
automatic, external and static storage classes within this chapter. The register storage class will be discussed 
in Sec. 13.1. 

The storage class associated with a variable can sometimes be established simply by the location of the 
variable declaration within the program. In other situations, however, the keyword that specifies a particular 
storage class must be placed at the beginning of the variable declaration. 

EXAMPLE 8.1 Shown below are several typical variable declarations that include the specification of a storage class. 

auto i n t  a ,  b,  c ;  

ex tern  f l o a t  r o o t l ,  root2; 

s t a t i c  i n t  count = 0; 

extern char s t a r ;  

The first declaration states that a ,  b and c are automatic integer variables, and the second declaration establishes root l  
and root2 as external floating-point variables. The third declaration states that count is a static integer variable whose 
initial value is 0, and the last declaration establishes s t a r  as an external character-type variable. 

The exact procedure for establishing a storage class for a variable depends upon the particular storage 
class, and the manner in which the program is organized (i.e., single file vs. multiple file). We will consider 
these rules in the next few sections of this chapter. 

207 
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8.2 AUTOMATIC VARIABLES 

Automatic variables are always declared within a function and are local to the function in which they are 
declared; that is, their scope is confined to that function. Automatic variables defined in different functions 
will therefore be independent of one another, even though they may have the same name. 

Any variable declared within a function is interpreted as an automatic variable unless a different storage- 
class specification is shown within the declaration. This includes formal argument declarations. All of the 
variables in the programming examples encountered earlier in this book have been automatic variables. 

Since the location of the variable declarations within the program determines the automatic storage class, 
the keyword auto is not required at the beginning of each variable declaration. There is no harm in including 
an au to  specification within a declaration, though this is normally not done. 

EXAMPLE 8.2 Calculating Factorials Consider once again the program for calculating factorials, originally shown 
in Example 7.10. Within main, n is an automatic variable. Within factorial, i and prod, as well as the formal 
argument n, are automatic variables. 

The storage-class designation auto could have been included explicitly in the variable declarations if we had wished. 
Thus, the program could have been written as follows. 

# / *  calculate the factorial of an integer quantity * /  

include <stdio. h> 


long int factorial(int n); 


main ( ) 

{ 
auto int n; 


/ *  read in the integer quantity * I  

printf(”\nn = ” ) ;  

scanf (“%d”, an) ; 

/ *  calculate and display the factorial * I  

printf(”\nn! = %ld”, factorial(n)); 

long int factorial(aut0 int n) / *  calculate the factorial * I  

{ 
auto int i; 

auto long int prod = 1 ;  

if (n > 1 )  
for (i = 2; i <= n; ++i) 

prod *= 1; 
return(prod); 


1 

Either method is acceptable. As a rule, however, the auto designation is not included in variable or formal argument 
declarations, since this is the default storage class. Thus, the program shown in Example 7.10 represents a more common 
programming style. 

Automatic variables can be assigned initial values by including appropriate expressions within the 
variable declarations, as in the above example, or by explicit assignment expressions elsewhere in the 
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function. Such values will be reassigned each time the function is reentered. If an automatic variable is not 
initialized in some manner, however, its initial value will be unpredictable, and probably unintelligible. 

An automatic variable does not retain its value once control is transferred out of its dejningfinction. 
Therefore, any value assigned to an automatic variable within a function will be lost once the function is 
exited. If the program logic requires that an automatic variable be assigned a particular value each time the 
function is executed, that value will have to be reset whenever the function is reentered (Le., whenever the 
function is accessed). 

EXAMPLE 8.3 Average Length of Several Lines of Text Let us now write a C program that will read several lines 
of text and determine the average number of characters (including punctuation and blank spaces) in each line. We will 
structure the program in such a manner that it continues to read additional lines of text until an empty line (i.e., a line 
whose first character is \ n) is encountered. 

We will utilize a function ( l inecount)  that reads a single line of text and counts the number of characters, excluding 
the newline character (\n) that signifies the end of the line. The calling routine (main) will maintain a cumulative sum, as 
well as a running total of the number of lines that have been read. The function will be called repeatedly (thus reading a 
new line each time), until an empty line is encountered. The program will then divide the cumulative number of 
characters by the total number of lines to obtain an average. 

Here is the entire program. 

/ *  read s e v e r a l  l i n e s  o f  t e x t  and determine t h e  average number o f  charac ters  per  l i n e  * /  

# inc lude <std io .h> 

i n t  l i n e c o u n t ( v o i d ) ;  

main ( ) 

{ 
i n t  n; / *  number o f  chars i n  g iven  l i n e  * /  
i n t  count = 0; / *  number o f  l i n e s  * /  
i n t  sum = 0; / *  t o t a l  number o f  charac ters  * /  
f l o a t  avg; / *  average number o f  chars per  l i n e  * /  

p r i n t f  ( "Enter  t h e  t e x t  be low\n")  ; 

/ *  read a l i n e  o f  t e x t  and update t h e  cumulat ive counters  * /  

w h i l e  ( ( n  = l i n e c o u n t ( ) )  > 0) { 

sum += n; 
++count ; 

1 

avg = ( f l o a t )  sum / count; 
p r i n t f ( " \ n A v e r a g e  number o f  charac ters  per  l i n e :  %5.2 f " ,  avg); 

1 

i n t  l i n e c o u n t ( v o i d )  

/ *  read a l i n e  o f  t e x t  and count t h e  number o f  charac ters  * /  

{ 
char  l i n e [ 8 0 ] ;  
i n t  count = 0; 

w h i l e  ( ( l i n e ( c o u n t 1  = g e t c h a r ( ) )  I =  ' \ n o )  
++count ; 

r e t u r n  (count)  ; 
1 
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We see that main contains four automatic variables: n, count, sum and avg, whereas l inecount contains two: 
l i n e  and count. (Notice that l i n e  is an 80-element character array, representing the contents of one line of text.) Three 
of these automatic variables are assigned initial values of zero. 

Also, note that count has different meanings within each function. Within linecount, count represents the 
number of characters in a single line, whereas within main, count represents the total number of lines that have been read. 
Moreover, count is reset to zero within linecount whenever the function is accessed. This does not affect the value of 
count within main, since the variables are independent of one another. It would have been clearer if we had named these 
variables differently, e.g., count and l i nes ,  or perhaps chars and l i nes .  We have used the same name for both 
variables to illustrate the independence of automatic variables within different functions.) 

A sample interactive session, resulting from execution of this program, is shown below. As usual, the user’s 
responses are underlined. 

Enter the  t e x t  below 
Now i s  the  time f o r  a l l  good men 
t o  come t o  the  a id  of t h e i r  countrv. 

Average number o f  charac te rs  per l i n e :  34.00 

The scope of an automatic variable can be smaller than an entire function if we wish. In fact, automatic 
variables can be declared within a single compound statement. With small, simple programs there is usually 
no advantage in doing this, but it may be desirable in larger programs. 

8.3 EXTERNAL (GLOBAL) VARIABLES 

External variables, in contrast to automatic variables, are not confined to single functions. Their scope 
extends from the point of definition through the remainder of the program. Hence, they usually span two or 
more functions, and often an entire program. They are often referred to as global variables. 

Since external variables are recognized globally, they can be accessed from any function that falls within 
their scope. They retain their assigned values within this scope. Therefore an external variable can be 
assigned a value within one function, and this value can be used (by accessing the external variable) within 
another hnction. 

The use of external variables provides a convenient mechanism for transferring information back and 
forth between functions, In particular, we can transfer information into a function without using arguments. 
This is especially convenient when a function requires numerous input data items. Moreover, we now have a 
way to transfer multiple data items out of a function, since the r e t u r n  statement can return only one data 
item. (We will see another way to transfer information back and forth between functions in Chap. 10, where 
we discuss pointers.) 

When working with external variables, we must distinguish between external variable definitions and 
external variable declarations. An external variable definition is written in the same manner as an ordinary 
variable declaration. It must appear outside of, and usually before, the functions that access the external 
variables. An external variable definition will automatically allocate the required storage space for the 
external variables within the computer’s memory. The assignment of initial values can be included within an 
external variable definition if desired (more about this later). 

The storage-class specifier e x t e r n  is not required in an external variable definition, since the external 
variables will be identified by the location of their definition within the program. In fact, many C compilers 
forbid the use of e x t e r n  within an external variable definition. We will follow this convention within this 
book. 

If a function requires an external variable that has been defined earlier in the program, then the fbnction 
may access the external variable freely, without any special declaration within the function. (Remember, 
however, that any alteration to the value an external variable within afinction will be recognized within the 
entire scope of the external variable.) On the other hand, if the fbnction definition precedes the external 
variable definition, then the function must include a declaration for that external variable. The function 
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definitions within a large program often include external variable declarations, whether they are needed or not, 
as a matter of good programming practice. 

An external variable declaration must begin with the storage-class specifier extern.  The name of the 
external variable and its data type must agree with the corresponding external variable definition that appears 
outside of the function. Storage space for external variables will not be allocated as a result of an external 
variable declaration. Moreover, an external variable declaration cannot include the assignment of initial 
values. These distinctions between an external variable definition and an external variable declaration are 
very important. 

EXAMPLE 8.4 Search for a Maximum Suppose we wish to find the particular value of x that causes the function 

y =x cos (x) 

to be maximized within the interval bounded by x = 0 on the left and x = 71 on the right. We will require that the 
maximizing value of x be known very accurately. We will also require that the search scheme be relatively efficient in the 
sense that the function y =x cos (x) should be evaluated as few times as possible. 

One obvious way to solve this problem would be to generate a large number of closely spaced trial functions (that is, 
evaluate the function at x = 0, x = 0.0001, x = 0.0002, . . . ,x = 3.1415, and x = 3.1416) and determine the largest of these 
by visual inspection. This would not be very efficient, however, and it would require human intervention to obtain the 
final result. Instead let us use the following elimination scheme, which is a highly efficient computational procedure for all 
functions that have only one maximum (i.e., only one “peak”) within the search interval. 

The computation will be carried out as follows. We begin with two search points at the center of the search interval, 
located a very small distance from each other, as shown in Fig. 8.1. 

The following notation is used. 
a = left end of the search interval 

x l  = left-hand interior search point 
x r  = right-hand interior search point 

b = right end of the search interval 
sep = distance between XI and xr. 

If a, b and sep are known, then the interior points can be calculated as 

x l  = a + . 5  * (b  - a - sep) 

x r  = a + . 5  * (b  - a + sep) = x l  + sep 

Let us evaluate the function y = x c o s ( x )  at x l  and at x r .  We will call these values y l  and y r ,  respectively. 
Suppose y l  turns out to be greater than y r .  Then the maximum will lie somewhere between a and x r .  Hence we retain 
only that portion of the search interval which ranges from x = a to x = x r .  We will now refer to the old point x r  as b, 
since it is now the right end of the new search interval, and generate two new search points, x l  and x r .  These points will 
be located at the center of the new search interval, a distance sep apart, as shown in Fig. 8.2. 

On the other hand, suppose now that in our original search interval the value of y r  turned out to be greater than y l .  
This would indicate that our new search interval should lie between x l  and b. Hence we rename the point which was 
originally called x l  to be a and we generate two new search points, x l  and x r ,  at the center of the new search interval, as 
shown in Fig. 8.3. 

We continue to generate a new pair of search points at the center of each new interval, compare the respective values 
of y, and eliminate a portion of the search interval until the new search interval becomes smaller than 3 * sep. Once this 
happens we can no longer distinguish the interior points from the boundaries. Hence the search is ended. 

Each time we make a comparison between y l  and y r ,  we eliminate that portion of the search interval that contains 
the smaller value of y. If both interior values of y should happen to be identical (which can happen, though it is unusual), 
then the search procedure stops, and the maximum is assumed to occur at the center of the last two interior points. 

Once the search has ended, either because the search interval has become sufficiently small or because the two 
interior points yield identical values of y, we can calculate the approximate location of the maximum as 

xmax = 0.5 * ( x l  + x r )  

The corresponding maximum value of the function can then be obtained as xmax cos (xmax ) . 
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-II- sep 

I I I  I 

a x l  x r  b 

Fig. 8.1 

a x l  x r  b 
(formerly xr)  

Fig. 8.2 

+ 
a x l  x r  b 

(formerly x l )  
Fig. 8.3 

Let us consider a program outline for the general case where a and b are input quantities but sep has a fixed value of 
0.0001. 

1. Assign a value of sep = 0,0001. 

2. Read in the values of a and b. 

3. Repeat the following until either y l  becomes equal to y r  (the desired maximum will be at the midpoint), or the 
most recent value of (b - a)  becomes less than or equal to (3  * sep) : 

(a) Generate the two interior points, xl and xr .  

(b) Calculate the corresponding values of y l  and yr, and determine which is larger. 

(c) Reduce the search interval, by eliminating that portion that does not contain the larger value of y. 

4. Evaluate xmax and ymax. 

5 .  Display the values of xmax and ymax, and stop. 

To translate this outline into a program, we first create a programmer-defined function to evaluate the mathematical 
function y = x cos ( x )  . Let us call this function curve. This function can easily be written as follows. 

/ *  eva lua te  t h e  f u n c t i o n  y = x * cos(x )  * /  

double curve(doub1e x)  

{ 
r e t u r n  ( x  * c o s ( x ) ) ;  

Note that cos ( x )  is a call to a C library function. 

1 
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Now consider step 3 in the above outline, which carries out the interval reduction. This step can also be programmed 
as a function, which we will call reduce. Notice, however, that the values represented by the variables a, b, x l ,  x r , 
y l  and yr, which change through the course of the computation, must be transferred back and forth between this function 
and main. Therefore, let these variables be external variables whose scope includes both reduce and main. 

Function reduce can be written as 

/ *  i n t e r v a l  reduc t ion  r o u t i n e  * /  

v o i d  reduce(vo1d) 

{ 
x l  = a + 0.5 * (b  - a - CNST); 

x r  = x l  + CNST; 

y l  = curve(x1) ;  
y r  = cu rve (x r ) ;  

if( Y l  ' Yr) / *  r e t a i n  l e f t  i n t e r v a l  * /  
b = x r ;  
re tu rn ;  

} 
i f  ( y l  < y r )  / *  r e t a i n  r i g h t  i n t e r v a l  * /  

a = x l ;  
re tu rn ;  

Notice that the parameter that we have referred to earlier as sep is now represented as the character constant CNST. Also, 
notice that this function does not include any formal arguments, and it does not return anything via the r e t u r n  statement. 
All of the information transfers involve external variables. 

It is now quite simple to write the main portion of the program, which calls the two functions defined above. Here is 
the entire program. 

/ *  f i n d  the  maximum o f  a f u n c t i o n  w i t h i n  a spec i f i ed  i n t e r v a l  * /  

# inc lude <stdio.h> 
# inc lude <math.h> 

#def ine  CNST 0.0001 

double a, b, x l ,  y l ,  x r ,  y r ;  / *  g l o b a l  var iab les  * /  

vo id  reduce(void);  / *  f u n c t i o n  prototype * /  
double curve(doub1e x l ) ;  / *  f u n c t i o n  pro to type * /  

main( ) 

{ 
double xmax, ymax; 

/ *  read i n p u t  data ( i n t e r v a l  end po in ts )  * /  

p r i n t f  ("na = ' I ) ;  

scanf ( " % I f " ,  &a) ; 
p r i n t f  ( " b  = " ) ;  

scanf ( '%lf &b) ;' I ,  

/ *  i n t e r v a l  reduc t ion  loop * /  

do 
reduce ( ) ; 

wh i l e  ( ( y l  I =  y r )  && ( ( b  - a) > 3 * CNST));  
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/ *  c a l c u l a t e  xmax and ymax, and d i s p l a y  t h e  r e s u l t s  * /  

xmax = 0.5 * ( x l  + x r ) ;  
ymax = curve(xmax); 
p r i n t f ( " \ n x m a x  = %8.61f ymax = %8.61f" ,  xmax, ymax); 

/ *  i n t e r v a l  r e d u c t i o n  r o u t i n e  * /  

v o i d  reduce(vo id )  

{ 
x l  = a + 0.5 * ( b  - a - CNST); 

x r  = x l  + CNST; 

y l  = curve(x1) ;  
y r  = curve ( x r )  ; 

if( Y l  ' Yr) { / *  r e t a i n  l e f t  i n t e r v a l  * /  
b = x r ;  

r e t u r n ;  

1 
i f  ( y l  c y r )  / *  r e t a i n  r i g h t  i n t e r v a l  * /  

a = x l ;  
r e t u r n ;  

1 

/ *  eva lua te  t h e  f u n c t i o n  y = x * cos(x )  * /  

double curve(doub1e x)  

{ 
r e t u r n  (x  * c o s ( x ) ) ;  

The variables a, b, x l , y l , x r  and y r  are defined as external variables whose scope includes the entire program. 
Notice that these variables are declared before main begins. 

Execution of the program, with a = 0 and b = 3.141593, produces the following interactive session. The user's 
responses are underlined, as usual. 

a = Q  

b = 3.141593 

xmax = 0.860394 ymax = 0.561096 

Thus, we have obtained the location and the value of the maximum within the given original interval. 

External variables can be assigned initial values as a part of the variable definitions, but the initial values 
must be expressed as constants rather than expressions. These initial values will be assigned only once, at the 
beginning of the program. The external variables will then retain these initial values unless they are later 
altered during the execution of the program. 

If an initial value is not included in the definition of an external variable, the variable will automatically 
be assigned a value of zero. Thus, external variables are never left dangling with undefined, garbled values. 
Nevertheless, it is good programming practice to assign an explicit initial value of zero when required by the 
program logic. 
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EXAMPLE 8.5 Average Length of Several Lines of Text Shown below is a modification of the program previously 
presented in Example 8.3, for determining the average number of characters in several lines of text. The present version 
makes use of external variables to represent the total (cumulative) number of characters read, and the total number of lines. 

/ *  read several  l i n e s  of t e x t  and determine the average number o f  characters per l i n e  * /  

#include <stdio.h> 

i n t  sum = 0; / *  t o t a l  number o f  characters * /  
i n t  l i n e s  = 0; / *  t o t a l  number o f  l i n e s  * /  

i n t  l inecount  (vo id)  ; 

main( ) 

1 
i n t  n; / *  number o f  chars i n  given l i n e  * /  
f l o a t  avg ; / *  average number o f  chars per l i n e  * /  

p r i n t f  ("Enter the t e x t  below\nM ) ; 

/ *  read a l i n e  o f  t e x t  and update the cumulative counters * /  

whi le  ( ( n  = l i necoun t ( ) )  > 0) 1 
sum += n; 
++l ines; 

1 

avg = ( f l o a t )  sum / l i nes ;  
pr in t f ( " \nAverage number o f  characters per l i n e :  % 5 . 2 f Y ,  avg); 

1 

/ *  read a l i n e  o f  t e x t  and count the number of  characters * /  

i n t  l inecount(vo id)  

{ 
char l i ne [80 ] ;  
i n t  count = 0; 

whi le  ( ( l i n e [ c o u n t ]  = getchar( ) )  I =  ' \ n M )  
++count ; 

re tu rn  (count); 

1 

Notice that sum and l i n e s  are external variables that represent the total (cumulative) number of characters read and 
the total number of lines, respectively. Both of these variables are assigned initial values of zero. These values are 
successively modified within main, as additional lines of text are read. 

Also, recall that the earlier version of the program used two different automatic variables, each called count in 
different parts of the program. In the present version of the program, however, the variables that represent the same 
quantities have different names, since one of the variables ( l ines) is now an external variable. 

You should understand that sum and l i n e s  need not be assigned zero values explicitly, since external variables are 
always set equal to zero unless some other initial value is designated. We include the explicit zero initialization in order to 
clarify the program logic. 

Arrays can also be declared either automatic or external, though automatic arrays cannot be initialized. 
We will see how initial values are assigned to array elements in Chap. 9. 
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Finally, it should be pointed out that there are inherent dangers in the use of external variables, since an 
alteration in the value of an external variable within a function will be carried over into other parts of the 
program. Sometimes this happens inadvertently, as a side efect of some other action. Thus, there is the 
possibility that the value of an external value will be changed unexpectedly, resulting in a subtle programming 
error. You should decide carehlly which storage class is most appropriate for each particular programming 
situation. 

8.4 STATIC VARIABLES 

In this section and the next, we make the distinction between a single-fife program, in which the entire 
program is contained within a single source file, and a multififeprogram, where the functions that make up the 
program are contained in separate source files. The rules governing the static storage class are different in 
each situation. 

In a single-file program, static variables are defined within individual functions and therefore have the 
same scope as automatic variables; i.e., they are local to the functions in which they are defined. Unlike 
automatic variables, however, static variables retain their values throughout the life of the program. Thus, if a 
function is exited and then re-entered at a later time, the static variables defined within that function will retain 
their former values. This feature allows functions to retain information permanently throughout the execution 
of a program. 

Static variables are defined within a function in the same manner as automatic variables, except that the 
variable declaration must begin with the s t a t i c  storage-class designation. Static variables can be utilized 
within the function in the same manner as other variables. They cannot, however, be accessed outside of their 
defining function. 

It is not unusual to define automatic or static variables having the same names as external variables. In 
such situations the local variables will take precedence over the external variables, though the values of the 
external variables will be unaffected by any manipulation of the local variables. Thus the external variables 
maintain their independence from locally defined automatic and static variables. The same is true of local 
variables within one function that have the same names as local variables within another function. 

EXAMPLE8.6 Shown below is the skeletal structure of a C program that includes variables belonging to several 
different storage classes. 

float a, b y  c; 

void dummy(void); 


main ( ) 
{ 

static float a; 


void dummy(void) 

{ 

static int a; 

int b; 


Within this program a , b and c are external, floating-point variables. However, a is redefined as a static floating-point 
variable within main. Therefore, b and c are the only external variables that will be recognized within main. Note that 
the static local variable a will be independent of the external variable a. 
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Similarly, a and b are redefined as integer variables within dummy. Note that a is a static variable, but b is an 
automatic variable. Thus, a will retain its former value whenever dummy is reentered, whereas b will lose its value 
whenever control is transferred out of dummy. Furthermore, c is the only external variable that will be recognized within 
dummy. 

Since a and b are local to dummy, they will be independent of the external variables a ,  b and c, and the static 
variable a defined within main. The fact that a and b are declared as integer variables within dummy and floating-point 
variables elsewhere is therefore immaterial. 

Initial values can be included in the static variable declarations. The rules associated with the assignment 
of these values are essentially the same as the rules associated with the initialization of external variables, even 
though the static variables are defined locally within a function. In particular: 
1. The initial values must be expressed as constants, not expressions. 
2. The initial values are assigned to their respective variables at the beginning of program execution. The 

variables retain these values throughout the life of the program, unless different values are assigned 
during the course of the computation. 

3. Zeros will be assigned to all static variables whose declarations do not include explicit initial values. 
Hence, static variables will always have assigned values. 

EXAMPLE 8.7 Generating Fibonacci Numbers The Fibonacci numbers form an interesting sequence in which each 
number is equal to the sum of the previous two numbers. In other words, 

where Fi refers to the ith Fibonacci number. The first two Fibonacci numbers are defined to equal 1;i.e., 

F1 = F 2 =  1 

Hence 

F3 = F 2  + F 1 =  1 + 1 = 2  

F4 = F3 + F2 = 2  + 1 = 3 

Fs = F4 + F3 = 3  + 2 = 5 

and so on. 
Let us write a C program that generates the first n Fibonacci numbers, where n is a value specified by the user. The 

main portion of the program will read in a value for n, and then enter a loop that generates and writes out each of the 
Fibonacci numbers. A hnction called f ibonacc i  will be used to calculate each Fibonacci number from its two preceding 
values. This function will be called once during each pass through the main loop. 

When f ibonacc i  is entered, the computation of the current Fibonacci number, f, is very simple provided the two 
previous values are known. These values can be retained from one function call to the next if we assign them to the static 
variables f 1 and f 2 ,  which represent Fi-l and Fi-2, respectively. (We could, of course, have used external variables for 
this purpose, but it is better to use local variables, since Fi-l and Fi-2 are required only within the function.) We then 
calculate the desired Fibonacci number as 

f = f l  + f 2  

and update the values o f f  2 and f 1 using the formulas 

f 2  = f l  

and 

f l  = f 

Here is the complete C program. 
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/ *  program t o  ca lcu late successive Fibonacci numbers * /  

#include <stdio.h> 

long i n t  f i b o n a c c i ( i n t  count); 

main( ) 

{ 
i n t  count, n; 

p r i n t f ( "How many Fibonacci numbers? ' ) ;  
scanf ( '%d", an) ; 
p r i n t f ( " \ n " ) ;  

f o r  (count = 1; count <= n; ++count) 
p r i n t f ( " \ n i  = %2d F = %ld' ,  count, f ibonacc i (count) ) ;  

1 

long i n t  f i b o n a c c i ( i n t  count) 

/ *  ca l cu la te  a Fibonacci number using the formulas 

F = 1 f o r  i< 3, and F = F1 + F2 f o r  i >= 3 * /  

t 
s t a t i c  long i n t  f l  = 1, f 2  = 1; 
long i n t  f ;  

f = (count < 3) ? 1 : f l  + f2 ;  
f 2  = f l ;  
f l  = f ;  
r e t u r n ( f ) ;  

1 

Notice that long integers are used to represent the Fibonacci numbers. Also, note that f 1 and f 2 are static variables 
that are each assigned an initial value of 1. These initial values are assigned only once, at the beginning of the program 
execution. The subsequent values are retained between successive function calls, as they are assigned. You should 
understand that f 1 and f 2 are strictly local variables, even though they retain their values from one function call to 
another. 

The output corresponding to a value of n = 30 is shown below. As usual, the user's response is underlined. 

How many Fibonacci numbers? a 
i =  1 F = l  
i =  2 F = l  
i =  3 F = 2  
i =  4 F = 3  
i =  5 F = 5  
i =  6 F = 8  

i =  7 F = 13 
i =  8 F = 21 
i =  9 F = 34 
i= 10 F = 55 

i= 11 F = 09 
i= 12 F = 144 

i = 13 F = 233 
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i = 14 F = 377 

i = 15 F = 610 

i = 16 F = 987 

i = 17 F = 1597 

i = 18 F = 2584 
i = 19 F = 4181 

i = 20 F = 6765 

i = 21 F = 10946 

i = 22 F = 17711 

i = 23 F = 28657 

i = 24 F = 46368 

i = 25 F = 75025 
i = 26 F = 121393 

i = 27 F = 196418 

i = 28 F = 317811 

i = 29 F = 514229 

i = 30 F = 832040 

It is possible to define and initialize static arrays as well as static single-valued variables. The use of 
arrays will be discussed in the next chapter. 

8.5 MULTIFILE PROGRAMS 

Afile is a collection of information stored as a separate entity within the computer or on an auxiliary storage 
device. A file can be a collection of data, a source program, a portion of a source program, an object program, 
etc. In this chapter we will consider a file to be either an entire C program or a portion of a C program, i.e., 
one or more functions. (See Chap. 12 for a discussion of data files, and their relationship to C programs.) 

Until now, we have restricted our attention to C programs that are contained entirely within a single file. 
Many programs, however, are composed of multiple files. This is especially true of programs that make use 
of lengthy ~nctions, where each function may occupy a separate file. Or, if there are many small related 
functions within a program, it may be desirable to place a few functions within each of several files. The 
~dividual files will be compiled separately, and then linked together to form one executable object program 
(see Sec. 5.4). This facilitates the editing and debugging of the program, since each file can be maintained at a 
manageable size. 

Multifile programs allow greater flexibility in defining the scope of both functions and variables. The 
rules associated with the use of storage classes become more complicated, however, because they apply to 
functions as well as variables, and more options are available for both external and static variables. 

Functions 

Let us begin by considering the rules associated with the use of functions. Within a multifile program, a 
~ n c t i o n  def~ition may be either external or static. An external ~ c t i o n  thewill be recognized ~ o u ~ o u t  
entire program, whereas a static function will be recognized only within the file in which it is defined. In each 
case, the storage class is established by placing the appropriate storage-class designation (i.e., either extern 
or static) at the beginning of the function definition. The function is assumed to be external if a storage- 
class designation does not appear. 

In general terms, the first line of a function definition can be written as 

storage-class data-type name(type I arg 1, type 2 arg 2, . . * f  

type n arg n) 
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where storage -class refers to the storage-class associated with the function, data - type refers to the data- 
type of the value returned by the function, name refers to the function name, type I, type 2, , . ', 
type n refer to the formal argument types, and arg I, arg 2, . . ., arg n refer to the formal 
arguments themselves. Remember that the storage-class, the data-type, and the formal arguments need not all 
be present in every function defmition. 

When a function is defined in one file and accessed in another, the latter file must include a function 
declaration. This declaration identifies the function as an external function whose definition appears 
elsewhere. Such declarations are usually placed at the beginning of the file, ahead of any function definitions. 

It is good programming practice to begin the declaration with the storage-class specifier extern .  This 
storage-class specifier is not absolutely necessary, however, since the function will be assumed to be external 
if a storage-class specifier is not present. 

In general terms, a function declaration can be written as 

s torage -class da t a  - type name( argument type 7, argument type 2, . . 0 ,  

argument type n ) ;  

A function declaration can also be written using full function prototyping (see Sec. 7.4) as 

storage-class data-type name(type I arg I, type 2 arg 2, . . * I  

type n arg n ) ;  

Remember that the storage-class, the data-type and the argument types need not all be present in every 
function declaration. 

To execute a multifile program, each individual file must be compiled and the resulting object files linked 
together. To do so, we usually combine the source files within a project. We then build the project (i.e., 
compile all of the source files and link the resulting object files together into a single executable program). If 
some of the source files are later changed, we make another executable program (i.e., compile the new source 
files and link the resulting object files, with the unchanged object files, into a new executable program). The 
details of how this is done will vary from one version of C to another. 

EXAMPLE 8.8 Here is a simple program that generates the message "Hello, there!" from within a function. The 
program consists of two functions: main and output.  Each function appears in a separate file. 

/ *  simple, m u l t i f i l e  program t o  w r i t e  " H e l l o ,  t h e r e l "  * /  

# inc lude  <s td io .h>  

e x t e r n  void o u t p u t ( v o i d ) ;  / *  funct ion  prototype * /  

main ( ) 

1 
output  ( )  ; 

1 

e x t e r n  void output (vo id )  / *  e x t e r n a l  funct ion  d e f i n i t i o n  * /  

1 
p r i n t f  ( " H e l l o ,  t h e r e  I ' I )  ; 
r e t u r n; 

1 
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Notice that outpu t  is assigned the storage class extern, since it must be accessed from a file other than the one in 
which it is defined; it must therefore be an external function. Hence, the keyword e x t e r n  is included in both the function 
declaration (in the first file) and the function definition (in the second file). Since e x t e r n  is a default storage class, 
however, we could have omitted the keyword e x t e r n  from both the function declaration and the function definition. 
Thus, the program could be written as follows: 

First-file: 

/ *  simple, m u l t i f i l e  program t o  w r i t e  "He l lo ,  t h e r e ! "  * /  

# inc lude <s td io .h> 

v o i d  o u t p u t ( v o i d ) ;  / *  f u n c t i o n  pro to type * /  

main ( ) 

{ 
ou tpu t  ( ) ; 

1 

Second-file: 

v o i d  o u t p u t ( v o i d )  / *  e x t e r n a l  f u n c t i o n  d e f i n i t i o n  * /  

{ 
p r i n t f  ( " H e l l o ,  t h e r e !  ' I )  ; 
r e t u r n ;  

1 
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Let us now build a Turbo C++ project corresponding to this multifile program. To do so, we first enter the source 
code shown in the first file, and save it in a file called FILE1.C. We then enter the source code shown in the second file, 
and save it in a file called FILE2. C. These two files are shown within separate windows in Fig. 8.4. 

Next, we select New from the Project  menu, and specify EX8-8. I D E  as the project name. This will result in the 
Project  window being opened, as shown near the center of Fig. 8.4. Within this window, we see that the project will 
result in an executable program called EX8- 8. EXE. This executable program will be obtained from the previous two 
source files, FILE1 .C  and FILE2.C. 

The program can now be executed by selecting Run from the Debug menu, as explained in Chap. 5 (see Example 
5.4). The resulting message, Hel lo , there I ,  is displayed in the output window, as shown in the lower right portion of 
Fig. 8.4. 

If a file contains a static function, it may be necessary to include the storage class s t a t i c  within the 
function declaration or the function prototype. 

EXAMPLE 8.9 Simulation of a Game of Chance (Shooting Craps) Here is another version of the craps game 
simulation, originally presented in Example 7.11. In this version the program consists of two separate files. The first file 
contains main, whereas the second file contains the functions play and throw. 

/ *  s imulat ion o f  a craps game * /  

#include <stdio.h> 
#include <std l ib .h> 
#include <ctype.h> 

#define SEED 12345 

extern vo id p lay(vo id) ;  / *  funct ion prototype * /  

main( ) 

{ 
char answer = ' Y ' ;  

printf("We1come t o  the Game o f  CRAPS\n\n")); 
p r i n t f ( " T o  throw the dice, press RETURN\n\n"); 

srand(SEED); / *  i n i t i a l i z e  the random number generator * /  

/ *  main loop * /  

whi le  (toupper(answer) I =  ' N I )  { 

Play ( 1  ; 
p r i n t f ( * \ n D o  you want t o  play again? (Y/N) " ) ;  
scanf( "  %c",  &answer); 
p r i n t f  ( " \ n u ); 

1 
p r i n t f ( " B y e ,  have a n ice day") ;  

1 

#include <stdio.h> 
#include <std l ib .h> 

s t a t i c  i n t  throw(void);  / *  f unc t i on  prototype * /  
extern vo id p lay(vo id)  / *  external  f unc t i on  d e f i n i t i o n  * /  
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/ *  simulate one complete game * /  

i n t  scorel ,  score2; 
char dummy; 

p r i n t f ( " \ nP lease  throw the dice . . . " ) ;  

scanf ( "%c", &dummy) ; 
p r i n t f  ( " \ n " )  ; 
scorel  = throw();  
p r i n t f ( " \ n % 2 d " ,  score l ) ;  

switch (score l )  { 

case 7: / *  win on f i r s t  throw * /  
case 11: 

p r i n t f ( n  - Congratulat ions1 You WIN on the f i r s t  th row\n" ) ;  
break; 

case 2: / *  lose  on f i r s t  throw * /  
case 3: 
case 12: 

p r i n t f ( "  - Sorry, you LOSE on the f i r s t  th row\n" ) ;  
break; 

case 4: / *  a d d i t i o n a l  throws are required * /  
case 5: 

case 6: 
case a: 
case 9: 

case 10: 

do { 
p r i n t f ( "  - Throw the dice again . . 
scanf("%c",  &dummy); 
score2 = throw();  
p r i n t f ( " \ n % 2 d n ,  score2); 

} wh i le  (score2 I =  scorel  && score2 I =  7);  

i f  (score2 == score l )  
p r i n t f ( "  - You WIN by matching your f i r s t  score \n" ) ;  

e lse  
p r i n t f ( "  - You LOSE by f a i l i n g  t o  match your f i r s t  score \n" ) ;  

break; 

r e t u r n; 
1 

/ *  simulate one throw o f  a p a i r  o f  d ice * /  

s t a t i c  i n t  throw(void) / *  s t a t i c  f unc t i on  d e f i n i t i o n  * /  

{ 
f l o a t  x l ,  x2; / *  random f l o a t i n g - p o i n t  numbers between 0 and 1 * /  
i n t  n l ,  n2; / *  random in tegers  between 1 and 6 * /  
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x l  = rand( ) / 32768.0; 
x2 = r a n d ( )  / 32768.0; 

n l  = 1 + ( i n t )  ( 6  * x l ) ;  / *  simulate f i r s t  d i e  * /  
n2 = 1 + ( i n t )  ( 6  * x2) ;  / *  simulate second d i e  * /  

r e t u r n ( n 1  + n 2 ) ;  / *  score i s  sum o f  two d i c e  * /  

1 

Notice that p l a y  is defined as an external function, so it can be accessed from main (because main and p l a y  are 
defined in separate files). Therefore, p l a y  is declared an external function within the first file. On the other hand, throw 
is accessed only by play.  Both throw and p l a y  are defined in the second file. Hence throw need not be recognized in 
the first file. We can therefore define throw to be a static function, confining its scope to the second file. 

Also, notice that each file has a separate set of #include statements for the header files s t d i o .  h and s t d l i b .  h. 
This ensures that the necessary declarations for the library functions are included in each file. 

When the individual files are compiled and linked, and the resulting executable program is run, the program 
generates a dialog identical to that shown in Example 7.11, as expected. 

Variables 

Within a multifile program, external (global) variables can be defined in one file and accessed in another. We 
again emphasize the distinction between the definition of an external variable and its declarations. An 
external variable definition can appear in only one file. Its location within the file must be external to any 
function definition. Usually, it will appear at the beginning of the file, ahead of the first function definition. 

External variable definitions may include initial values. Any external variable that is not assigned an 
initial value will automatically be initialized to zero. The storage-class specifier e x t e r n  is not required within 
the definition; in fact, many versions of C specifically forbid the appearance of this storage-class specifier in 
external variable definitions. Thus, external variable definitions are recognized by their location within the 
defining files and by their appearance. We will follow this convention in this book. 

In order to access an external variable in another file, the variable must first be declared within that file. 
This declaration may appear anywhere within the file. Usually, however, it will be placed at the beginning of 
the file, ahead of the first function definition. The declaration must begin with the storage-class specifier 
e x t ern. Initial values cannot be included in external variable declarations. 

The value assigned to an external variable may be altered within any file in which the variable is 
recognized. Such changes will be recognized in all other files that fall within the scope of the variable. Thus, 
external variables provide a convenient means of transferring information between files. 

EXAMPLE 8.10 Shown below is a skeletal outline of a two-file C program that makes use of external variables. 

i n t  a = 1 ,  b = 2 ,  c = 3 ;  / *  e x t e r n a l  v a r i a b l e  DEFINITION * /  

e x t e r n  vo id  f u n c t l ( v o i d ) ;  / *  e x t e r n a l  funct ion  DECLARATION * /  

main ( ) / *  funct ion  DEFINITION * /  

i 
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Second-file; 

ex te rn  i n t  a, b, c / *  ex te rna l  va r iab le  DECLARATION * /  

ex te rn  vo id  f u n c t l ( v o i d )  / *  ex te rna l  f u n c t i o n  D E F I N I T I O N  * /  

. . . . .  
1 

The variables a, b and c are defined as external variables within the first file, and assigned the initial values 1, 2 and 
3, respectively. The first file also contains a definition of the function main, and a declaration for the external function 
f unct 1 ,which is defined elsewhere. Within the second file we see the definition of f unct 1 , and a declaration for the 
external variables a, b and c. 

Notice that the storage-class specifier extern  appears in both the definition and the declaration of the external 
function f unct 1. This storage-class specifier is also present in the declaration of the external variables (in the second 
file), but it does not appear in the definition of the external variables (in the first file). 

The scope of a, b and c is the entire program. Therefore these variables can be accessed, and their values altered, in 
either file, i.e., in either main or f unct 1. 

EXAMPLE 8.11 Search for a Maximum In Example 8.4 we presented a C program that determines the value of x 
which causes the function 

y =x cos (x) 

to be maximized within a specified interval. We now present another version of this program, in which each of the three 
required functions is placed in a separate file. 

First-file: 

/ *  f i n d  the  maximum o f  a f u n c t i o n  w i t h i n  a spec i f i ed  i n t e r v a l  * /  

##include <stdio.h> 

double a, b, x l ,  y l ,  x r ,  y r ,  cns t  = 0.0001; / *  e x t e r n a l  va r iab le  d e f i n i t i o n  * /  

ex te rn  vo id  reduce(vo id ) ;  / *  e x t e r n a l  f u n c t i o n  pro to type * /  
ex te rn  double curve(doub1e x l ) ;  / *  e x t e r n a l  f u n c t i o n  pro to type * /  

main ( ) / *  f u n c t i o n  d e f i n i t i o n  * /  

{ 
double xmax, ymax; 

/ *  read i n p u t  data ( i n t e r v a l  end p o i n t s )  * /  

p r i n t f  ( " \ n a  = I t ) ;  

scanf ( '%lf &a) ;' I ,  

p r i n t f ( ' b  = ' ) ;  

scanf ( "%If" , &b) ; 

/ *  i n t e r v a l  reduc t ion  loop * /  

do 
reduce ( ) ; 

wh i l e  ( ( y l  I =  y r )  && ( ( b  - a)  > 3 c n s t ) ) ;  
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/ *  ca lcu late xmax and ymax, and d isp lay the r e s u l t s  * /  

xmax = 0.5 * ( x l  + x r ) ;  
ymax = curve(xmax); 
p r i n t f ( " \ nxmax  = %8.61f ymax = %8.61fn, xmax, ymax); 

1 

/ *  i n t e r v a l  reduct ion rout ine * /  

extern double a, b, x l ,  y l ,  x r ,  yr ,  cnst; / *  external  var iab le dec larat ion * /  

extern double curve(doub1e x l ) ;  / *  external  f unc t i on  prototype * /  

extern vo id reduce(void) / *  external  f unc t i on  d e f i n i t i o n  * /  

1 
x i  = a + 0.5 * (b - a - CnSt); 

x r  = x l  + cnst ;  
y l  = curve(x1);  
y r  = curve(xr ) ;  

i f  ( y l  > y r )  { / *  r e t a i n  l e f t  i n t e r v a l  * /  
b = xr ;  
re turn;  

1 
i f  ( y l  < y r )  / *  r e t a i n  r i g h t  i n t e r v a l  * /  

a = x l ;  
re turn;  

/ *  evaluate the func t i on  y = x * cos(x) * /  

# include <math.h> 

extern double curve(doub1e x) / *  external  f unc t i on  d e f i n i t i o n  * /  

re tu rn  ( x  * cos(x) ) ;  

1 

The external function reduce, which is defined in the second file, is declared in the first file. Therefore its scope is 
the first two files. Similarly, the external function curve, which is defined in the third file, is declared in the first and 
second files. Hence, its scope is the entire program. Notice that the storage-class specifier extern appears in both the 
function definitions and the function prototypes. 

Now consider the external variables a, b, x l ,  y l ,  xr, y r  and cnst, which are defined in the first file. Observe that 
cnst is assigned an initial value within the definition. These variables are utilized, and hence declared, in the second file, 
but not in the third file. Note that the variable declaration (in the second file) includes the storage-class specifier extern, 
but the variable definition (in the first file) does not include a storage-class specifier. 

Finally, notice the #include <math.h> statement at the beginning of the third file. This statement causes the 
header file math.h to be included in the third source file, in support of the cos library function. 

Execution of this program results in output that is identical to that shown in Example 8.4. 
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Within a file, external variables can be defined as static. To do so, the storage-class specifier static is 
placed at the beginning of the definition. The scope of a static external variable will be the remainder of the 
file in which it is defined. It will not be recognized elsewhere in the program (Le, in other files). Thus, the 
use of static external variables within a file permits a group of variables to be “hidden” from the remainder of 
a program. Other external variables having the same names can be defined in the remaining files. (Usually, 
however, it is not be a good idea to use identical variable names. Such identically named variables may cause 
confusion in understanding the program logic, even though they will not conflict with one another 
syntactical1y.) 

EXAMPLE 8.12 Generating Fibonacci Numbers Let us return to the problem of calculating Fibonacci numbers, 
which we originally considered in Example 8.7. If we rewrite the program as a two-file program employing static external 
variables, we obtain the following complete program. 

/ *  program t o  ca lcu late successive Fibonacci numbers * /  

# include <stdio.h> 

extern long i n t  f i b o n a c c i ( i n t  count); / *  external  funct ion prototype * /  

main( ) / *  funct ion d e f i n i t i o n  * /  

{ 
i n t  count, n; 

pr in t f ( ”How many Fibonacci numbers? ” ) ;  
scanf(”%d*,  &n); 
p r i n t f ( ’ \ n u ) ; 

f o r  (count = 1; count <= n; ++count) 
p r i n t f ( ’ \ n i  = %2d F = %Id” ,  count, f ibonacc i (count) ) ;  

1 

Second-file 

/ *  ca lcu late a Fibonacci number (F = 1 f o r  i< 3, and F = F1 + F2 f o r  i>= 3) * /  

s t a t i c  long i n t  f l  = 1, f 2  = 1; / *  s t a t i c  external  var iab le d e f i n i t i o n  * /  

long i n t  f i b o n a c c i ( i n t  count) / *  external  funct ion d e f i n i t i o n  * /  

{ 
long i n t  f ;  

f = (count < 3) ? 1 : f l  + f2 ;  
f 2  = f l ;  
f l  = f ;  
r e t u r n ( f ) ;  

1 

In this program the function f ibonacci  is defined in the second file and declared in the first file, so that its scope is 
the entire program. On the other hand, the variables f 1 and f 2 are defined as static external variables in the second file. 
Their scope is therefore confined to the second file. Note that the variable definition in the second file includes the 
assignment of initial values. 

Execution of this program results in output that is identical to that shown in Example 8.7. 



228 PROGRAM STRUCTURE [CHAP. 8 

8.6 MORE ABOUT LIBRARY FUNCTIONS 

Our discussion of multifile programs can provide additional insight into the use of library functions. Recall 
that library functions are prewritten routines that carry out various commonly used operations or calculations 
(see Sec. 3.6). They are contained within one or more library files that accompany each C compiler. 

During the process of converting a C source program into an executable object program, the compiled 
source program may be linked with one or more fibruryjifesto produce the final executable program. Thus, 
the final program may be assembled from two or more separate files, even though the original source program 
may have been contained within a single file. The source program must therefore include declarations for the 
library functions, just as it would for programmer-defined functions that are placed in separate files. 

One way to provide the necessary library-function declarations is to write them explicitly, as in the 
multifile programs presented in the last section. This can become tedious, however, since a small program 
may make use of several library functions. We wish to simplify the use of library functions to the greatest 
extent possible. C offers us a clever way to do this, by placing the required library-function declarations in 
special source files, called heuderfifes. 

Most C compilers include several header files, each of which contains declarations that are functionally 
related (see Appendix H). For example, s t d i o .  h is a header file containing declarations for input/output 
routines; math ,h contains declarations for certain mathematical functions; and so on. The header files also 
contain other information related to the use of the library functions, such as symbolic constant definitions. 

The required header files must be merged with the source program during the compilation process. This 
is accomplished by placing one or more # # i n c l u d e  statements at the beginning of the source program (or at 
the beginning of the individual program files). We have been following this procedure in all of the 
programming examples presented in this book. 

EXAMPLE 8.13 Compound Interest Example 5.2 originally presented the following C program for carrying out 
simple compound interest calculations. 

/ *  simple compound i n t e r e s t  problem * /  

#include <s td io .h>  
# inc lude  <math.h> 

main ( ) 

{ 
f l o a t  p , r , n , i , f ;  

/ *  read i n p u t  da ta  ( i n c l u d i n g  prompts) * /  

p r i n t f ( " P 1 e a s e  e n t e r  a value f o r  the  p r i n c i p a l  ( P ) :  " ) ;  

scanf ( "%f" , &p) ; 
p r i n t f ( " P 1 e a s e  e n t e r  a value f o r  the  i n t e r e s t  r a t e  ( r ) :  " ) ;  

scanf ( "%f & r ) ;I t ,  

p r i n t f ( ' P 1 e a s e  e n t e r  a value f o r  the  number o f  years ( n ) :  " ) ;  
scanf ( " % f  ', an) ; 

/ *  c a l c u l a t e  i,then f * /  

i = r / 100; 
f = p * pow((1 + i ) , n ) ;  

/ *  d i s p l a y  the  output * /  

p r i n t f ( " \ n T h e  f i n a l  value (F )  i s :  % . 2 f \ n w ,  f ) ;  

} 
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This program makes use of two header files, s td io .h and mat h .h. The first header file contains declarations for the 
p r i n t f  and scanf functions, whereas the second header file contains a declaration for the power function, POW. 

We can rewrite the program if we wish, removing the #include statements and adding our own function 
declarations, as follows. 

/ *  simple compound i n t e r e s t  problem * /  

extern i n t  p r i n t f  ( )  ; / *  l i b r a r y  funct ion dec larat ion * /  
extern i n t  scanf( ) ;  / *  l i b r a r y  funct ion dec larat ion * /  
extern double pow(double, double); / *  l i b r a r y  funct ion dec larat ion * /  

main( ) 

{ 
f l o a t  p , r ,n , i , f ;  

/ *  read inpu t  data ( inc lud ing prompts) * /  

pr in t f ( "P1ease enter a value f o r  the p r i n c i p a l  (P): " ) ;  

scanf( '%f" ,  &p);  
pr in t f ( "P1ease enter a value f o r  the i n t e r e s t  ra te  ( r ) :  ' ) ;  

scanf ( " % f  ' , &r); 
pr in t f ( "P1ease enter a value f o r  the number o f  years (n) :  " ) ;  
scanf ( " % f  I ,  an) ; 

/ *  ca lcu late i,then f * /  

i= r / 100; 
f = p * pow((1 + i ) , n ) ;  

/ *  d isp lay the output * I  

p r i n t f ( " \ n T h e  f i n a l  value (F)  i s :  %.2f \n" ,  f ) ;  

This version of the program is compiled in the same way as the earlier version, and it will generate the same output when 
executed. In practice the use of such programmer-supplied function declarations is not done, however, as it is more 
complicated and it provides additional sources of error. Moreover, the error checking that occurs during the compilation 
process will be less complete, because the argument types are not specified for the p r i n t f  and scanf function. (Note 
that the number of arguments in p r i n t f  and scanf can vary from one function call to another. The manner in which 
argument types are specified under these conditions is beyond the scope of our present discussion.) 

Platform independence (i.e., machine independence) is a significant advantage in this approach to the use 
of library functions and header files. Thus, machine-dependent features can be provided as library functions, 
or as character constants or macros (see Sec. 14.4) that are included within the header files. A typical C 
program will therefore run on many different kinds of computers without 'alteration, provided the appropriate 
library functions and header files are utilized. The portability resulting fiom this approach is a major 
contributor to the popularity of C. 

Review Questions 

8.1 What is meant by the storage class of a variable? 

8.2 Name the four storage-class specifications included in C. 

8.3 What is meant by the scope of a variable within a program? 

8.4 What is the purpose of an automatic variable? What is its scope? 
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8.5 How is an automatic variable defined? How is it initialized? What happens if an automatic variable is not 
explicitly initialized within a function? 

8.6 Does an automatic variable retain its value once control is transferred out of its defining function? 

8.7 What is the purpose of an external variable? What is its scope? 

8.8 Summarize the distinction between an external variable definition and an external variable declaration. 

8.9 How is an external variable defined? How is it initialized? What happens if an external variable definition does 
not include the assignment of an initial value? Compare your answers with those for automatic variables. 

8.10 Suppose an external variable is defined outside of function A and accessed within the function. Does it matter 
whether the external variable is defined before or after the function? Explain. 

8.11 In what way is the initialization of an external variable more restricted than the initialization of an automatic 
vari ab 1e? 

8.12 What is meant by side effects? 

8.13 What inherent dangers are there in the use of external variables? 

8.14 What is the purpose of a static variable in a single-file program? What is its scope? 

8.15 How is a static variable defined in a single-file program? How is a static variable initialized? Compare with 
automatic variables. 

8.16 Under what circumstances might it be desirable to have a program composed of several different files? 

8.17 Compare the definition of functions within a multifile program with the definition of functions within a single-file 
program. What additional options are available in the multifile case? 

8.18 In a multifile program, what is the default storage class for a function if a storage class is not explicitly included in 
the function definition? 

8.19 What is the purpose of a static function in a multifile program? 

8.20 Compare the definition of external variables within a multifile program with the definition of external variables 
within a single-file program. What additional options are available in the multifile case? 

8.21 Compare external variable definitions with external variable declarations in a multifile program. What is the 
purpose of each? Can an external variable declaration include the assignment of an initial value? 

8.22 Under what circumstances can an external variable be defined to be static? What advantage might there be in 
doing this? 

8.23 What is the scope of a static external variable? 

8.24 What is the purpose of a header file? Is the use of a header file absolutely necessary? 

Problems 

8.25 Describe the output generated by each of the following programs. 

(a) #include <stdio.h> 

i n t  f u n c t l ( i n t  count); 

main ( ) 

{ 
i n t  a, count; 

f o r  (count = 1; count <= 5; ++count) { 

a = func t l ( coun t ) ;  
p r i n t f ( * % d  ' I ,  a) ;  

1 
} 
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f u n c t l  ( i n t  x )  

i n t  y = 0; 

y += x; 
re tu rn (y ) ;  

(b) #include <std io .  h> 

i n t  f u n c t l ( i n t  count); 

main ( ) 

{ 
i n t  a, count; 

f o r  (count = 1; count <= 5; ++count) { 
a = funct l (count) ;  
p r i n t f ( ' % d  I ,  a);  

1 
1 

f u n c t l  ( i n t  x )  
t 

s t a t i c  i n t  y = 0; 

y += x; 
re tu rn (y ) ;  

(c) # include estdio.  h> 

i n t  f u n c t l ( i n t  a) ;  
i n t  f u n c t 2 ( i n t  a) ;  

main( ) 

i n t  a = 0, b = 1, count; 

f o r  (count = 1; count <= 5; ++count) { 
b += f u n c t l ( a )  + funct2(a);  
p r i n t f ( " % d  ", b) ;  

1 
1 

f u n c t l  ( i n t  a) 
t 

i n t  b; 

b = funct2(a) ;  
re tu rn (b ) ;  

1 

f u n c t 2 ( i n t  a) 
t 

s t a t i c  i n t  b = 1; 

b += 1; 
re tu rn (b  + a);  

1 
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8.26 Write the first line of the function definition for each of the situations described below. 

(a) The second file of a two-file program contains a function called s o l v e r  which accepts two floating-point 
quantities and returns a floating-point argument. The function will be called by other functions which are 
defined in both files. 

(b)  The second file of a two-file program contains a function called s o l v e r  which accepts two floating-point 
quantities and returns a floating-point argument, as in the preceding problem. Recognition of this function 
is to remain local within the second file. 

8.27 Add the required (or suggested) function declarations for each of the skeletal outlines shown below. 

(a) This is a two-file program. 

First-file: 

main ( ) 

{ 
d o u b l e  x ,  y ,  z ;  

. . . . .  
z = f u n c t l ( x ,  y ) ;  

d o u b l e  f u n c t l ( d o u b 1 e  a ,  d o u b l e  b )  

{ 
. . . . .  

1 

( b )  This is a two-file program. 

First-file; 

main ( ) 

{ 
d o u b l e  x ,  y ,  z ;  

. . . . .  
z = f u n c t l ( x ,  y ) ;  

. . . . .  
1 

Second file: 

d o u b l e  f u n c t l ( d o u b 1 e  a ,  d o u b l e  b )  

{ 
d o u b l e  c ;  

c = f u n c t 2 ( a ,  b ) ;  

. . . . .  
1 
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s t a t i c  double funct2(double a, double b )  

{ 

. . . . .  
1 

8.28 Describe the output generated by each of the following programs. 

(a) #include <s td io .  h> 

i n t  a = 3; 

i n t  f u n c t l ( i n t  count ) ;  

main ( ) 

{ 
i n t  count; 

f o r  (count = 1; count <= 5; ++count) { 

a = f u n c t l ( c o u n t ) ;  
p r i n t f ( " % d  " , a ) ;  

1 
1 

f u n c t l  ( i n t  x )  

{ 
a += x; 
r e t u r n ( a ) ;  

1 

(b)  # inc lude <s td io .  h> 

i n t  a = 100, b = 200; 

i n t  f u n c t l ( i n t  a, i n t  b ) ;  

main( ) 

{ 
i n t  count, c, d; 

f o r  (count = 1; count <= 5; ++count) { 

c = 20 * (count - 1 ) ;  
d = 4 * count * count; 
p r i n t f ( " % d  %d f u n c t l ( a ,  c ) ,  f u n c t l ( b ,  d ) ) ;  " I ,  

1 
1 

f u n c t l  ( i n t  x, i n t  y )  

{ 
r e t u r n ( x  - y ) ;  

1 

(c) # inc lude <s td io .  h> 

i n t  a = 100, b = 200; 

i n t  f u n c t l ( i n t  c ) ;  
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main( ) 

t 
i n t  count, c; 

f o r  (count = 1; count <= 5; ++count) { 

c = 4 * count * count; 
p r i n t t ( ' % d  I ,  f u n c t l ( c ) ) ;  

1 

f u n c t l  ( i n t  x )  

t 
i n t  c; 

c = ( x  < 50) 7 (a + x )  : (b - x ) ;  
r e tu rn (c ) ;  

1 

(d) #include <stdio.  h> 

i n t  a = 100, b = 200; 

i n t  f u n c t l ( i n t  count); 
i n t  f u n c t 2 ( i n t  c ) ;  

main( ) 

{ 
i n t  count; 

f o r  (count = 1; count <= 5; ++count) 
p r i n t f ( " % d  I, func t l ( coun t ) ) ;  

1 

f u n c t l  ( i n t  x )  

i n t  c, d; 

c = tunct2(x) ;  
d = (c  < 100) 7 (a + c )  : b; 
re tu rn (d ) ;  

1 

f u n c t 2 ( i n t  x )  

{ 
s t a t i c  i n t  prod = 1; 

prod *= x; 
re turn(prod) ;  

1 

(e) # include <std io .  h> 

i n t  f u n c t l ( i n t  a); 
i n t  f u n c t 2 ( i n t  b ) ;  
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main ( ) 

{ 
i n t  a = 0, b = 1, count; 

f o r  (count = 1; count <= 5 ;  ++count) { 

b += f u n c t l ( a  + 1 )  + 1; 
p r i n t f ( * % d  b ) ;' I ,  

k 

1 

f u n c t l  ( i n t  a )  

i 
i n t  b; 

b = func t2 (a  + 1 )  + 1; 
r e t u r n ( b ) ;  

f u n c t 2 ( i n t  a )  

{ 
r e t u r n ( a  + 1 ) ;  

1 

U, #include gs td io .  h> 

i n t  a = 0, b = 1; 

i n t  f u n c t l ( i n t  a ) ;  
i n t  f u n c t 2 ( i n t  b ) ;  

main ( ) 

{ 
i n t  count; 

f o r  (count = 1; count <= 5 ;  ++count) { 

b += f u n c t l ( a  + 1 )  + 1; 
p r i n t f ( ' % d  b);' I ,  

f u n c t l  ( i n t  a)  

{ 
i n t  b; 

b = func t2 (a  + 1 )  + 1; 
r e t u r n ( b ) ;  

1 

f u n c t 2 ( i n t  a )  

{ 
r e t u r n ( a  + 1 ) ;  

1 
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(8) #include estdio. h> 

int a = 0, b = 1; 

int functl(int a); 
int funct2(int b); 

main ( ) 

int count; 

for (count = 1 ;  count <= 5; ++count) { 
b += functl(a + 1 )  + 1 ;  
printf("%d * ,  b); 

k 
1 

functl (int a) 

b = funct2(a + 1 )  + 1; 
return(b); 

funct2(int a) 
{ 

return(b + a); 
1 

(h)  #include estdio. h> 

int count = 0; 

void functl(void); 

main ( ) 

printf("P1ease enter a line of text below\n"); 
functl ( )  ; 
printf("%d", count); 

1 

void functl(void) 
{ 

char c; 

if ((c = getchar()) I =  '\n') { 

++count; 
functl() ; 

1 
return; 

1 

Programming Problems 

8.29 The program given in Example 8.4 can easily be modified to minimize a function of x. This minimization 
procedure can provide us with a highly effective technique for calculating the roots of a nonlinear algebraic 



237 CHAP. 81 PROGRAM STRUCTURE 

equation. For example, suppose we want to find the particular value of x that causes some functionf(x) to equal 
zero. A typical function of this nature might be 

f(x) = x + cos(x) - 1 - sin(x). 

If we let y(x) =J(x)~, then the function y(x) will always be positive, except for those values of x that are roots of 
the given function [i.e., for whichf(x), and hence fix), will equal zero]. Therefore, any value of x that causes y(x) 
to be minimized will also be a root of the equationf(x) = 0. 

Modify the program shown in Example 8.4 to minimize a given function. Use the program to obtain the roots 
of the following equations: 

(a) x + cos(x) = 1 + sin(x), n/2 < x  < n 

(6) x5 + 3x2 + 10, 0 <= x <= 3 (see Example 6.21) 

8.30 Modify the program shown in Example 7.11 so that a sequence of craps games will be simulated automatically, in 
a noninteractive manner. Enter the total number of games as an input variable. Include within the program a 
counter that will determine the total number of wins. Use the program to simulate a large number of games (e.g., 
1000). Estimate the probability of coming out ahead when playing multiple games of craps. This value, 
expressed as a decimal, is equal to the number of wins divided by the total number of games played. If the 
probability exceeds 0.500, it favors the player; otherwise it favors the house. 

8.31 Rewrite each of the following programs so that it includes at least one programmer-defined function, in addition to 
the main function. Be careful with your choice of arguments and (if necessary) external variables. 

(a) Calculate the weighted average of a list of numbers [see Prob. 6.69(a)]. 

(6) Calculate the cumulative product of a list of numbers [see Prob. 6.69(6)]. 

(c) Calculate the geometric average of a list of numbers [see Prob. 6.69(c)]. 

(6) Calculate and tabulate a list of prime numbers [see Prob. 6,69(f)]. 

( e )  Compute the sine of x, using the method described in Prob. 6.69(i). 

cf) Compute the repayments on a loan [see Prob. 6.69(j)]. 

(g) Determine the average exam score for each student in a class, as described in Prob. 6.69(k). 

8.32 Write a complete C program to solve each of the problems described below. Utilize programmer-defined 
functions wherever appropriate. Compile and execute each program using the data given in the problem 
description. 

(a) Suppose you place a given sum of money, A ,  into a savings account at the beginning of each year for n 
years. If the account earns interest at the rate of i percent annually, then the amount of money that will 
have accumulated after n years, F, is given by 

F = A  [(I + i/100) + (1 + i/100)2 + (1 + i/100)3 + * - + (1 + i/100)n] 

Write a conversational-style C program to determine the following. 

(i) How much money will accumulate after 30 years if $1000 is deposited at the beginning of each year 
and the interest rate is 6 percent per year, compounded annually? 

(ii) How much money must be deposited at the beginning of each year in order to accumulate $100,000 
after 30 years, again assuming that the interest rate is 6 percent per year, with annual compounding? 

In each case, first determine the unknown amount of money. Then create a table showing the total amount 
of money that will have accumulated at the end of each year. Use the function written for Prob. 7.43 to 
carry out the exponentiation. 

(6) Modify the above program to accommodate quarterly rather than annual compounding of interest. Compare 
the calculated results obtained for both problems. Hint:The proper formula is 

F = A  [(I + i/100rn)m + (1 + i/100rn)2m + (1 + i/10orn)3m + - * + (1 + i/100rn)nm] 

where m represents the number of interest periods per year. 
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(c )  Home mortgage costs are determined in such a manner that the borrower pays the same amount of money 
to the lending institution each month throughout the life of the mortgage. The fraction of the total monthly 
payment that is required as an interest payment on the outstanding balance of the loan varies, however, 
from month to month. Early in the life of the mortgage most of the monthly payment is required to pay 
interest, and only a small fraction of the total monthly payment is applied toward reducing the amount of 
the loan. Gradually, the outstanding balance becomes smaller, which causes the monthly interest payment 
to decrease, and the amount available to reduce the outstanding balance therefore increases. Hence the 
balance of the loan is reduced at an accelerated rate. 

Typically, prospective home buyers know how much money they must borrow and the time required for 
repayment. They then ask a lending institution how much their monthly payment will be at the prevailing 
interest rate. They should also be concerned with how much of each monthly payment is charged to 
interest, how much total interest they have paid since they first borrowed the money, and how much money 
they still owe the lending institution at the end of each month. 

Write a C program that can be used by a lending institution to provide a potential customer with this 
information. Assume that the amount of the loan, the annual interest rate and the duration of the loan are 
specified. The amount of the monthly payment is calculated as 

A = i P ( l  + i ) " / [ ( l  + i ) " - I ]  

where A = monthly payment, dollars 

P = total amount of the loan, dollars 

i = monthly interest rate, expressed as a decimal (e.g., 1/2 percent would be written 0.005) 

n = total number of monthly payments 

The monthly interest payment can then be calculated from the formula 

I = i B  

where I= monthly interest payment, dollars 

B = current outstanding balance, dollars 

The current outstanding balance is simply equal to the original amount of the loan, less the sum of the 
previous payments toward principal. The monthly payment toward principal (i.e., the amount which is used 
to reduce the outstanding balance) is simply 

where T = monthly payment toward principal. 
Use the program to calculate the cost of a 25-year, $50,000 mortgage at an annual interest rate of 8 

percent. Then repeat the calculations for an annual interest rate of 8.5 percent. Make use of the function 
written for Prob. 7.43 to carry out the exponentiation. How significant is the additional 0.5 percent in the 
interest rate over the entire life of the mortgage? 

(d) The method used to calculate the cost of a home mortgage in the previous problem is known as a constunf 
payment method, since each monthly payment is the same. Suppose instead that the monthly payments 
were computed by the method of simple interest. That is, suppose that the same amount is applied toward 
reducing the loan each month. Hence 

T = P / n  

However, the monthly interest will depend on the amount of the outstanding balance; that is, 

I =  iB 

Thus the total monthly payment, A = T + I, will decrease each month as the outstanding balance diminishes. 
Write a C program to calculate the cost of a home mortgage using this method of repayment. Label the 

output clearly. Use the program to calculate the cost of a 25-year, $50,000 loan at 8 percent annual interest. 
Compare the results with those obtained in part (c )  above. 
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( e )  Suppose we are given a number of discrete points (xl, yl), (x2, y2), . . . ,(x,,, y,,) read from a curve y = f ( x ) ,  
where x is bounded between x1 and x,. We wish to approximate the area under the curve by breaking up the 
curve into a number of small rectangles and calculating the area of these rectangles. (This is known as the 
trupezoidul rule.) The appropriate formula is 

A = b1+y2)(x2 -x1)/2 + b 2  +y3)(x3 -x2)/2 + ' ' ' bn-1 + y,)(x, - x,-1)/2 

Notice that the average height of each rectangle is given by hi+ ~ ~ + ~ ) / 2and the width of each rectangle is 
equalto(xi+l-xi); i = l , 2 ,  . . . ,  n - 1 .  

Write a C program to implement this strategy, using a function to evaluate the formula y = f ( x ) .  Use 
the program to calculate the area under the curve y = x3 between the limits x = 1 and x = 4. Solve this 
problem first with 16 evenly spaced points, then with 61 points, and finally with 301 points. Note that the 
accuracy of the solution will improve as the number of points increases. (The exact answer to this problem 
is 63.75.) 

v) Part ( e )above describes a method known as the trupezoidul rule for calculating the area under a curve fix), 
where a set of tabulated values ( x l ,y l ) ,  (x2, y2), . . . ,(xn,yn)is used to describe the curve. If the tabulated 
values of x are equally spaced, then the equation given in the preceding problem can be simplified to read 

A = b1+ 2y2 + 2y3 + 2y4 + - - + 2 ~ , , ~+y,)h/2 

where h is the distance between successive values of x. 
Another technique that applies when there is an even number of equally spaced intervals (i.e., an odd 

number of data points) is Simpson 'srule. The computational equation for implementing Simpson's rule is 

For a given value of h, this method will yield a more accurate result than the trapezoidal rule. (Note that the 
method requires about the same amount of computational complexity as the trapezoidal rule.) 

Write a C program for calculating the area under a curve using either of the above techniques, 
assuming an odd number of equally spaced data points. Implement each method with a separate function, 
and utilize another independent function to evaluate y(x). 

Use the program to calculate the area under the curve 

where x ranges from 0 to 1. Calculate the area using each method, and compare the results with the correct 
answer of A = 0.7468241. 

(g) Still another technique for calculating the area under a curve is to employ the Monte Carlo method, which 
makes use of randomly generated numbers. Suppose that the curve y = f ( x )  is positive for any value of x 
between the specified lower and upper limits x = U and x = b. Let the largest value of y within these limits 

The Monte Carlo method proceeds as follows. 

Begin with a counter set equal to zero. 

Generate a random number, rx,whose value lies between a and b. 

Evaluate y(rJ. 

Generate a second random number, r whose value lies between 0 and y*.Y 
Compare ry with y(rx).If ry is less than or equal to firx), then this point will fall on or under the 
given curve. Hence the counter is incremented by 1. 

Repeat steps (i i)through ( v )a large number of times. Each time will be called a cycle. 

When a specified number of cycles has been completed, the fraction of points that fell on or under 
the curve, F, is computed as the value of the counter divided by the total number of cycles. The area 
under the curve is then obtained as 

A =Fy*(b - U ) .  
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Write a C program to implement this strategy. Use this program to find the area under the curve y = e-x 
between the limits U = 0 and b = 1. Determine how many cycles are required to obtain an answer that is 
accurate to three significant figures. Compare the computer time required for this problem with the time 
required for the preceding problem. Which method is better? 

(h )  A normally distributed random variate x, with mean p and standard deviation a,can be generated from the 
formula 

where ri is a uniformly distributed random number whose value lies between 0 and 1. A value of N = 12 is 
frequently selected when using this formula. The underlying basis for the formula is the central limit 
theorem, which states that a set of mean values of uniformly distributed random variates will tend to be 
normally distributed. 

Write a C program that will generate a specified number of normally distributed random variates with 
a given mean and a given standard deviation. Let the number of random variates, the mean and the standard 
deviation be input quantities to the program. Generate each random variate within a function that accepts 
the mean and standard deviation as arguments. 

( i )  Write a C program that will allow a person to play a game of tic-tac-toe against the computer. Write the 
program in such a manner that the computer can be either the first or the second player. If the computer is 
the first player, let the first move be generated randomly. Write out the complete status of the game after 
each move. Have the computer acknowledge a win by either player when it occurs. 

(j) Write a complete C program that includes a recursive function to determine the value of the nth Fibonacci 
number, Fn, where Fn = FnVl+ Fn-2 and F1 = F2 = 1 (see Example 8.7). Let the value of n be an input 
quantity. 



Chapter 9 


Arrays 

Many applications require the processing of multiple data items that have common characteristics (e.g., a set 
of numerical data, represented by XI, x2, . . . ,xn). In such situations it is often convenient to place the data 
items into an array, where they will all share the same name (e.g., x ) .  The individual data items can be 
characters, integers, floating-point numbers, etc. However, they must all be of the same type and the same 
storage class. 

Each array element (i.e., each individual data item) is referred to by specifLing the array name followed 
by one or more subscripts, with each subscript enclosed in square brackets. Each subscript must be expressed 
as a nonnegative integer. In an n-element array, the array elements are x [ 01, x [ 1 1 ,  x [ 21, . . . ,x [ n - 1 1 ,  as 
illustrated in Fig. 9.1. The value of each subscript can be expressed as an integer constant, an integer variable 
or a more complex integer expression. 

x is an n-element, one-dimensional array 

Fig. 9.1 

The number of subscripts determines the dimensionality of the array. For example, x [ i ]  refers to an 
element in the one-dimensional array x .  Similarly, y[  i ][ j ] refers to an element in the two-dimensional array 
y. (We can think of a two-dimensional array as a table, where y [ i ][ j ] is the jth element of the ith row.) 
Higher-dimensional arrays can be also be formed, by adding additional subscripts in the same manner (e.g., 
z [ i I  [ I 1  [ k l ) .  

Recall that we have used one-dimensional character arrays earlier in this book, in conjunction with the 
processing of strings and lines of text. Thus, arrays are not entirely new, even though our previous references 
to them were somewhat casual. We will now consider arrays in greater detail. In particular, we will discuss 
the manner in which arrays are defined and processed, the passing of arrays to functions, and the use of 
multidimensional arrays. Both numerical and character-type arrays will be considered. Initially we will 
concentrate on one-dimensional arrays, though multidimensional arrays will be considered in Sec. 9.4. 

9.1 DEFINING AN ARRAY 

Arrays are defmed in much the same manner as ordinary variables, except that each array name must be 
accompanied by a size specification (i.e., the number of elements). For a one-dimensional array, the size is 
specified by a positive integer expression, enclosed in square brackets. The expression is usually written as a 
positive integer constant. 

In general terms, a one-dimensional array definition may be expressed as 

storage -class data - type array[ expression] ; 

24 1 
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where storage - class refers to the storage class of the array, data - type is the data type, array is the 
array name, and expression is a positive-valued integer expression which indicates the number of array 
elements. The storage-class is optional; default values are automatic for arrays that are defined within a 
function or a block, and e x t e r n a l  for arrays that are defined outside of a function. 

EXAMPLE 9.1 Several typical one-dimensional array definitions are shown below. 

i n t  x[ lOO];  

char t e x t [ 8 0 ] ;  

s t a t i c  char message[25]; 

s t a t i c  f l o a t  n [ 1 2 ] ;  

The first line states that x is a 100-element integer array, and the second defines t e x t  to be an 80-element character array. 
In the third line, message is defined as a static 25-element character array, whereas the fourth line establishes n as a static 
12-element floating-point array. 

It is sometimes convenient to define an array size in terms of a symbolic constant rather than a fixed 
integer quantity. This makes it easier to modify a program that utilizes an array, since all references to the 
maximum array size (e.g., within f o r  loops as well as in array definitions) can be altered simply by changing 
the value of the symbolic constant. 

EXAMPLE 9.2 Lowercase to Uppercase Text Conversion Here is a complete program that reads in a one-
dimensional character array, converts all of the elements to uppercase, and then displays the converted array. Similar 
programs are shown in Examples 4.4,6.9,6.12 and 6.16. 

/ *  read i n  a l i n e  o f  lowercase t e x t  t o  uppercase * /  

# inc lude  <s td io .h>  
# inc lude  <ctype.h> 

#def ine  SIZE 80 

main ( ) 

{ 
char l e t t e r [ S I Z E ] ;  
i n t  count ; 

/ *  read i n  the  l i n e  * /  

f o r  (count = 0; count < SIZE; ++count) 
l e t t e r ( c o u n t 1  = g e t c h a r ( ) ;  

/ *  d i s p l a y  the  l i n e  i n  upper case * /  

f o r  (count = 0; count < SIZE; ++count) 
p u t c h a r ( t o u p p e r ( l e t t e r [ c o u n t ] ) ) ;  

Notice that the symbolic constant SIZE is assigned a value of 80. This symbolic constant, rather than its value, 
appears in the array definition and in the two f o r  statements. (Remember that the value of the symbolic constant will be 
substituted for the constant itself during the compilation process.) Therefore, in order to alter the program to 
accommodate a different size array, only the #def ine statement must be changed. 

For example, to alter the above program so that it will process a 60-element array, the original #def ine  statement is 
simply replaced by 

#def ine  SIZE 60 



243 CHAP. 91 ARRAYS 

This one change accommodates all of the necessary program alterations; there is no possibility that some required 
program modification will be overlooked. 

Automatic arrays, unlike automatic variables, cannot be initialized. However, external and static m a y  
definitions can include the assignment of initial values if desired. The initial values must appear in the order 
in which they will be assigned to the individual array elements, enclosed in braces and separated by commas. 
The general form is 

storage- class data - type array[ expression] = { value 1, value 2, . . . , value n) ; 

where value I refers to the value of the first array element, value 2 refers to the value of the second 
element, and so on. The appearance of the expression, which indicates the number of array elements, is 
optional when initial values are present. 

EXAMPLE 9.3 Shown below are several array definitions that include the assignment of initial values. 

int digits[lO] = (1, 2, 3, 4, 5 ,  6, 7, 8 ,  9, 10); 

static float x(6] = (0, 0.25, 0, -0 .50,  0, 0); 

char color[3] = { ' R I ,  'E', I D ' } ;  

Note that x is a static array. The other two arrays (digits and color) are assumed to be external arrays by virtue of their 
placement within the program. 

The results of these initial assignments, in terms of the individual array elements, are as follows. (Remember that the 
subscripts in an n-element array range from 0 to n- 1.) 

digits[O] = 1 x[OJ = 0 color[O] = 'R' 
digits[l] = 2 x[l] = 0.25 color[l] = 'E' 
digits[2] = 3 x[2] = 0 color[2] = ' D '  
digits[3] = 4 X[3] = -0.50 
digits[4] = 5 x[4] = 0 
digits[5] = 6 x[5] = 0 
digits[6] = 7 
digits[7] = 8 

digits[8] = 9 
digits[9] = 10 

All individual array elements that are not assigned explicit initial values will automatically be set to zero. 
This includes the remaining elements of an array in which some elements have been assigned nonzero values. 

EXAMPLE 9.4 Consider the following array definitions. 

int digits[lO] = {3, 3, 3); 

static float x[6] = (-0.3, 0 , 0.25); 

The results, on an element-by-element basis, are as follows. 

digits[O] = 3 X[O] = -0.3 
digits[l] = 3 x[l] = 0 
digits[2] = 3 x[2] = 0.25 
digits[3] = 0 x[3] = 0 
digits[4] = 0 x[4] = 0 
digits[5] = 0 x[5] = 0 
digits[6] = 0 
digits[7] = 0 
digits[8] = 0 
digits[9] = 0 
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In each case, all of the array elements are automatically set to zero except those that have been explicitly initialized within 
the array definitions. Note that the repeated values (i.e., 3, 3, 3)must be shown individually. 

The array size need not be specified explicitly when initial values are included as a part of an array 
definition. With a numerical array, the array size will automatically be set equal to the number of initial 
values included within the definition. 

EXAMPLE 9.5 Consider the following array definitions, which are variations of the definitions shown in Examples 9.3 
and 9.4. 

int digits[] = (1, 2, 3, 4, 5 ,  6); 

static float x[] = (0, 0.25, 0, - 0 . 5 ) ;  

Thus, digits will be a six-element integer array, and x will be a static, four-element floating-point array. The individual 
elements will be assigned the following values. (Note the empty brackets in the array declarations.) 

digits[O] = 1 x[O] = 0 
digits[l] = 2 x[l] = 0.25 
digits[2] = 3 x[2] = 0 
digits[3] = 4 X[3] = -0.5 
digits[4] = 5 
digits[5] = 6 

Strings (i.e., character arrays) are handled somewhat differently, as discussed in Sec. 2.6. In particular, 
when a string constant is assigned to an external or a static character array as a part of the array definition, the 
array size specification is usually omitted. The proper array size will be assigned automatically. This will 
include a provision for the null character \O,  which is automatically added at the end of every string (see 
Example 2.26). 

EXAMPLE 9.6 Consider the following two character array definitions. Each includes the initial assignment of the 
string constant "RED" .  However, the first array is defined as a three-element array, whereas the size of the second array is 
unspecified. 

char color[3] = "RED'; 

char color[] = "RED";  

The results of these initial assignments are not the same because of the null character, \O, which is automatically added at 
the end of the second string. Thus, the elements of the first array are 

color[O] = ' R I  

color[l] = ' E '  

color[2] = ' D '  

whereas the elements of the second array are 

color[O] = ' R I  

color[l] = ' E '  

color[2] = I D '  

color[3] = ' \ O '  

Thus, the first form is incorrect, since the null character \ O  is not included in the array. 
The array definition could also have been written as 

char color[4] = " R E D " ;  
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This definition is correct, since we are now defining a four-element array which includes an element for the null character. 
However, many programmers prefer the earlier form, which omits the size specifier. 

If a program requires a one-dimensional array declurution (because the array is defined elsewhere in the 
program), the declaration is written in the same manner as the array definition with the following exceptions. 

1 .  The square brackets may be empty, since the array size will have been specified as a part of the array 
definition. Array declarations are customarily written in this form. 

2. Initial values cannot be included in the declaration. 

These rules apply to formal argument declarations within functions as well as external variable declarations. 
However, the rules for defining multidimensional formal arguments are more complex (see Sec. 9.4). 

EXAMPLE 9.7 Here is a skeletal outline of a two-file C program that makes use of external arrays. 

i n t  c [ ]  = (1 ,  2 ,  3); / *  e x t e r n a l  a r r a y  DEFINITION * /  

char message[] = " H e l l o l " ;  / *  e x t e r n a l  a r r a y  DEFINITION * /  

e x t e r n  vo id  f u n c t l ( v o i d ) ;  / *  funct ion  prototype * /  

main ( ) 

1 

e x t e r n  i n t  c [ ] ;  / *  e x t e r n a l  a r r a y  DECLARATION * /  

e x t e r n  char message[]; / *  e x t e r n a l  a r r a y  DECLARATION * /  

e x t e r n  vo id  f u n c t l ( v o i d )  / *  funct ion  d e f i n i t i o n  * /  

t 
. . . . .  

1 

This program outline includes two external arrays, c and message. The first array (c) is a three-element integer array 
that is defined and initialized in the first file. The second array (message) is a character array that is also defined and 
initialized in the first file. The arrays are then declared in the second file, because they are global arrays that must be 
recognized throughout the entire program. 

Neither the array definitions in the first file nor the array declarations in the second file include explicit size 
specifications. Such size specifications are permissible in the first file, but are omitted because of the initialization. 
Moreover, array size specifications serve no useful purpose within the second file, since the array sizes have already been 
established. 

9.2 PROCESSING AN ARRAY 

Single operations which involve entire arrays are not permitted in C. Thus, if a and b are similar arrays (i.e., 
same data type, same dimensionality and same size), assignment operations, comparison operations, etc. must 
be carried out on an element-by-element basis. This is usually accomplished within a loop, where each pass 
through the loop is used to process one array element. The number of passes through the loop will therefore 
equal the number of array elements to be processed. 
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We have already seen several examples in which the individual elements of a character array are 
processed in one way or another (see Examples 4.4, 4.19, 6.9, 6.12, 6.16, 6.19, 6.20, 6.32, 6.34, 8.3, 8.5 and 
9.2). Numerical arrays are processed in much the same manner. In a numerical array, each array element 
represents a single numerical quantity, as illustrated in the example below. 

EXAMPLE 9.8 Deviations About an Average Suppose we want to read a list of n floating-point quantities and then 
calculate their average, as in Example 6.17. In addition to simply calculating the average, however, we will also compute 
the deviation of each numerical quantity about the average, using the formula 

d = xi  - avg 

where x i  represents each of the given quantities, i = 1, 2, * - *, n, and avg represents the calculated average. 
In order to solve this problem we must store each of the given quantities in a one-dimensional, floating-point array. 

This is an essential part of the program. The reason, which must be clearly understood, is as follows. 
In all of the earlier examples where we calculated the average of a list of numbers, each number was replaced by its 

successor in the given list (see Examples 6.10, 6.13, 6.17 and 6.31). Hence each individual number was no longer 
available for subsequent calculations once the next number had been entered. Now, however, these individual quantities 
must be retained within the computer in order to calculate their corresponding deviations after the average has been 
determined. We therefore store them in a one-dimensional array, which we shall call l ist .  

Let us define l i s t  to be a 100-element, floating-point array. However, we need not make use of all 100 elements. 
Rather, we shall specify the actual number of elements by entering a positive integer quantity (not exceeding 100) for the 
integer variable n.  

Here is the complete C program. 

/ *  calculate the average o f  n numbers, 
then compute the deviation of each number about the average * /  

#include <stdio .h> 

main ( ) 

{ 
i n t  n ,  count; 
f l o a t  avg, d ,  sum = 0;  
f l o a t  l i s t [ 1 0 0 ] ;  

/ *  read a value for  n * /  
printf ( I' \nHow many numbers w i l l  be averaged? ' ) ; 
scanf ( " % d " ,a n )  ; 
printf ( 'I \n") ; 

/ *  read the numbers and calculate the ir  sum * /  
for  (count = 0;  count < n ;  ++count) { 

printf (" i= %d x = ' I ,  count + 1 ) ;  
scanf ( "%f, &list[ count ] ) ;I' 

sum += l i s t [ count ] ;  
1 

/ *  calculate and display the average * /  
avg = sum / n ;  
printf("\nThe average i s  %5.2 f \n \n" ,  avg);  
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/ *  ca lcu late and d isp lay the deviat ions about the average * /  
f o r  (count = 0; count < n; ++count) { 

d = l i s t [ c o u n t ]  - avg; 
p r i n t f ( " i  = %d x = %5.2f d = %5.2f \nn, count + 1, l i s t [ c o u n t J ,  d); 

1 
1 

Note that the second scanf function (within the first f o r  loop) includes an ampersand (a) in fiont of l i s t [ count ] ,since 
we are entering a single array element rather than an entire array (see Sec. 4.4). 

Now suppose the program is executed using the following five numerical quantities: x, = 3, x2= -2, xj = 12, x, =4.4, 
x = 3.5. The interactive session, including the data entry and the calculated results, is shown below. The user's responses 
are underlined. 

How many numbers w i l l  be averaged? 3 
i = l  x = 3  
i = 2  x = S  
i = 3  x = B  
i = 4  x = U 
i = 5  x = U 

The average i s  4.18 

i= 1 x = 3.00 d = -1.18 
i= 2 x = -2.00 d = -6.18 

i= 3 x = 12.00 d = 7.82 
i= 4 x = 4.40 d = 0.22 
i= 5 x = 3.50 d = -0.68 

In some applications it may be desirable to assign initial values to the elements of an array. This requires 
that the array either be defined globally, or locally (within the function) as a static array. The next example 
illustrates the use of a global array definition. 

EXAMPLE 9.9 Deviations About an Average Revisited Let us again calculate the average of a given set of 
numbers and then compute the deviation of each number about the average, as in Example 9.8. Now, however, let us 
assign the given numbers to the array within the array definition. To do so, let us move the definition of the array l i s t  
outside of the main portion of the program. Thus, l i s t  will become an external array. Moreover, we will remove the 
explicit size specification from the definition, since the number of initial values will now determine the array size. 

The initial values included in the following program are the same five values that were specified as input data for the 
previous example. To be consistent, we will also assign an initial value for n. This can be accomplished by defining n as 
either an automatic variable within main, or as an external variable. We have chosen the latter method, so that all of the 
initial assignments that might otherwise be entered as input data are grouped together. 

Here is the complete program. 

/ *  ca lcu late the average o f  n numbers, 
then compute the dev iat ion o f  each number about the average * /  

#include <stdio.h> 

i n t  n = 5; 

f l o a t  l i s t [ ]  = (3, -2, 12, 4.4, 3.5); 

main( ) 

i n t  count; 
f l o a t  avg, d, sum = 0; 
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/ *  c a l c u l a t e  and d i sp lay  the  average * /  
f o r  (count = 0; count < n; ++count) 

sum += l i s t [ c o u n t ] ;  
avg = sum / n; 
p r i n t f ( " \ n T h e  average i s  %5.2 f \n \n" ,  avg); 

/ *  c a l c u l a t e  and d i sp lay  the  dev ia t i ons  about the  average * /  
f o r  (count = 0; count < n; ++count) { 

d = l i s t [ c o u n t ]  - avg; 

p r i n t f ( " i  = % d x  = %5.2f d = %5.2 f \n " ,  count + 1 ,  l i s t [ c o u n t ] ,  d ) ;  

} 

1 

Note that this version of the program does not require any input data. 
Execution of this program will generate the following output. 

The average i s  4.18 

i= 1 x = 3.00 d = -1.18 

i= 2 x = -2.00 d = -6.18 
i= 3 x = 12.00 d = 7.82 
i= 4 x = 4.40 d = 0.22 

i= 5 x = 3.50 d = -0.68 

9.3 PASSING ARRAYS TO FUNCTIONS 

An entire array can be passed to a function as an argument. The manner in which the array is passed differs 
markedly, however, from that of an ordinary variable. 

To pass an array to a function, the array name must appear by itself, without brackets or subscripts, as an 
actual argument within the function call. The corresponding formal argument is written in the same manner, 
though it must be declared as an array within the formal argument declarations. When declaring a one- 
dimensional array as a formal argument, the array name is written with a pair of empty square brackets. The 
size of the array is not specified within the formal argument declaration. 

Some care is required when writing function prototypes that include array arguments. An empty pair of 
square brackets must follow the name of each array argument, thus indicating that the argument is an array. If 
argument names are not included in a function declaration, then an empty pair of square brackets must follow 
the array argument data type. 

EXAMPLE 9.10 The following program outline illustrates the passing of an array from the main portion of the program 
to a function. 

f l o a t  average( in t  a, f l o a t  x [ ] ) ;  / *  f u n c t i o n  pro to type * /  

main ( ) 

i n t  n; / *  va r iab le  DECLARATION * /  
f l o a t  avg ; / *  va r iab le  DECLARATION * /  
f l o a t  l i s t [ 1001 ; / *  a r ray  DEFINITION * /  

. . . . .  
avg = average(n, l i s t ) ;  

. . . . .  
1 
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float average(int a, float x [ ] )  / *  function DEFINITION * /  

Within main we see a call to the function average. This function call contains two actual arguments -the integer 
variable n, and the one-dimensional, floating-point array list. Notice that list appears as an ordinary variable within 
the function call; i.e., the square brackets are not included. 

The first line of the function definition includes two formal arguments, a and x. The formal argument declarations 
establish a as an integer variable and x as a one-dimensional, floating-point array. Thus, there is a correspondence 
between the actual argument n and the formal argument a. Similarly, there is a correspondence between the actual 
argument list and the formal argument x. Note that the size of x is not specified within the formal argument declaration. 

Note that the function prototype could have been written without argument names, as 

float average(int, float[]); / *  function declaration * /  

Either form is valid. 

We have already discussed the fact that arguments are passed to a function by value when the arguments 
are ordinary variables (see Sec. 7.5). When an array is passed to a function, however, the values of the array 
elements are not passed to the function. Rather, the array name is interpreted as the address of the first array 
element (i.e., the address of the memory location containing the first array element). This address is assigned 
to the corresponding formal argument when the function is called. The formal argument therefore becomes a 
pointer to the first array element (more about this in the next chapter). Arguments that are passed in this 
manner are said to be passed by reference rather than by value. 

When a reference is made to an array element within the function, the value of the element's subscript is 
added to the value of the pointer to indicate the address of the specified array element. Therefore any array 
element can be accessed from within the function. Moreover, if an array element is altered within the 
finction, the alteration will be recognized in the calling portion of the program (actually, throughout the entire 
scope of the array). 

EXAMPLE 9.11 Here is a simple C program that passes a three-element integer array to a function, where the array 
elements are altered. The values of the array elements are displayed at three different places in the program, thus 
illustrating the effects of the alterations. 

#include <stdio.h> 


void modify(int a[]); / *  function prototype * /  

main ( ) 
{ 

int count, a[3]; / *  array definition * /  

printf('\nFrom main, before calling the function:\n'); 

for (count = 0; count <= 2; ++count) { 

a[count] = count + 1 ;  
printf('a[%d] = %d\nn, count, a[count]); 

1 

modify(a); 


printf('\nFrom main, after calling the function:\n"); 

for (count = 0; count <=2; ++count) 

printf("a[%d] = %d\n", count, a[count]); 
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v o i d  m o d i f y ( i n t  a [ ] )  / *  f u n c t i o n  d e f i n i t i o n  * /  

{ 
i n t  count; 

p r i n t f ( " \ n F r o m  the  func t i on ,  a f t e r  modify ing the  va lues : \nn ) ;  
f o r  (count = 0; count <= 2; ++count) { 

a [count ]  = -9; 

p r i n t f ( " a [ % d ]  = %d\n" ,  count, a [count ] ) ;  

k 

re tu rn ;  

The array elements are assigned the values a[ 0) = 1, a[ 1 ] = 2 and a[ 2) = 3 within the first loop appearing in 
main. These values are displayed as soon as they are assigned. The array is then passed to the function modify, where 
each array element is assigned the value -9. These new values are then displayed from within the function. Finally, the 
values of the array elements are again displayed from main, after control has been transferred back to main from modify. 

When the program is executed, the following output is generated. 

From main, be fore  c a l l i n g  the  func t i on :  
a[O] = 1 
a [ l ]  = 2 
a [ 2 ]  = 3 

From the  func t i on ,  a f t e r  modify ing the  values: 
a[O] = -9 
a [ l ]  = -9 

a [ 2 ]  = -9 

From main, a f t e r  c a l l i n g  the  func t i on :  
a[O] = -9 
a [ l ]  = -9 

a [ 2 ]  = -9 

These results show that the elements of a are altered within main as a result of the changes that were made within modify. 

EXAMPLE 9.12 We now consider a variation of the previous program. The present program includes the use of a 
global variable, and the transfer of both a local variable and an array to the function. 

# inc lude <stdio.h> 

i n t  a = 1; / *  g l o b a l  va r iab le  * /  
v o i d  m o d i f y ( i n t  b, i n t  c [ J ) ;  / *  f u n c t i o n  pro to type * /  

main( ) 

{ 
i n t  b = 2; / *  l o c a l  va r iab le  * I  
i n t  count, c [ 3 ] ;  / *  a r ray  d e f i n i t i o n  * /  

p r i n t f ( " \ n F r o m  main, before c a l l i n g  the  f u n c t i o n : \ n " ) ;  
p r i n t f  ( " a  = %d b = %d\n",  a, b); 
f o r  (count = 0; count <= 2; ++count) { 

count] = 10 * (count + 1 ) ;  
p r i n t f  ( " c [ % d ]  = %d\n" ,  count, count]); 
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modify(b, c ) ;  / *  funct ion access * I  
pr in t f ( " \ nF rom main, a f t e r  c a l l i n g  the funct ion: \n ' ) ) ;  
p r i n t f  ( " a  = %d b = %d\n", a, b); 
f o r  (count = 0; count <=2; ++count) 

p r i n t f ( ' c [ % d ]  = %d\n', count, count]); 

vo id modify ( i n t  b,  i n t  c [ ] )  / *  funct ion d e f i n i t i o n  * /  

i n t  count; 

p r i n t f ( " \ nF rom the funct ion,  a f t e r  modifying the values:\n');  

a = -999; 
b = -999; 
p r i n t f  ( " a  = %d b = %d\nn, a, b); 
f o r  (count = 0; count <= 2; ++count) { 

count] = -9; 

p r i n t f  ( "c [%d]  = %d\n', count, count]); 

1 
re turn;  

When the program is executed, the following output is generated. 

From main, before c a l l i n g  the funct ion:  
a = l  b = 2  

c[O] = 10 
c [ l ]  = 20 
c [ 2 ]  = 30 

From the funct ion,  a f t e r  modifying the values: 
a = -999 b = -999 

c[O] = -9 
c [ l ]  = -9 

c [ 2 ]  = -9 

From main, a f t e r  c a l l i n g  the funct ion:  
a = -999 b = 2 
c[O] = -9 
c [ l ]  = -9 
c [ 2 ]  = -9 

We now see that the value of a and the elements of c are altered within main as a result of the changes that were made in 
modify. However, the change made to b is confined to the function, as expected. (Compare with the results obtained in 
the last example, and in Example 7.12.) 

The ability to alter an array globally within a function provides a convenient mechanism for moving 
multiple data items back and forth between the function and the calling portion of the program. Simply pass 
the array to the function and then alter its elements within the function. Or, if the original array must be 
preserved, copy the array (element-by-element) within the calling portion of the program, pass the copy to the 
function, and perform the alterations. You should exercise some caution in altering an array within a function, 
however, since it is very easy to unintentionally alter the array outside of the function. 
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EXAMPLE 9.13 Reordering a List of Numbers Consider the well-known problem of rearranging (i.e., sorting) a list 
of n integer quantities into a sequence of increasing values. Let us write a sorting program in such a manner that 
unnecessary storage will not be used. Therefore the program will contain only one a r ray-a  one-dimensional, integer 
array called x, which will be rearranged one element at a time. 

The rearrangement will begin by scanning the entire array for the smallest number. This number will then be 
interchanged with the first number in the array, thus placing the smallest number at the top of the list. Next the remaining 
n - 1 numbers will be scanned for the smallest, which will be exchanged with the second number. The remaining n - 2 
numbers will then be scanned for the smallest, which will be interchanged with the third number, and so on, until the 
entire array has been rearranged. The complete rearrangement will require a total of n - 1 passes through the array, 
though the length of each scan will become progressively smaller with each pass. 

In order to find the smallest number within each pass, we sequentially compare each number in the array, x [ i ] ,with 
the starting number, x[  i tem] ,  where i t e m  is an integer variable that is used to identify a particular array element. If 
x [ i ]  is smaller than x [ i t e m ] ,  then we interchange the two numbers; otherwise we leave the two numbers in their original 
positions. Once this procedure has been applied to the entire array, the first number in the array will be the smallest. We 
then repeat the entire procedure n - 2 times, for a total of n - 1 passes ( i tem = 0, 1, . . . ,n - 2). 

The only remaining question is how the two numbers are actually interchanged. To carry out the interchange, we 
first temporarily save the value of x[  i t e m ]  for future reference. Then we assign the current value of x[ i ]  to x [  i t e m ] .  
Finally, we assign the original value of x [  i tem] ,  which has temporarily been saved, to x [  i ] .  The interchange is now 
complete. 

The strategy described above can be written in C as follows. 

/ *  reorder  a l l  a r r a y  elements * /  
f o r  ( i t e m  = 0; i t e m  < n - 1; ++item) 

/ *  f i n d  the  smal lest  o f  a l l  remaining elements * /  
f o r  ( i  = i t e m  + 1 ;  i < n; + + i )  

i f  ( x [ i ]  c item]) { 

/ *  interchange two elements * /  
temp = item); 
x [ i t e m ]  = x [ i ] ;  
x [ i ]  = temp; 

We are assuming that i t e m and iare integer variables that are used as counters, and that temp is an integer variable that is 
used to temporarily store the value of x [ i t e m ] .  

It is now a simple matter to add the required variable and array definitions, and the required inputloutput statements. 
Here is a complete C program. 

/ *  reorder  a one-dimensional,  i n t e g e r  a r r a y  from smal lest  t o  l a r g e s t  * /  

# inc lude  <s td io .h>  

#def ine  SIZE 100 

vo id  r e o r d e r ( i n t  n ,  i n t  x [ ] ) ;  

main ( ) 

{ 
i n t  i,n,  x [S IZE] ;  

/ *  read i n  a value f o r  n * /  
p r i n t f ( " \ n H o w  many numbers w i l l  be entered? " ) ;  
scanf ( " % d " ,  an) ; 
p r i n t f  ( " \ n u ) ; 

/ *  read i n  the  l i s t  o f  numbers * /  
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f o r  ( i  = 0; ic n; + + i )  { 

p r i n t f ( " i  = %d x = " , i+ 1 ) ;  
scanf ( "%idn, & x [ i ] ) ;  

1 

/ *  reorder  a l l  a r r a y  elements * /  
reorder (n ,  x ) ;  

/ *  d i s p l a y  t h e  reordered l i s t  o f  numbers * /  
p r i n t f ( " \ n \ n R e o r d e r e d  L i s t  o f  Numbers:\n\n"); 
f o r  ( i  = 0; i < n; ++i) 

p r i n t f ( " i  = %d x = %d\n" ,  i+ 1, x [ i ] ) ;  

1 

v o i d  r e o r d e r ( i n t  n, i n t  x [ ] )  / *  rearrange t h e  l i s t  o f  numbers * /  

{ 
i n t  i,item, temp; 

f o r  ( i t e m  = 0; i t e m  < n - 1; ++item) 
/ *  f i n d  t h e  smal les t  o f  a l l  remaining elements * /  
f o r  ( i  = i t e m  + 1;  ic n; + + i )  

i f  ( x [ i ]  c item]) { 
/ *  in terchange two elements * /  
temp = item]; 
x [ i t e m ]  = x [ i ] ;  
x [ i ]  = temp; 

1 
r e t u r n ;  

1 

In this program x is defined initially as a 100-element integer array. (Notice the use of the symbolic constant SIZE to 
define the size of x.) A value for n is first read into the computer, followed by numerical values for the first n elements of 
x (i.e., x [  01,x [  11, . . . , x [  n - 1 I).  Following the data input, n and x are passed to the function reorder, where the 
first n elements of x are rearranged into ascending order. The reordered elements of x are then displayed from main at the 
conclusion of the program. 

The declaration for reorder  appearing in main is written as a function prototype, as a matter of good programming 
practice. Notice the manner in which the function arguments are written. In particular, note that the second argument is 
identified as an integer array by the empty square brackets that follow the array name, Le., i n t  x [ 1. The square brackets 
are a required part of this argument specification. 

Now suppose that the program is used to reorder the following six numbers: 595 78 -1505 891 -29 -7. The 
program will generate the following interactive dialog. (The user's responses are underlined, as usual.) 

How many numbers w i l l  be entered? S 

i = l  x = m  
i = 2  x = n  
i= 3 x = -1505 

i = 4  x = w  
i = 5  x = *  
i = 6  x = Z  

Reordered l i s t  o f  numbers: 
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i = 1 x = -1505 

i = 2  x = - 2 9  
i = 3  x z - 7  

i = 4  x = 7 8  

i = 5  x = 5 9 5  

i = 6  x = 8 9 1  

It should be mentioned that the r e t u r n  statement cannot be used to return an array, since r e t u r n  can 
pass only a single-valued expression back to the calling portion of the program. Therefore, if the elements of 
an array are to be passed back to the calling portion of the program, the array must either be defined as an 
external array whose scope includes both the fkction and the calling portion of the program, or it must be 
passed to the function as a formal argument. 

EXAMPLE 9.14 A Piglatin Generator Piglatin is an encoded form of English that is often used by children as a 
game. A piglatin word is formed from an English word by transposing the first sound (usually the first letter) to the end of 
the word, and then adding the letter “a”. Thus, the word “dog” becomes “ogda,” “computer” becomes “omputerca,” 
“piglatin” becomes “iglatinpa” (or “igpa atinla,” if spelled as two separate words), and so on. 

Let us write a C program that will accept a line of English text and then print out the corresponding text in piglatin. 
We will assume that each textual message can be typed on one 80-column line, with a single blank space between 
successive words. (Actually, we will require that the piglutin message not exceed 80 characters. Therefore the original 
message must be somewhat less than 80 characters, since the corresponding piglatin message will be lengthened by the 
addition of the letter “a” after each word.) For simplicity, we will transpose only the first letter (not the first sound) of 
each word. Also, we will ignore any special consideration that might be given to capital letters and to punctuation marks. 

We will use two character arrays in this program. One array will contain the original line of English text, and the 
other will contain the translated piglatin. 

The overall computational strategy will be straightforward, consisting of the following major steps. 

1. Initialize both arrays by assigning blank spaces to all of the elements. 

2. Read in an entire line of text (several words). 

3. Determine the number of words in the line (by counting the number of single blank spaces that are followed by a 
nonblank space). 

4. Rearrange the words into piglatin, on a word-by-word basis, as follows: 
(a) Locate the end of the word. 
(b)  Transpose the first letter to the end of the word and then add an “a.” 
(c) Locate the beginning of the next word. 

5 .  Display the entire line of piglatin. 

We will continue this procedure repetitively, until the computer reads a line of text whose first three letters are “end” (or 
“END’). 

In order to implement this strategy we will make use of two markers, called m l  and m2, respectively. The first marker 
( m l )  will indicate the position of the beginning of a particular word within the original line of text. The second marker 
(m2) will indicate the end of the word. Note that the character in the column preceding column number m l  will be a blank 
space (except for the first word). Also, note that the character in the column beyond column number m2 will be a blank 
space. 

This program lends itself to the use of a function for carrying out each of the major tasks. Before discussing the 
individual functions, however, we define the following program variables. 

e n g l i s h  = a one-dimensional character array that represents the original line of text 

p i g l a t i n  = a one-dimensional character array that represents the new line of text (i.e., the piglatin) 

words = an integer variable that indicates the number of words in the given line of text 

n = an integer variable that is used as a word counter (n = 1,2, . . . ,words) 

count  = an integer variable that is used as a character counter within each line (count = 0, 1, 2, . . . ,79) 

We will also make use of the integer variables m l  and m2 discussed earlier. 
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Now let us return to the overall program outline presented above. The first step, array initialization, can be carried 
out in a straightforward manner with the following function. 

/ *  i n i t i a l i z e  the character arrays w i t h  blank spaces * /  

vo id  i n i t i a l i z e ( c h a r  eng l i sh [ ] ,  char p i g l a t i n [ ] )  

{ 
i n t  count; 

f o r  (count = 0; count < 80; ++count) 
engl ish[count]  = p ig la t i n [ coun t ]  = I I ;  

re turn;  

1 

Step 2 can also be carried out with a simple function. This procedure will contain a whi le  loop that will continue to 
read characters from the keyboard until an end of line is detected. This sequence of characters will become the elements 
of the character array english. Here is the complete function. 

/ *  read one l i n e  o f  English t e x t  * /  

vo id  readinput(char e n g l i s h [ ] )  

{ 
i n t  count = 0; 

char c; 

whi le  ( ( c  = getchar( ) )  != ' \ n ' )  { 

engl ish[count]  = C;  

++count; 

1 
re turn;  

Step 3 of the overall outline is equally straightforward. We simply scan the original line for occurrences of single 
blank characters followed by nonblank characters. The word counter (words) is then incremented each time a single 
blank character is encountered. Here is the word-count routine. 

/ *  scan the Engl ish t e x t  and determine the number o f  words * /  

i n t  countwords(char eng l i sh [ ] )  

t 
i n t  count, words = 1; 

f o r  (count = 0; count < 79; ++count) 
i f  (engl ish[count]  == I && english(count + 11 I =  I I )  

++words; 
re tu rn  (words) ; 

1 

Now consider step 4 (rearrange the English text into piglatin), which is really the heart of the program. The logic for 
carrying this out is rather involved since it requires three separate, though related, operations. We must first identify the 
end of each word by finding the first blank space beyond ml . We then assign the characters that make up the word to the 
character array p i g l a t i n ,  with the first character at the end of the word. Finally, we must reset the initial marker, to 
identify the beginning of the next word. 
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The logic must be handled carefully, since the new line of text will be longer than the original line (because of the 
latter “a” added at the end). Hence, the characters in the first piglatin word will occupy locations ml to m2+1. The 
characters in the second word will occupy locations ml+l to m2+2 (note that these are new values for ml and m2), and so 
on. These rules can be generalized as follows. 

First, for word number n, transfer all characters except the first from the original line to the new line. This can be 
accomplished by writing 

for (count = ml; count < m2; ++count) 
piglatin[count + (n - 1 ) J  = english(count + 1 1 ;  

The last two characters (i.e., the first character in the original word plus the letter “a’,) can then be added in the 
following manner. 

piglatin(m2 + (n - l)] = english[ml]; 
piglatin[m2 + n] = ‘ a ’ ;  

We then reset the value of ml ,i.e., 

ml = m 2  + 2; 

in preparation for the next word. This entire group of calculations is repeated for each word in the original line. 
Here is the function that accomplishes all of this. 

/ *  convert each word into piglatin * /  

void convert(int words, char english(1, char piglatin[J) 


int n, count; 

int m l  = 0; / *  marker ->  beginning of word * /  

int m2; / *  marker - >  end of word * /  

/ *  convert each word * /  
for (n = 1 ;  n <= words; ++n) { 

/ *  locate the end of the current word * /  
count = ml; 
while (english[count] I =  ’ I )  

m2 = count++; 

/ *  transpose the first letter and add ‘ a ’  * /  
for (count = ml; count < m2; ++count) 

piglatin[count + (n - l)]= english[count + 1 1 ;  
piglatin[m2 + (n - 1)J = english(ml1; 
piglatin(m2 + n] = ’ a ’ ;  

/ *  reset the initial marker * /  
ml = m 2  + 2; 

1 
return; 


1 

Step 5 (display the piglatin) requires little more than a for loop. The complete function can be written as 
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/ *  d i s p l a y  the  l i n e  o f  t e x t  i n  p i g l a t i n  * /  

v o i d  wr i t eou tpu t ( cha r  p i g l a t i n [ ] )  

{ 
i n t  count = 0; 

f o r  (count = 0; count < 80; ++count) 
putchar(piglatin[count]); 


p r i n t f  ( I' \nl' ) ; 
re tu rn ;  

1 

Now consider the main portion of the program. This is nothing more than a group of definitions and declarations, an 
initial message, a do - wh i l e  loop that allows for repetitious program execution (until the word "end" is detected, in either 
upper or lowercase, as the first word in the english text), and a closing message. The do - wh i l e  loop can be made to 
continue indefinitely by using the test (words >= 0)  at the end of the loop. Since words is assigned an initial value of 1 
and its value does not decrease, the test will always be true. 

The complete program is shown below. 

/ *  convert  Eng l ish  t o  p i g l a t i n ,  one l i n e  a t  a t ime * /  

# inc lude <stdio.h> 
# inc lude <s td l i b .h>  
# inc lude <ctype.h> 

v o i d  i n i t i a l i z e ( c h a r  e n g l i s h [ ] ,  char p i g l a t i n [ ] ) ;  
v o i d  read input (char  e n g l i s h [ ] ) ;  
i n t  countwords(char e n g l i s h [ ] ) ;  
v o i d  c o n v e r t ( i n t  words, char e n g l i s h [ ] ,  char p i g l a t i n [ ] ) ;  
v o i d  wr i t eou tpu t ( cha r  p i g l a t i n [ ] ) ;  

main( ) 

1 
char eng l i sh [80 ] ,  p i g l a t i n [ 8 0 ] ;  
i n t  words; 

printf('We1come t o  the  P i g l a t i n  Genera tor \n \n" ) ;  
p r i n t f  ( "Type \ I END\ ' when f in i shed \n \n " )  ; 

do { / *  process a new l i n e  o f  t e x t  * /  

i n i t i a l i z e ( e n g l i s h ,  p i g l a t i n ) ;  
readinput(eng1ish);  

/ *  t e s t  f o r  stopping cond i t i on  * /  
i f  ( toupper (eng l ish [O] )  == ' E '  && 

t o u p p e r ( e n g l i s h [ l J )  == ' N I  && 
toupper (eng l i sh [2 ] )  == I D ' )  break; 

/ *  count the  number o f  words i n  the  l i n e  * /  
words = countwords(eng1ish); 

/ *  convert  eng l i sh  i n t o  p i g l a t i n  * I  
convert(words, eng l i sh ,  p i g l a t i n ) ;  
w r i t e o u t p u t ( p i g 1 a t i n ) ;  

1 
w h i l e  (words >= 0 ) ;  

p r i n t f  ('\naveHa aa icena ayda (Have a n i ce  d a y ) \ n " ) ;  

1 



258 ARRAYS [CHAP. 9 

/ *  i n i t i a l i z e  the character arrays w i t h  blank spaces * /  

vo id  i n i t i a l i z e ( c h a r  e n g l i s h [ ] ,  char p i g l a t i n [ ] )  

{ 
i n t  count; 

f o r  (count = 0; count c 80; ++count) 
eng l i sh [count ]  = p i g l a t i n [ c o u n t ]  = I I ;  

re tu rn ;  

/ *  read one l i n e  o f  Engl ish t e x t  * /  

vo id  readinput(char e n g l i s h [ ] )  

{ 
i n t  count = 0; 

char c;  

wh i le  ( ( c  = ge tchar ( ) )  I =  '\,I) { 

eng l i sh [count ]  = c; 
++count ; 

1 
re tu rn ;  

1 

/ *  scan the Engl ish t e x t  and determine the number o f  words * /  

i n t  countwords(char eng l i sh(1)  

{ 
i n t  count, words = 1; 

f o r  (count = 0; count < 79; ++count) 
i f  (eng l i sh [count ]  == ' ' && engl ish[count + 11 I =  ' I )  

++words; 
r e t u r n  (words); 

1 

/ *  convert each word i n t o  p i g l a t i n  * /  

vo id  c o n v e r t ( i n t  words, char eng l i sh [ ] ,  char p i g l a t i n [ ] )  

{ 
i n t  n, count; 
i n t  m l  = 0; / *  marker -> beginning o f  word * /  
i n t  m2; / *  marker ->  end o f  word * /  

/ *  convert  each word * /  
f o r  (n  = 1; n c= words; ++n) { 

/ *  l oca te  the end o f  the cur ren t  word * /  
count = m l ;  
wh i le  (eng l i sh [count ]  I =  I ' )  

m2 = count++; 

/ *  transpose the f i r s t  l e t t e r  and add ' a '  * /  
f o r  (count = m l ;  count c m2; ++count) 

p i g l a t i n [ c o u n t  + (n  - l ) ]  = engl ish[count + 11; 
p ig la t i n (m2  + (n  - l ) ]  = eng l i sh [ml ] ;  
p ig la t i n [m2  + n ]  = ' a ' ;  
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/ *  rese t  t he  i n i t i a l  marker * /  
m l  = m2 + 2; 

1 
re tu rn ;  

1 

/ *  d i s p l a y  the  l i n e  o f  t e x t  i n  p i g l a t i n  * /  

v o i d  wr i t eou tpu t ( cha r  p i g l a t i n [ ] )  

{ 
i n t  count = 0; 

f o r  (count = 0; count < 80; ++count) 
putchar(piglatin[count]); 


p r i n t f  ( I' \ n "  ) ; 
re tu rn ;  

1 

Notice that each function requires at least one array as an argument. In countwords and wr i teoutpu t ,  the array 
arguments simply provide input to the functions. In convert, however, one array argument provides input to the function 
and the other provides output to main. And in i n i t i a l i z e  and readinput, the arrays represent information that is 
returned to main. 

The function declarations within main are written as full function prototypes. Note that each array argument is 
identified by an empty pair of square brackets following the array name. 

Now consider what happens when the program is executed. Here is a typical interactive session, in which the user's 
entries are underlined. 

Welcome t o  the  P i g l a t i n  Generator 

Type 'END' when f i n i s h e d  

C i s  a popu lar  s t ruc tu red  Droarammina lanauaae 
Ca s i a  aa opularpa t ruc tu redsa rogrammingpa anguagela 

baseba l l  i s  t he  area t  American Dastime, 
asebal lba s i a  heta reatga mericanAa astime,pa 

thouah there  are manv who Dre fer  f o o t b a l l  
houghta here ta  reaa anyma howa re fe rpa  o o t b a l l f a  

please do no t  sneeze i n  the  comDuter room 
leasepa oda otna neezesa n i a  heta omputerca oomra 

aveHa aa icena ayda (Have a n i ce  day) 

The program does not include any special accommodations for punctuation marks, uppercase letters, or double-letter 
sounds (e.g., "th" or "sh"). These refinements are left as exercises for the reader. 

9.4 MULTIDIMENSIONAL ARRAYS 

Multidimensional arrays are defined in much the same manner as one-dimensional arrays, except that a 
separate pair of square brackets is required for each subscript. Thus, a two-dimensional array will require two 
pairs of square brackets, a three-dimensional array will require three pairs of square brackets, and so on. 

In general terms, a multidimensional array definition can be written as 
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storage-class data- type ar ray [  expression I ]  [ expression 21 . . . [ expression n]  ; 

where storage -class refers to the storage class of the array, data - type is its data type, array is the array 
name, and expression 7 ,  expression 2, . . ., expression n are positive-valued integer 
expressions that indicate the number of array elements associated with each subscript. Remember that the 
storage-class is optional; the default values are automatic for arrays that are defined inside of a function, 
and external for arrays defined outside of a function. 

We have already seen that an n-element, one-dimensional array can be thought of as a list of values, as 
illustrated in Fig. 9.1. Similarly, an m x n, two-dimensional array can be thought of as a table of values having 
m rows and n columns, as illustrated in Fig. 9.2. Extending this idea, a three-dimensional array can be 
visualized as a set of tables (e.g., a book in which each page is a table), and so on. 

col 1 col 2 col 3 col (n-1) col n 


row 1 


row 2 


0 0 0 0 0 

row m z n  
x[m-l][O] x[m-1][1] x[m-1][2] x[m-l][n-2] x[m-l][n-l] 


x is a m x n, two-dimensional array 

Fig. 9.2 

EXAMPLE 9.15 Several typical multidimensional array definitions are shown below. 

float table[50][50]; 


char page[24][80]; 


static double records[100][66][255]; 


static double records[L][M][N]; 


The first line defines table as a floating-point array having 50 rows and 50 columns (hence 50 x 50 = 2500 elements), 
and the second line establishes page as a character array with 24 rows and 80 columns (24 x 80 = 1920 elements). The 
third array can be thought of as a set of 100 static, double-precision tables, each having 66 lines and 255 columns (hence 
100 x 66 x 255 = 1,683,000 elements). 

The last definition is similar to the preceding definition except that the array size is defined by the symbolic constants 
L , M and N. Thus, the values assigned to these symbolic constants will determine the actual size of the array. 

Some care must be given to the order in which initial values are assigned to multidimensional array 
elements. (Remember, only external and static arrays can be initialized.) The rule is that the last (rightmost) 
subscript increases most rapidly, and the first (leftmost) subscript increases least rapidly. Thus, the elements 
of a two-dimensional array will be assigned by rows; i.e., the elements of the first row will be assigned, then 
the elements of the second row, and so on. 
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EXAMPLE 9.16 Consider the following two-dimensional array definition. 

int values[3][4] = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12); 

Note that values can be thought of as a table having 3 rows and 4 columns (4 elements per row). Since the initial values 
are assigned by rows (i.e., last subscript increasing most rapidly), the results of this initial assignment are as follows. 

values[O][O] = 1 values[O][l] = 2 values[0][2] = 3 values[0][3] = 4 
values[l][O] = 5 values[l][l] = 6 values[l][2] = 7 values[l][3] = 8 

values[2][0] = 9 values[2][1] = 10 values[2][2] = 1 1  values[2][3] = 12 

Remember that the first subscript ranges from 0 to 2, and the second subscript ranges from 0 to 3. 

The natural order in which the initial values are assigned can be altered by forming groups of initial 
values enclosed within braces (i.e., { . . . 1). The values within each innermost pair of braces will be assigned 
to those array elements whose last subscript changes most rapidly. In a two-dimensional array, for example, 
the values within an inner pair of braces will be assigned to the elements of a row, since the second (column) 
subscript increases most rapidly. If there are too few values within a pair of braces, the remaining elements of 
that row will be assigned zeros. However, the number of values within each pair of braces cannot exceed the 
defined row size. 

EXAMPLE 9.17 Here is a variation of the two-dimensional array definition presented in the last example. 

int values[3][4] = { 

11, 2 J  
 3 J  4)J 


1 5 J  6 J  7 J  8 ) ,  
(9, 10, 11, 12) 


This definition results in the same initial assignments as in the last example. Thus, the four values in the first inner pair of 
braces are assigned to the array elements in the first row, the values in the second inner pair of braces are assigned to the 
array elements in the second row, etc. Note that an outer pair of braces is required, containing the inner pairs. 

Now consider the following two-dimensional array definition. 

int values[3][4] = { 

I I J  2 J  3), 

i 4 J  5 J  6 ) J  

( 7 J  'J 9, 

This definition assigns values only to the first three elements in each row. Therefore, the array elements will have the 
following initial values. 

values[O][O] = 1 values[O][l] = 2 values[0][2] = 3 values[0][3] = 0 
values[l][O] = 4 values[l][l] = 5 values[l][2] = 6 values[l][3] = 0 
values[2][0] = 7 values[2][1] = 8 values[2][2] = 9 values[2][3] = 0 

Notice that the last element in each row is assigned a value of zero. 
If the preceding array definition is written as 

then three of the array elements will again be assigned zeros, though the order of the assignments will be different. In 
particular, the array elements will have the following initial values. 
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values[o][O] = 1 values[O][l] = 2 values[0][2] = 3 values[0][3] = 4 
values[l][O] = 5 values[l][l] = 6 values[l][2]= 7 values[l][3] = 8 
values[2][0] = 9 values[2][1] = 0 values[2][2] = 0 values[2][3] = 0 

Now the initial values are assigned with the last subscript increasing most rapidly, on a row-by-row basis, until all of the 
initial values have been assigned. Without the inner pairs of braces, however, the initial values cannot be grouped for 
assignment to specific rows. 

Finally, consider the array definition 

int values[3][4] = { 

i l J  2, 3, 4 J  
 5 ) J  

(6J 7 J  8 J '9
 l0), 

( 1 1 ,  12, 13, 14, 15) 


This will result in a compilation error, since the number of values in each inner pair of braces (five values in each pair) 
exceeds the defined array size (four elements in each row). 

The use of embedded groups of initial values can be generalized to higher dimensional arrays. 

EXAMPLE 9.18 Consider the following three-dimensional array definition. 

int t[10][201[301 = { 

I*  table 1 * I  
{ l J  2 J  3, 4), / *  row 1 * /  

{ 5 ,  6 J  7 J  8)J I *  row 2 * /  
(9, 10, 1 1 ,  12) I *  row 3 * I  

1, 

{ / *  table 2 * I  
{21 , 22, 23, 24), / *  row 1 * /  
(25, 26, 27, 28), I *  row 2 * I  
(29, 30, 31, 32) / *  row 3 * I  

1 
}; 

Think of this array as a collection of 10 tables, each having 20 rows and 30 columns. The groups of initial values will 
result in the assignment of the following nonzero values in the first two tables. 

t[O][O][O]= 1 t[O][O][l]= 2 t[0][0][2]= 3 t[0][0][3]= 4 
t[O][lJ[O]= 5 t[OJ[l][l]= 6 t[0][1][2]= 7 t[O][l][3] = 8 
t[0][2][0]= 9 t[0][2][1]= 10 t[0][2][2]= 1 1  t[0][2J[3]= 12 

t[l][O][O]= 21 t[l][O][l] = 22 t[1][0][2]= 23 t[l][O][3]= 24 
t[l][l][O]= 25 t[l][l][l]= 26 t[1][1][2]= 27 t[l][l][3] = 28 
t[l][2][0] = 29 t[1][2][1]= 30 t[1][2][2]= 31 t[l][2][3] = 32 

All of the remaining array elements will be assigned zeros. 

Multidimensional arrays are processed in the same manner as one-dimensional arrays, on an element-by-
element basis. However, some care is required when passing multidimensional arrays to a hnction. In 
particular, the formal argument declarations within the function definition must include explicit size 
specifications in all of the subscript positions except the first. These size specifications must be consistent 
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with the corresponding size specifications in the calling program. The first subscript position may be written 
as an empty pair of square brackets, as with a one-dimensional array. The corresponding function prototypes 
must be written in the same manner. 

EXAMPLE 9.19 Adding Two Tables of Numbers Suppose we want to read two tables of integers into the computer, 
calculate the sums of the corresponding elements, i.e., 

and then display the new table containing these sums. We will assume that all of the tables contain the same number of 
rows and columns, not exceeding 20 rows and 30 columns. 

Let us make use of the following variable and array definitions. 

a, b, c = two-dimensional arrays, each having the same number of rows and the same number of columns, not 
exceeding 20 rows and 30 columns 

nrows = an integer variable indicating the actual number of rows in each table 

nco ls  = an integer variable indicating the actual number of columns in each table 

row = an integer counter that indicates the row number 

c o l  = an integer counter that indicates the column number 

The program will be modularized by writing separate functions to read in an array, calculate the sum of the array 
elements, and display an array. Let us call these functions readinput, computesums and wr i teoutpu t ,  respectively. 

The logic within each function is quite straightforward. Here is a complete C program for carrying out the 
computation. 

/ *  c a l c u l a t e  the  sum o f  the  elements i n  two tab les  o f  i n tege rs  * /  

# inc lude <s td io .h> 

#def ine  MAXROWS 20 
#def ine  MAXCOLS 30 

v o i d  read input (1n t  a[][MAXCOLS], i n t  nrows, i n t  nco ls ) ;  
v o i d  computesums(int a[][MAXCOLS], i n t  b[][MAXCOLS], 

i n t  c[][MAXCOLS], i n t  nrows, i n t  nco ls ) ;  
v o i d  w r i t e o u t p u t ( i n t  c[][MAXCOLS], i n t  nrows, i n t  nco ls ) ;  

main( ) 

i 
i n t  nrows, ncols;  

/ *  a r ray  d e f i n i t i o n s  * I  
i n t  a[MAXROWS][MAXCOLS], b[MAXROWS][MAXCOLS], c[MAXROWS][MAXCOLS]; 

p r i n t f ( " H o w  many rows? ' ) ;  
scanf ( M%d'a, &nrows) ; 
p r i n t f ( " H o w  many columns? " ) ;  

scanf ( '%d" &ncols)  ; 

p r i n t f  ( " \ n \ n F i r s t  t a b l e :  \,'I) ; 
read input (a ,  nrows, nco ls ) ;  

p r i n t f  ( I' \n\nSecond t a b l e :  \ n "  ) ; 
read input (b ,  nrows, nco ls ) ;  

computesums(a, b, c, nrows, nco ls ) ;  
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pr in t f ( " \ n \nSums o f  t he  e lements : \n \n" ) ;  
w r i t eou tpu t ( c ,  nrows, nco ls ) ;  

1 

/ *  read i n  a t a b l e  o f  i n tege rs  * /  

v o i d  r e a d i n p u t ( i n t  a[][MAXCOLS], i n t  m, i n t  n) 

1 
i n t  row, c o l ;  

f o r  (row = 0; row c m; ++row) { 
p r i n t f ( " \ n E n t e r  data f o r  row no. %2d\n", row + 1 ) ;  

f o r  ( c o l  = 0; c o l  c n; ++col)  
scanf ( "%d" ,  & a [ r o w ] [ c o l ] ) ;  

1 
re tu rn ;  

1 

/ *  add the  elements o f  two i n t e g e r  tab les  * /  

v o i d  computesums(int a[][MAXCOLS], i n t  b[][MAXCOLS], 
i n t  c[][MAXCOLS], i n t  m, i n t  n) 

1 
i n t  row, c o l ;  

f o r  (row = 0; row c m; ++row) 
f o r  ( c o l  = 0; c o l  c n; ++col)  

c [ r o w ] [ c o l ]  = a [ r o w ] [ c o l ]  + b [ r o w ] [ c o l ] ;  
r e t u r n ;  

1 

/ *  d i s p l a y  a t a b l e  o f  i n tege rs  * /  

v o i d  w r i t e o u t p u t ( i n t  a[][MAXCOLS], i n t  m, i n t  n )  

1 
i n t  row, c o l ;  

f o r  (row = 0; row c m; ++row) 1 
f o r  ( c o l  = 0; c o l  c n; ++col)  

p r i n t f  ( "%4d", a [  row] [ c o l ]  ) ; 
p r i n t f  ( I" \ no ' ); 

1 
re tu rn ;  

1 

The array definitions are expressed in terms of the symbolic constants MAXROWS and MAXCOLS, whose values are 
specified as 20 and 30, respectively, at the beginning of the program. 

Notice the manner in which the formal argument declarations are written within each function definition. For 
example, the first line of function readinput is written as 

v o i d  r e a d i n p u t ( i n t  a[][MAXCOLS], i n t  m, i n t  n )  

The array name, a, is followed by two pairs of square brackets. The first pair is empty, because the number of rows need 
not be specified explicitly. However, the second pair contains the symbolic constant MAXCOLS, which provides an explicit 
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size specification for the number of columns. The array names appearing in the other function definitions (i.e., in 
functions computesums and wr i teoutput )  are written in the same manner. 

Also, notice the function prototypes at the beginning of the program. Each prototype is analogous to the first line of 
the corresponding function definition. In particular, each array name is followed by two pairs of brackets, the first of 
which is empty. The second pair of brackets contains the size specification for the number of columns, as required. 

Now suppose the program is used to sum the following two tables of numbers. 

First table Second table 

1 2 3 4 10 1 1  12 13 

5 6 7 8 14 15 16 17 

9 10 11  12 18 19 20 21 

Execution of the program will generate the following dialog. (The user’s responses are underlined, as usual.) 

How many rows? 3 
How many columns? 4 

F i r s t  t a b l e :  

Enter  da ta  f o r  row no. 

1 2 3 4  

Enter  da ta  f o r  row no. 

5 6 2 8  

Enter  da ta  f o r  row no. 
9 10 1 1  12 

Second t a b l e :  

Enter  da ta  f o r  row no. 
10 1 1  12 13 


Enter  da ta  f o r  row no. 
14 15 16 17 


Enter  da ta  f o r  row no. 
18 19 20 21 


Sums o f  the  elements: 

1 1  13 15 17 

19 21 23 25 

27 29 31 33 


Some C compilers are unable to pass sizeable multidimensional arrays to functions. In such situations it 
may be possible to redesign the program so that the multidimensional arrays are defined as external (global) 
arrays. Hence, the arrays need not be passed to functions as arguments. This strategy will not always work, 
however, because some programs (such as the program shown in the last example) use the same function to 
process different arrays. Problems of this type can usually be circumvented through the use of pointers, as 
discussed in the next chapter. 

9.5 ARRAYS AND STRINGS 

We have already seen that a string can be represented as a one-dimensional character-type array. Each 
character within the string will be stored within one element of the array. Some problems require that the 
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characters within a string be processed individually (e.g., the piglatin generator shown in Example 9.14). 
However, there are many other problems which require that strings be processed as complete entities. Such 
problems can be simplified considerably through the use special string-oriented library functions. 

For example, most C compilers include library functions that allow strings to be compared, copied or 
concatenated (i.e., combined, one behind another). Other library functions permit operations on individual 
characters within strings; e.g., they allow individual characters to be located within strings, and so on. The 
following example illustrates the use of some of these library functions. 

EXAMPLE 9.20 Reordering a List of Strings Suppose we wish to enter a list of strings into the computer, rearrange 
them into alphabetical order, and then display the rearranged list. The strategy for doing this is very similar to that shown 
in Example 9.13, where we rearranged a list of numbers into ascending order. Now, however, there is the additional 
complication of comparing entire strings, rather than single numerical values. We will therefore store the strings within a 
two-dimensional character array. Each string will be stored in a separate row within the array. 

To sirnplifj, the computation, let us make use of the library functions strcmp and strcpy.  These functions are used 
to compare two strings and to copy one string to another, respectively. (Some compilers also include the strcmpi 
function, which is a variation of the more common s t  rcmp . The use of s t  rcmpi is sometimes more convenient, since it 
does not distinguish between upper- and lowercase. However, it is not supported by the ANSI standard.) 

The strcmp function accepts two strings as arguments and returns an integer value, depending upon the relative 
order of the two strings, as follows: 

1 .  A negative value if the first string precedes the second string alphabetically. 

2. A value of zero if the first string and the second string are identical (disregarding case). 

3. A positive value if the second string precedes the first string alphabetically. 

Therefore, if strcmp( s t r i n g l ,  string2) returns a positive value, it would indicate that s t r i n g 2  must be moved, 
placing it ahead of s t r i n g l  in order to alphabetize the two strings properly. 

The st rcpy  function also accepts two strings as arguments. Its first argument is generally an identifier that 
represents a string. The second argument can be a string constant or an identifier representing another string. The 
function copies the value of s t r ing2 to  s t r i n g l .  Hence, it effectively causes one string to be assigned to another. 

The complete program is very similar to the numerical reordering program presented in Example 9.13. Now, 
however, we will allow the program to accept an unspecified number of strings, until a string is entered whose first three 
characters are END (in either upper- or lowercase). The program will count the strings as they are entered, ignoring the last 
string, which contains END. 

Here is the entire program. 

/ *  s o r t  a l i s t  o f  s t r i n g s  a l p h a b e t i c a l l y  using a two-dimensional charac ter  a r r a y  * /  

# inc lude  <s td io .h>  
# inc lude  < s t d l i b . h >  
# inc lude  < s t r i n g . h >  

vo id  r e o r d e r ( i n t  n ,  char x [ ] [ 1 2 ] ) ;  / *  funct ion  prototype * /  

main ( ) 

t 
i n t  i,n = 0; 

char x ( 1 0 ] [ 1 2 ] ;  

p r i n t f ( " E n t e r  each s t r i n g  on a separate l i n e  b e l o w \ n \ n " ) ;  
p r i n t f ( " T y p e  \ ' E N D \ '  when f i n i s h e d \ n \ n " ) ;  

/ *  read i n  the  l i s t  o f  s t r i n g s  * /  

do t 
p r i n t f ( " s t r i n g  %d: ' I ,  n + 1 ) ;  

scanf ("%s" x [  n ]  ) ; 
} whi le  (s t rcmp(x [n++] ,  "END") ) ;  
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/ *  ad just  the value o f  n * /  

n - - ;  
/ *  reorder the l i s t  o f  s t r i ngs  * /  
reorder(n, x) ;  

/ *  d isp lay the reordered l i s t  o f  s t r i ngs  * /  
pr in t f ( " \n \nReordered L i s t  o f  St r ings: \n" ) ;  
f o r  ( i  = 0; i< n; ++i)  

p r i n t f ( " \ n s t r i n g  %d: %s", i+ 1, x [ i ] ) ;  

1 

void reo rde r ( i n t  n, char x [ ] [ 1 2 ] )  / *  rearrange the l i s t  o f  s t r i ngs  * /  

{ 
char temp[ 121 ; 
i n t  i,item; 

f o r  ( i tem = 0; i tem < n - 1; ++item) 

/ *  f i n d  the lowest o f  a l l  remaining s t r i ngs  * /  
f o r  ( i  = i t e m  + 1; i< n; ++i )  

i f  (strcmp(x[ i tem],  x [ i ] )  > 0) { 

/ *  interchange the two s t r i ngs  * /  
strcpy(temp, x [  i tem] ) ; 
st rcpy(x[ i tem] ,  x [ i ] ) ;  
s t r c p y ( x [ i ] ,  temp); 

1 
re turn;  

1 

The strcmp function appears in two different places within this program: in main, when testing for a stopping 
condition, and in rearrange, when testing for the need to interchange two strings. The actual string interchange is 
carried out using strcpy.  

The dialog resulting from a typical execution of the program is shown below. The user's responses are underlined, as 
usual. 

Enter each s t r i n g  on a separate l i n e  below 

Type 'END'  when f i n i shed  

s t r i n g  1: PACIFIC 
s t r i n g  2: ATLANTIC 
s t r i n g  3: INDIAN 

s t r i n g  4: CARIBBEAN 

s t r i n g  5: BERING 

s t r i n g  6: BLACK 
s t r i n g  7: RED 
s t r i n g  8: NORTH 

s t r i n g  9: BALTIC 
s t r i n g  10: CASPIAN 

s t r i n g  11: END 
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Reordered L i s t  o f  S t r i ngs :  

s t r i n g  1: ATLANTIC 
s t r i n g  2: BALTIC 
s t r i n g  3: BERING 
s t r i n g  4: BLACK 
s t r i n g  5: CARIBBEAN 
s t r i n g  6: CASPIAN 

s t r i n g  7:  I N D I A N  

s t r i n g  8: NORTH 

s t r i n g  9: PACIFIC 
s t r i n g  10: RED 

In the next chapter we will see a different way to represent lists of strings, which is more efficient in terms 
of its memory requirements. 

Review Questions 

9.1 In what way does an array differ from an ordinary variable? 

9.2 What conditions must be satisfied by all of the elements of any given array? 

9.3 How are individual array elements identified? 

9.4 What are subscripts? How are they written? What restrictions apply to the values that can be assigned to 
subscripts? 

9.5 Suggest a practical way to visualize one-dimensional arrays and two-dimensional arrays. 

9.6 How does an array definition differ from that of an ordinary variable? 

9.7 Summarize the rules for writing a one-dimensional array definition. 

9.8 What advantage is there in defining an array size in terms of a symbolic constant rather than a fixed integer 
quantity? 

9.9 Can initial values be specified within an external array definition? Can they be specified within a static array 
definition? Can they be specified within an automatic array definition? 

9.10 How are initial values written in a one-dimensional array definition? Must the entire array be initialized? 

9.11 What value is automatically assigned to those array elements that are not explicitly initialized? 

9.12 Describe the manner in which an initial string constant is most commonly assigned to a one-dimensional character 
array. Can a similar procedure be used to assign values to a one-dimensional numerical array? 

9.13 When a one-dimensional character array of unspecified length is assigned an initial value, what extra character is 
automatically added to the end of the string? 

9.14 When are array declarations (in contrast to array definitions) required in a C program? How do such declarations 
differ from array definitions? 

9.15 How are arrays usually processed in C? Can entire arrays be processed with single instructions, without 
repetition? 

9.16 When passing an array to a function, how must the array argument be written? How is the corresponding formal 
argument written? 

9.17 How is an array name interpreted when it is passed to a function? 

9.18 Suppose a function declaration includes argument type specifications, and one of the arguments is an array. How 
must the array type specification be written? 

9.19 When passing an argument to a function, what is the difference between passing by value and passing by 
reference? To what types of arguments does each apply? 
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9.20 If an array is passed to a function and several of its elements are altered within the function, are these changes 
recognized in the calling portion of the program? Explain. 

9.2 1 Can an array be passed from a function to the calling portion of the program via a return statement? 

9.22 How are multidimensional arrays defined? Compare with the manner in which one-dimensional arrays are 
defined. 

9.23 State the rule that determines the order in which initial values are assigned to multidimensional array elements. 

9.24 When assigning initial values to the elements of a multidimensional array, what advantage is there to forming 
groups of initial values, where each group is enclosed in its own set of braces? 

9.25 When a multidimensional array is passed to a function, how are the formal argument declarations written? 
Compare with one-dimensional arrays. 

9.26 How can a list of strings be stored within a two-dimensional array? How can the individual strings be processed? 
What library functions are available to simplifL string processing? 

Problems 

9.27 Describe the array that is defined in each of the following statements. 

(a) char name[30]; (e )  #define A 66 

(b)  float c[6]; #define B 132 

(c) #define N 50 . . . . .  
. . . . .  char memo[A][B]; 
int a"]; 

(6) int params[ 51 [ 51 ; v) double accounts[50][20][80]; 

9.28 Describe the array that is defined in each of the following statements. Indicate what values are assigned to the 
individual array elements. 

float C[8] = {2., 5., 3., -4., 12., 12., O., 8.); 

float c[8] = {2., 5., 3., -4.); 

int z[12] = (0, 0, 8 ,  0, 0, 6); 

char flag[4] = { ' T ' ,  ' R I ,  ' U ' ,  'E'}; 

char flag[5] = { ' T ' ,  ' R I ,  ' U ' ,  'E'}; 

char flag[] = "TRUE'; 

char flag[] = 'FALSE'; 

int p[2][4] = (1, 3, 5, 7); 

int p[2][4] = (1, 1 ,  3, 3, 5, 5, 7, 7); 

int p[2][4] = { 

{I, 3, 5, 71, 
(2, 4, 6, 8) 
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{l0J 
{ I  J 

(12,  13,  14) 

( m )  char c o l o r s [ 3 ] [ 6 ]  = { 

{ ' R I ,  ' E ' ,  I D ' ) ,  

{'G', ' R ' ,  ' E ' ,  ' E ' ,  ' N I ) ,  

{ ' B ' ,  ' L ' ,  ' U ' ,  ' E ' )  

}; 

9.29 Write an appropriate array definition for each of the following problem situations. 

(a)  Define a one-dimensional, 12-element integer array called c. Assign the values 1, 4, 7,10, . . . ,34 to the 
array elements. 

(b) Define a one-dimensional character array called poin t .  Assign the string "NORTH" to the array elements. 
End the string with the null character. 

(c )  Define a one-dimensional, four-element character array called l e t t e r s .  Assign the characters ' N ' , ' S ' , 
' E ' and ' W ' to the array elements. 

(d) Define a one-dimensional, six-element floating-point array called consts. Assign the following values to 
the array elements: 

0.005 -0.032 1 e-6 0.167 -0.3e8 0.015 

(e )  Define a two-dimensional, 3 x 4 integer array called n. Assign the following values to the array elements: 

10 12 14 16 
20 22 24 26 
30 32 34 36 

U> Define a two-dimensional, 3 x 4 integer array called n. Assign the following values to the array elements: 

10 12 14 0 
0 20 22 0 
0 30 32 0 

(g) Define a two-dimensional, 3 x 4 integer array called n. Assign the following values to the array elements: 

10 12 14 16 
20 22 0 0 
0 0 0 0 

9.30 In each of the following situations, write the definitions and declarations required to transfer the indicated. 
variables and arrays from main to a function called sample (see Examples 9.10 and 9.11). In each case, assign 
the value returned from the function to the floating-point variable x. 

(a)  Transfer the floating-point variables a and b, and the one-dimensional, 20-element integer array j s t a r .  

(b)  Transfer the integer variable n, the character variable c and the one-dimensional, 50-element double- 
precision array values. 

(c )  Transfer the two-dimensional, 12 x 80 character array t e x t .  

(d) Transfer the one-dimensional, 40-element character array message, and the two-dimensional, 50 x 100 
floating-point array accounts. 
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9.31 Describe the output generated by each of the following programs. 

#include <stdio.h> 


main ( ) 
( 

int a, b = 0; 
static int c[lO] = (1, 2, 3, 4, 5 ,  6, 7,  8 ,  9, 0); 

for (a = 0; a < 10; ++a) 
if ((c[a] % 2) == 0) b += c[al; 

printf('%d', b ) ;  

1 

#include <stdio.h> 


main ( ) 
1 

int a, b = 0; 
static int c[lO] = (1, 2, 3, 4, 5 ,  6,  7,  8 ,  9, 0); 

for (a = 0; a < 10; ++a) 
if ((a % 2) == 0) b += c[a]; 

printf("%d", b ) ;  

1 

#include <stdio.h> 


main ( ) 
{ 

int a, b = 0; 
int c[lO] = (1, 2, 3, 4, 5 ,  6,  7, 8 ,  9, 0); 

for (a = 0; a < 10; ++a) 
b += c[a]; 

printf ( "%d", b)  ; 

1 

#include <stdio.h> 


int c [ l O ]  = (1, 2, 3, 4, 5 ,  6,  7, 8 ,  9, 0); 

main ( ) 
{ 

int a, b = 0; 

f o r  (a = 0; a < 10; ++a) 
if ((c[a] % 2) == 1 )  b += c[a]; 

printf ( "%d8', b)  ; 
1 

#define ROWS 3 
#define COLUMNS 4 

int z[ROWS][COLUMNS] = (1, 2, 3, 4 ,  5 ,  6,  7, 8, 9, 10, 11, 12); 

main ( ) 
{ 

int a, b ,  c = 999; 
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f o r  (a  = 0; a < ROWS; ++a) 
f o r  (b  = 0; b < COLUMNS; ++b) 
if( z [ a ] [ b ]  < c )  c = z [ a ] [ b ] ;  

p r i n t f ( " % d " ,  c ) ;  

1 

V, #include <stdio.h> 

#def ine ROWS 3 
#def ine COLUMNS 4 

main ( ) 

t 
i n t  a, b, c; 

f o r  (a  = 0; a < ROWS; ++a) { 

c = 999; 
f o r  (b = 0; b c COLUMNS; ++b) 

i f  ( z [ a ] [ b ]  c c )  c = z [a ] (b ] ;  
p r i n t f ( " % d  ", c ) ;  

1 
1 

(g) #include <stdio.  h> 

#def ine ROWS 3 
#def ine COLUMNS 4 

vo id s u b l ( i n t  z[][COLUMNS]); 

main( ) 

t 
S t a t i c  itlt z[ROWS][COLUMNS] = (1, 2, 3 ,  4 ,  5 ,  6,  7,  8 ,  9, 10, 11, 12); 

subl ( z )  ; 

1 

void subl ( i n t  x[ ] [ 4 ] )  

t 
i n t  a, b, c; 

f o r  (b = 0; b c COLUMNS; ++b) { 

c = 0; 
f o r  (a = 0; a c ROWS; ++a) 

i f  ( x [ a ] [ b ]  > c )  c = x [a ] [b ] ;  
p r i n t f ( " % d  " ,  c ) ;  

re turn;  

1 

(h )  #include <std io .  h> 

#def ine ROWS 3 
#def ine COLUMNS 4 

vo id s u b l ( i n t  z[][COLUMNS]); 
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main( ) 

{ 
i n t  a, b; 
s t a t i c  i n t  z[ROWS][COLUMNS] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12); 

sub1( z )  ; 

f o r  (a = 0; a < ROWS; ++a) { 

f o r  (b = 0; b < COLUMNS; ++b) 
p r i n t f ( " % d  " ,  z [ a ] [ b ] ) ;  

p r i n t f  ( I" \ no " ); 

1 
} 

void s u b l ( i n t  x[][COLUMNS]) 

{ 
i n t  a, b; 

f o r  (a = 0; a < ROWS; ++a) 
f o r  (b = 0; b < COLUMNS; ++b) 

i f  ( ( x [ a ] [ b ]  % 2) == 1) x [ a ] [ b ] - - ;  

re turn;  

} 

(i) #include <std io .  h> 

main( ) 

i n t  a; 
s t a t i c  char c [ ]  = "Programming w i t h  C can be great f un ! " ;  

f o r  ( a  = 0; c [ a ]  I =  ' \ O 1 ;  ++a) 
if( ( a  % 2) == 0) 

p r i n t f  ( "%c%c" , c [ a]  , c [aI) ; 

Programming Problems 

9.32 Modify the program given in Example 9.8 (deviations about an average) to include two additional functions. 
Have the first function read in the numbers to be averaged, calculating their sum as they are entered. The second 
function should calculate the deviations about the average. All remaining program features (reading in a value for 
n, calculating a value for the average, displaying the calculated average and displaying the deviations about the 
average) should be carried out in the main portion of the program. 

9.33 Modify the program given in Example 9.9 (deviations about an average revisited) to include two additional 
functions. Calculate and display the average in the first function. Calculate and display the deviations about the 
average in the second function. 

9.34 Modify the program given in Example 9.13 (reordering a list of numbers) so that the numbers are rearranged into a 
sequence of decreasing values (i.e., from largest to smallest). Test the program using the data given in Example 
9.13. 

9.35 Modify the program given in Example 9.13 (reordering a list of numbers) so that any one of the following 
rearrangements can be carried out: 

(a) Smallest to largest, by magnitude 

(b)  Smallest to largest, algebraic (by sign) 
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(c) Largest to smallest, by magnitude 
(6) Largest to smallest, algebraic 

Include a menu that will allow the user to select which rearrangement will be used each time the program is 
executed. Test the program using the following 10 values. 

4.7 -8.0 

-2.3 11.4 

12.9 5.1 

8.8 -0.2 

6.0 -14.7 


9.36 Modify the piglatin generator given in Example 9.14so that it can accommodate punctuation marks, uppercase 
letters and double-letter sounds. 

9.37 Modify the program given in Example 9.19(adding two tables of numbers) so that it calculates the differences 
rather than the sums of the corresponding elements in two tables of integer numbers. Test the program using the 
data given in Example 9.19. 

9.38 Modify the program given in Example 9.19(adding two tables of numbers) so that it utilizes 1 three-dimensional 
array rather than 3 two-dimensional arrays. Let the first subscript refer to one of the three tables. The second 
subscript will refer to the row number, and the third subscript will refer to the column number. 

9.39 Write a C program that will enter a line of text, store it in an array and then display it backwards. Allow the length 
of the line to be unspecified (terminated by pressing the Enter  key), but assume that it will not exceed 80 
characters. 

Test the program with any line of text of your own choosing. Compare with the program given in Example 
7.15,which makes use of recursion rather than an array. Which approach is better, and why? 

9.40 Write an interactive C program to process the exam scores for a group of students in a C programming course. 
Begin by specifying the number of exam scores for each student (assume this value is the same for all students in 
the class). Then enter each student’s name and exam scores. Calculate an average score for each student, and an 
overall class average (an average of the individual student averages). Display the overall class average, followed 
by the name, the individual exam scores and the average score for each student. 

Store the student names in a two-dimensional character array, and store the exam scores in a two-dimensional 
floating-point array. Make the program as general as possible. Label the output clearly. 

Test the program using the following set of student exam grades. 

Adams 45 80 80 95 55 75 
Brown 60 50 70 75 55 80 
Davis 40 30 10 45 60 55 
Fisher 0 5 5 0 10 5 
Hamilton 90 85 100 95 90 90 
Jones 95 90 80 95 85 80 
Ludwig 35 50 55 65 45 70 
Osborne 75 60 75 60 70 80 
Prince 85 75 60 85 90 100 
Richards 50 60 50 35 65 70 
Smith 70 60 75 70 55 75 
Thomas 10 25 35 20 30 10 
Wolfe 25 40 65 75 85 95 
Zorba 65 80 70 100 60 95 

Compare with the program written for Prob. 6.69(k). 
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9.41 Modify the program written for the previous problem to allow for unequal weighting of the individual exam 
scores. In particular, assume that each of the first four exams contributes 15 percent to the final score, and each of 
the last two exams contributes 20 percent [see Prob. 6.69(1)]. 

9.42 Extend the program written for the preceding problem so that the deviation of each student's average about the 
overall class average will be determined. Display the class average, followed by each student's name, individual 
exam scores, final score, and the deviation about the class average. Be sure that the output is logically organized 
and clearly labeled. 

9.43 Write a C program that will generate a table of values for the equation 

y = 2e-0.1t sin 0 .9  

where t varies between 0 and 60. Allow the size of the t-increment to be entered as an input parameter. 

9.44 Write a complete C program that will generate a table of compound interest factors, FIP, where 

FIP = (1 + iI100)" 

In this formula F represents the future value of a given sum of money, P represents its present value, i represents 
the annual interest rate, expressed as a percentage, and n represents the number of years. 

Let each row in the table correspond to a different value of n, with n ranging from 1 to 30 (hence 30 rows). 
Let each column represent a different interest rate. Include the following interest rates: 4, 4.5, 5, 5.5, 6, 6.5, 7, 
7.5, 8, 8.5, 9, 9.5, 10, 1 I ,  12 and 15 percent (hence a total of 16 columns). Be sure to label the rows and columns 
appropriately. 

9.45 Consider the following foreign currencies and their equivalents to one U.S. dollar 

British pound: 0.65 pound per U.S. dollar 
Canadian dollar: 1.4 dollars per U.S. dollar 
Dutch guilder: 1.7 guilders per U.S. dollar 
French franc: 5.3 francs per U.S. dollar 
German mark: 1.5 marks per U.S. dollar 
Italian lira: 1570 lira per U.S. dollar 
Japanese yen: 98 yen per U.S. dollar 
Mexican peso: 3.4 pesos per U.S. dollar 
Swiss franc: 1.3 francs per U.S. dollar 

Write an interactive, menu-driven program that will accept two different currencies and return the value of the 
second currency per one unit of the first currency. (For example, if the two currencies are Japanese yen and 
Mexican pesos, the program will return the number of Mexican pesos equivalent to one Japanese yen.) Use the 
data given above to carry out the conversions. Design the program so that it executes repeatedly, until a stopping 
condition is selected from the menu. 

9.46 Consider the following list of countries and their capitals. 

Canada Ottawa 
England London 
France Paris 
Germany Bonn 
India New Delhi 
Israel Jerusalem 
Italy Rome 
Japan Tokyo 
Mexico Mexico City 
People's Republic of China Beijing 
Russia Moscow 
United States Washington 
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Write an interactive C program that will accept the name of a country as input and display the corresponding 
capital, and vice versa. Design the program so that it executes repeatedly, until the word End is entered as input. 

9.47 Write a complete C program for each of the problems presented below. Include the most appropriate types of 
arrays for each problem. Be sure to modularize each program, label the output clearly, and make use of natural 
data types and efficient control structures. 

(a)  Suppose we are given a table of integers, A, having m rows and n columns, and a list of integers, X,having n 
elements. We wish to generate a new list of integers, Y, that is formed by carrying out the following 
operations. 

Y[1] = A[l][l]*X[l] + A[l][2]*X[2] + . . . + A[l][n]*X[n] 
Y[2] = A[2][1]*X[l] + A[2][2]*X[2] + . . . + A[2][n]*X[nJ 
. . . . .  

Y[m] = A[m][l]*X[l] + A[m][2]*X[2] + . . . + A[m][n]*X[n] 

Display the input data (i.e., the values of the elements A and X), followed by the values of the elements of Y. 
Use the program to process the following data. 

I'  

1 2 3 4 5  6 7 8 -8 

2 3 4 5 6  7 8 9 3 
3 4 5 6 7  8 9 1 0  -6

A =  X =  

4 5 6 7 8  9 1 0 1 1  5 
5 6 7 8  9 1 0 1 1 1 2  -4 

6 7 8 9 10 1 1  12 13 7 

-2 

(6) Suppose A is a table of floating-point numbers having k rows and m columns, and B is a table of floating- 
point numbers having m rows and n columns. We wish to generate a new table, C, where each element of C 
is determined by 

C[i][j] = A[i][l]*B[l][j] + A[i][2]*B[2](j] + . . . + A[i][m]*B[rn][j] 

where i = 1 ,  2, . . . ,k and j = I ,  2, . . . ,n. (This operation is known as matrix multiplication.) 
Use the program to process the following set of data. 

yi :] 
615 0 -2 113 

2 -113 0 5 712 314 -312 
B =  0 - 1 1 0 

0 3 -917 617 413 912 317 -3 3 
4 -112 0 314 

Display the elements of A, B and C. Be sure that everything is clearly labeled. 

( c )  Read in the first m elements of a one-dimensional floating-point array. Calculate the sum of these elements, 
the mean, the deviations, the standard deviation, the algebraic maximum and the algebraic minimum. 

The mean is defined as 
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the deviation about the mean is 

di = ( x i - X ) ,  i =  1 ,2 , .  . . , m  

and the standard deviation is 

Use the program to process the following set of data. 

27.5 87.0 
13.4 39.9 
53.8 47.7 
29.2 8.1 
74.5 63.2 

Repeat the computation for k different lists of numbers. Calculate the overall mean, the overall standard 
deviation, the absolute (largest) maximum and the absolute (algebraically smallest) minimum. 

(d) Suppose we are given a set of tabulated values for y versus x, i.e., 

and we wish to obtain a value of y at some specified value of x that lies between two of the tabulated 
values. This problem is commonly solved by interpolation, i.e., by passing a polynomial y(x) through n 
points such that y(xo)=yo,y(x,) =y , ,  . . . ,fix,) =ynand then evaluating y at the desired value of x. 

A common way to carry out the interpolation is to use the Lagrange form of the interpolation 
polynomial. To do this we write 

wherefifx) is a polynomial such that 

Notice thatfi(xi) = 1 andf;o = 0, where xi is a tabulated value of x different from x,. Therefore we are 
assured that y(xi)=y,. 

Write a C program to read in n pairs of data, where n does not exceed 10, and then obtain an 
interpolated value of y at one or more specified values of x. Use the program to obtain interpolated values 
o f y  at x = 13.7,x = 37.2, x = 112 and x = 147 from the data listed below. Determine how many tabulated 
pairs of data are required in each calculation in order to obtain reasonably accurate interpolated y-values. 

y = 0.21073 x =  0 
0.45482 20 
0.4901 1 30 
0.50563 40 
0.49245 50 
0.47220 60 
0.43433 80 
0.33824 120 
0.19390 180 

9.48 The following problems are concerned with games of chance (gambling games). Each problem requires the use of 
random numbers, as described in Example 7.11. The program written for each problem will require the use of an 
array. The programs should be interactive and they should be modularized. 
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(a) Write a C program that will simulate a game of blackjack between two players. The computer will not be a 
participant in this game, but will simply deal the cards to each player and then provide each player with one 
or more “hits” (additional cards) when requested. 

The cards are dealt in order, first one card to each player, then a second card to each player. Additional 
hits may then be requested. 

The object of the game is to obtain 21 points, or as many points as possible without exceeding 21 
points, on each hand. A player is automatically disqualified if his or her hand exceeds 21 points. Picture 
cards count 10 points, and an ace can count either 1 point or 11 points. Thus a player can obtain 21 points 
(blackjack!) if he or she is dealt an ace and either a picture card or a 10. If the player has a low score with 
his (her) first two cards, he (she) may request one or more hits, as long as his (her) total score does not 
exceed 2 1. 

Use random numbers to simulate dealing the cards. Be sure to include a provision that the same card 
is not dealt more than once. 

(b)  Roulette is played with a wheel containing 38 different squares along its circumference. Two of these 
squares, numbered 0 and 00, are green; 18 squares are red, and 18 are black. The red and black squares 
alternate in color, and are numbered 1 through 36 in a random order. 

A small marble is spun within the wheel, which eventually comes to rest within a groove beneath one 
of the squares. The game is played by betting on the outcome of each spin, in any one of the following 
ways. 

(i) By selecting a single red or black square, at 35-to-1 odds. Thus, if a player were to bet $1.00 and 
win, he or she would receive a total of $36.00: the original $1.00, plus an additional $35.00. 

(ii) By selecting a color, either red or black, at 1-to-1 odds. Thus if a player chose red on a $1 .OO bet, 
he or she would receive $2.00 if the marble came to rest beneath any red square. 

(iii) By selecting either the odd or the even numbers (excluding 0 and 00), at 1-to- 1 odds. 

(iv) By selecting either the low 18 or the high 18 numbers at 1-to-1 odds. 

The player will automatically lose if the marble comes to rest beneath one of the green squares (0 or 00). 

Write an interactive C program that will simulate a roulette game. Allow the players to select 
whatever type of bets they wish by choosing from a menu. Then print the outcome of each game followed 
by an appropriate message indicating whether each player has won or lost. 

(c) Write an interactive C program that will simulate a game of BINGO. Print each letter-number combination 
as it is drawn (randomly generated). Be sure that no combination is drawn more than once. Remember that 
each of the letters B-I-N-G-0 corresponds to a certain range of numbers, as indicated below. 

B: 1 - 15 
I :  16 - 30 
N: 31 -45 
G: 46 - 60 
0: 61 -75 

Each player will have a card with five columns, labeled B-I-N-G-0. Each column will contain five 
numbers, within the ranges indicated above. No two players will have the same card. The first player to 
have one entire line of numbers drawn (either vertically, horizontally or diagonally) wins. 

Note: the center position of each card is sometimes covered before the game begins ( a “free” call). 
Also, the game is sometimes played such that a player must have all of the numbers on his or her card 
drawn before he (she) can win. 

9.49 Write an interactive C program that will encode or decode a line of text. To encode a line of text, proceed as 
follows. 

1. Convert each character, including blank spaces, to its ASCII equivalent. 

2. Generate a positive random integer. Add this integer to the ASCII equivalent of each character. The same 
random integer will be used for the entire line of text. 
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3. Suppose that N1 represents the lowest permissible value in the ASCII code, and N2 represents the highest 
permissible value. If the number obtained in step 2 above (i.e., the original ASCII equivalent plus the 
random integer) exceeds N2, then subtract the largest possible multiple of N2 from this number, and add the 
remainder to N1. Hence the encoded number will always fall between N1 and N2, and will therefore always 
represent some ASCII character. 

4. Display the characters that correspond to the encoded ASCII values. 

The procedure is reversed when decoding a line of text. Be certain, however, that the same random number is 
used in decoding as was used in encoding. 



Chapter 10 


Pointers 


A pointer is a variable that represents the location (rather than the value) of a data item, such as a variable or 
an array element. Pointers are used frequently in C, as they have a number of useful applications. For 
example, pointers can be used to pass information back and forth between a function and its reference point. 
In particular, pointers provide a way to return multiple data items from a function via function arguments. 
Pointers also permit references to other functions to be specified as arguments to a given function. This has 
the effect of passing functions as arguments to the given function. 

Pointers are also closely associated with arrays and therefore provide an alternate way to access individual 
array elements. Moreover, pointers provide a convenient way to represent multidimensional arrays, allowing 
a single multidimensional array to be replaced by a lower-dimensional array of pointers. This feature permits 
a group of strings to be represented within a single array, though the individual strings may differ in length. 

10.1 FUNDAMENTALS 

Within the computer’s memory, every stored data item occupies one or more contiguous memory cells (i.e., 
adjacent words or bytes). The number of memory cells required to store a data item depends on the type of 
data item. For example, a single character will typically be stored in one byte (8 bits) of memory; an integer 
usually requires two contiguous bytes; a floating-point number may require four contiguous bytes; and a 
double-precision quantity may require eight contiguous bytes. (See Chap. 2 and Appendix D.) 

Suppose v is a variable that represents some particular data item. The compiler will automatically assign 
memory cells for this data item. The data item can then be accessed if we know the location (i.e., the address) 
of the first memory cell.* The address of v ’ s memory location can be determined by the expression &v, where 
& is a unary operator, called the address operator, that evaluates the address of its operand. 

Now let us assign the address of v to another variable, pv. Thus, 

pv = &v 

This new variable is called a pointer to v, since it “points” to the location where v is stored in memory. 
Remember, however, that pv represents v ’ s  address, not its value. Thus, pv is referred to as a pointer 
variable. The relationship between pv and v is illustrated in Fig. 10.1. 

address of v -b 

P V  V 

Fig. 10.1 Relationship between pv and v (where pv = &v and v = *pv) 

The data item represented by v (i.e., the data item stored in v’s memory cells) can be accessed by the 
expression *pv, where * is a unary operator, called the indirection operator, that operates only on a pointer 

* Adjacent memory cells within a computer are numbered consecutively, from the beginning to the end of the memory area. The 
number associated with each memory cell is known as the memory cell’s address. Most computers use a hexadecimal numbering 
system to designate the addresses of consecutive memory cells, though some computers use an octal numbering system (see Appendix 
A). 
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variable. Therefore, *pv and v both represent the same data item (i.e., the contents of the same memory 
cells). Furthermore, if we write pv = &v and U = *pv, then U and v will both represent the same value; Le., 
the value of v will indirectly be assigned to U. (It is assumed that U and v are of the same data type.) 

EXAMPLE 10.1 Shown below is a simple program that illustrates the relationship between two integer variables, their 
corresponding addresses and their associated pointers. 

# inc lude <stdio.h> 

main ( ) 

i n t  U = 3; 
i n t  v; 
i n t  *pu; / *  po in te r  t o  an i n t e g e r  * /  
i n t  *pv; / *  po in te r  t o  an i n t e g e r  * /  

pu = &U; / *  assign address o f  U t o  pu * /  
v = *pu; / *  assign value o f  U t o  v * /  
pv = &v; / *  assign address o f  v t o  pv * /  

p r i n t f ( " \ n u = % d  &u=%X pu=%X *pu=%d', U, &U, pu, *pu);  

p r i n t f ( " \ n \ n v = % d  &v=%X pv=%x *pv=%d", V, &v, pv, *pv) ;  

} 

Note that pu is a pointer to U, and pv is a pointer to v. Therefore pu represents the address of U, and pv represents the 
address of v. (Pointer declarations will be discussed in the next section.) 

Execution of this program results in the following output. 

U=3 &u=FBE pu=F8E *pu=3 

v=3 &v=F8C pv=F8C *pv=3 

In the first line, we see that U represents the value 3, as specified in the declaration statement. The address of U is 
determined automatically by the compiler as F8E (hexadecimal). The pointer pu is assigned this value; hence, pu also 
represents the (hexadecimal) address F8E. Finally, the value to which pu points (i.e., the value stored in the memory cell 
whose address is F8E) is 3, as expected. 

Similarly, the second line shows that v also represents the value 3. This is expected, since we have assigned the 
value *pu to v. The address of v, and hence the value of pv, is F8C. Notice that U and v have different addresses. And 
finally, we see that the value to which pv points is 3, as expected. 

The relationships between pu and U, and pv and v, are shown in Fig. 10.2. Note that the memory locations of the 
pointer variables (i.e., address EC7 for pu, and EC5 for pv) are not displayed by the program. 

F8E 3 

F8C b 3 

Fig. 10.2 
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The unary operators & and * are members of the same precedence group as the other unary operators, i.e., 
-, ++, - -,!, s i z e o f  and ( type) ,  which were presented in Chap. 3. Remember that this group of operators 
has a higher precedence than the groups containing the arithmetic operators, and that the associativity of the 
unary operators is right to left (see Appendix C). 

The address operator (a) must act upon operands that are associated with unique addresses, such as 
ordinary variables or single array elements. Thus the address operator cannot act upon arithmetic 
expressions, such as 2 * ( U  + v ) .  

The indirection operator (*) can only act upon operands that are pointers (e.g., pointer variables). 
However, if pv points to v (i.e., pv = &v), then an expression such as *pv can be used interchangeably with 
its corresponding variable v. Thus, an indirect reference (e.g., *pv) can appear in place of an ordinary 
variable (e.g., v) within a more complicated expression. 

EXAMPLE 10.2 Consider the simple C program shown below. 

# inc lude  <s td io .h>  

main ( ) 

i n t  u l ,  u2; 
i n t  v = 3; 

i n t  *pv; / *  pv p o i n t s  t o  v * /  

U1 = 2 * ( v  + 5 ) ;  / *  ord inary  expression * /  

PV = av; 
u2 = 2 * ( *pv + 5 ) ;  / *  equiva lent  expression * /  

p r i n t f ( " \ n u l = % d  u2=%dn, u l ,  u 2 ) ;  

1 

This program involves the use of two integer expressions. The first, 2 * (v  + 5),is an ordinary arithmetic expression 
whereas the second, 2 * ( *pv + 5 ) , involves the use of a pointer. The expressions are equivalent, since v and *pv each 
represent the same integer value. 

The following output is generated when the program is executed. 

ul=16  u2=16 

An indirect reference can also appear on the left side of an assignment statement. This provides another 
method for assigning a value to a variable or an array element. 

EXAMPLE 10.3 A simple C program is shown below. 

#include <s td io .h>  

main ( ) 

{ 
i n t  v = 3; 
i n t  *pv; 

pv = &v; / *  pv po in ts  t o  v * /  
p r i n t f  ( I' \n*pv=%d v=%d", *pv, v )  ; 

*pv = 0; / *  r e s e t  v i n d i r e c t l y  * /  
p r i n t f ( " \ n \ n * p v = % d  v=%d", *pv, v ) ;  

1 
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The program begins by assigning an initial value of 3 to the integer variable v ,  and then assigns the address of v to the 
pointer variable pv. Thus, pv becomes a pointer to v. The expression *pv therefore represents the value 3. The first 
p r i n t f  statement is intended to illustrate this by displaying the current values of *pv and v. 

Following the first p r i n t f  statement, the value of *pv is reset to 0. Therefore, v will be reassigned the value 0. 

This is illustrated by the second p r i n t f  statement, which causes the new values of *pv and v to be displayed. 
When the program is executed, the following output is generated. 

*pv=3 v=3 

*pv=o v=o 

Thus, the value of v has been altered by assigning a new value to *pv. 

Pointer variables can point to numeric or character variables, arrays, hnctions or other pointer variables. 
(They can also point to certain other data structures that will be discussed later in this book.) Thus, a pointer 
variable can be assigned the address of an ordinary variable (e.g., pv = &v). Also, a pointer variable can be 
assigned the value of another pointer variable (e.g., pv = px), provided both pointer variables point to data 
items of the same type. Moreover, a pointer variable can be assigned a null (zero) value, as explained in Sec. 
10.2 below. On the other hand, ordinary variables cannot be assigned arbitrary addresses (i.e., an expression 
such as &x cannot appear on the left-hand side of an assignment statement). 

Section 10.5 presents additional information concerning those operations that can be carried out on 
pointers. 

10.2 POINTER DECLARATIONS 

Pointer variables, like all other variables, must be declared before they may be used in a C program. The 
interpretation of a pointer declaration differs, however, from the interpretation of other variable declarations. 
When a pointer variable is declared, the variable name must be preceded by an asterisk (*). This identifies the 
fact that the variable is a pointer. The data type that appears in the declaration refers to the object of the 
pointer, i.e., the data item that is stored in the address represented by the pointer, rather than the pointer itself. 

Thus, a pointer declaration may be written in general terms as 

data- type *ptvar; 

where ptvar is the name of the pointer variable, and data-type refers to the data type of the pointer’s 
object. Remember that an asterisk must precede ptvar. 

EXAMPLE 10.4 A C program contains the following declarations. 

f l o a t  U,  v; 
f l o a t  *pv; 

The first line declares U and v to be floating-point variables. The second line declares pv to be a pointer variable whose 
object is a floating-point quantity; i.e., pv points to a floating-point quantity. Note that pv represents an address, not a 
floating-point quantity. (Some additional pointer declarations are shown in Examples 10.1 to 10.3.) 

Within a variable declaration, a pointer variable can be initialized by assigning it the address of another 
variable. Remember that the variable whose address is assigned to the pointer variable must have been 
declared earlier in the program. 

EXAMPLE 10.5 A C program contains the following declarations. 

f l o a t  U,  v; 
f l o a t  *pv = &v; 
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The variables U and v are declared to be floating-point variables and pv is declared as a pointer variable that points to a 
floating-point quantity, as in Example 10.4. In addition, the address of v is initially assigned to pv. 

This terminology can be confusing. Remember that these declarations are equivalent to writing 

f l o a t  U ,  v; / *  f l o a t i n g - p o i n t  v a r i a b l e  dec lara t ions  * /  
f l o a t  *pv; / *  p o i n t e r  v a r i a b l e  d e c l a r a t i o n  * /  
. . . . .  
pv = 8v;  / *  assign v ' s  address t o  pv * /  

Note that an asterisk is not included in the assignment statement. 

In general, it does not make sense to assign an integer value to a pointer variable. An exception, however, 
is an assignment of 0, which is sometimes used to indicate some special condition. In such situations the 
recommended programming practice is to define a symbolic constant NULL which represents 0, and to use 
NULL in the pointer initialization. This practice emphasizes the fact that the zero assignment represents a 
special situation. 

EXAMPLE 10.6 A C program contains the following symbolic constant definitions and array declarations. 

#def ine  NULL 0 

f l o a t  U ,  v;  
f l o a t  *pv = NULL; 

The variables U and v are declared to be floating-point variables and pv is declared as a pointer variable that points to a 
floating-point quantity. In addition, pv is initially assigned a value of 0 to indicate some special condition dictated by the 
logic of the program (which is not shown in this example). The use of the symbolic constant NULL suggests that this 
initial assignment is something other than the assignment of an ordinary integer value. 

We will see other kinds of pointer declarations later in this chapter. 

10.3 PASSING POINTERS TO A FUNCTION 

Pointers are often passed to a function as arguments. This allows data items within the calling portion of the 
program to be accessed by the function, altered within the function, and then returned to the calling portion of 
the program in altered form. We refer to this use of pointers as passing arguments by reference (or by address 
or by location),in contrast to passing arguments by value as discussed in Chap. 7. 

When an argument is passed by value, the data item is copied to the function. Thus, any alteration made 
to the data item within the function is not carried over into the calling routine (see Sec. 7.5). When an 
argument is passed by reference, however (i.e., when a pointer is passed to a function), the address of a data 
item is passed to the function. The contents of that address can be accessed freely, either within the function 
or within the calling routine. Moreover, any change that is made to the data item (i.e., to the contents of the 
address) will be recognized in both the function and the calling routine. Thus, the use of a pointer as a 
function argument permits the corresponding data item to be altered globally from within the function. 

When pointers are used as arguments to a function, some care is required with the formal argument 
declarations within the function. Specifically, formal pointer arguments that must each be preceded by an 
asterisk. Function prototypes are written in the same manner. If a function declaration does not include 
variable names, the data type of each pointer argument must be followed by an asterisk. The use of pointer 
arguments is illustrated in the following example. 

EXAMPLE 10.7 Here is a simple C program that illustrates the difference between ordinary arguments, which are 
passed by value, and pointer arguments, which are passed by reference. 
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# inc lude Cstdio.  h> 

vo id  f u n c t l ( i n t  U, i n t  v ) ;  / *  f u n c t i o n  pro to type * /  
vo id  f u n c t 2 ( i n t  *pu, i n t  *pv);  / *  f u n c t i o n  pro to type * /  

main ( ) 

{ 
i n t  U = 1; 
i n t  v = 3; 

p r i n t f ( " \ n B e f o r e  c a l l i n g  f u n c t l :  u=%d v=%d", U, v ) ;  
f u n c t l  (u, v ) ;  
p r i n t f ( " \ n A f t e r  c a l l i n g  f u n c t l :  u=%d v=%d", U, v ) ;  

p r i n t f  ( ' \n \nBefore  c a l l i n g  func t2 :  u=%d v=%d" U, v )  ; 
func t2(&uJ &v);  
p r i n t f ( " \ n A f t e r  c a l l i n g  funct2:  u=%d v=%d", U, v ) ;  

1 

v o i d  f u n c t l ( i n t  U, i n t  v )  

U = 0; 
v = 0; 
p r i n t f ( " \ n W i t h i n  f u n c t l :  u=%d v=%d", U, v ) ;  
re tu rn ;  

1 

vo id  f u n c t 2 ( i n t  *pu, i n t  *pv) 

{ 
*pu = 0; 

*pv = 0; 
p r i n t f ( " \ n W i t h i n  func t2 :  *pu=%d *pv=%d" , *pu , *pv) ; 
r e t u r n; 

1 

This program contains two functions, called f u n c t l  and funct2.  The first function, f u n c t l ,  receives two integer 
variables as arguments. These variables are originally assigned the values 1 and 3, respectively. The values are then 
changed, to 0, 0 within f u n c t l .  The new values are not recognized in main, however, because the arguments were 
passed by value, and any changes to the arguments are local to the function in which the changes occur. 

Now consider the second function, f unct2. This function receives two pointers to integer variables as its arguments. 
The arguments are identified as pointers by the indirection operators (i.e., the asterisks) that appear in the argument 
declaration. In addition, the argument declaration indicates that the pointers contain the addresses of integer quantities. 

Within funct2,  the contents of the pointer addresses are reassigned the values 0, 0. Since the addresses are 
recognized in both f unc t2  and main, the reassigned values will be recognized within main after the call to func t2 .  
Therefore, the integer variables U and v will have their values changed from 1, 3 to 0,O. 

The six p r i n t f  statements illustrate the values of U and v, and their associated values *pu and *pv, within main and 
within the two functions. Hence, the following output is generated when the program is executed. 

Before c a l l i n g  f u n c t l :  u=l  v=3 
Wi th in  f u n c t l :  u=o v=o 
A f t e r  c a l l i n g  f u n c t l :  u=l  v=3 
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Before c a l l i n g  funct2 :  u=l  v=3 
W i t h i n  funct2 :  *pu=o *pv=o 
A f t e r  c a l l i n g  funct2 :  u=O v=O 

Notice that the values of U and v are unchanged within main &er the call to f unct 1, though the values of these variables 
are changed within main after the call to funct2.  Thus, the output illustrates the local nature of the alterations within 
f unct1, and the global nature of the alterations within f unct2. 

This example contains some additional features that should be pointed out. Notice, for example, the function 
prototype 

vo id  f u n c t 2 ( i n t  *pu, i n t  *pv);  

The items in parentheses identify the arguments as pointers to integer quantities. The pointer variables, pu and pv, have 
not been declared elsewhere in main. This is permitted in the function prototype, however, because pu and pv are dummy 
arguments rather than actual arguments. The function declaration could also have been written without any variable 
names, as 

vo id  f u n c t 2 ( i n t  * )  i n t  * ) ;  

Now consider the declaration of the formal arguments within the first line o f f  unct2, i.e., 

vo id  f u n c t 2 ( i n t  *pu, i n t  *pv) 

The formal arguments pu and pv are consistent with the dummy arguments in the function prototype. In this example the 
corresponding variable names are the same, though this is generally not required. 

Finally, notice the manner in which U and v are accessed within f unct2, i.e., 

*pu = 0; 

*pv = 0; 

Thus, U and v are accessed indirectly, by referencing the contents of the addresses represented by the pointers pu and pv. 
This is necessary because the variables U and v are not recognized as such within f unct2. 

We have already mentioned the fact that an array name is actually a pointer to the array; i.e., the array 
name represents the address of the first element in the array (see Sec. 9.3). Therefore, an array name is treated 
as a pointer when it is passed to a function. However, it is not necessary to precede the array name with an 
ampersand within the function call. 

An array name that appears as a formal argument within a function definition can be declared either as a 
pointer or as an array of unspecified size, as shown in Sec. 9.3. The choice is a matter of personal preference, 
though it will often be determined by the manner in which the individual array elements are accessed within 
the function (more about this in the next section). 

EXAMPLE 10.8 Analyzing a Line of Text Suppose we wish to analyze a line of text by examining each of the 
characters and determinining into which of several different categories it falls. In particular, suppose we count the number 
of vowels, consonants, digits, whitespace characters and “other” characters (punctuation, operators, brackets, etc.) This 
can easily be accomplished by reading in a line of text, storing it in a one-dimensional character array, and then analyzing 
the individual array elements. An appropriate counter will be incremented for each character. The value of each counter 
(number of vowels, number of consonants, etc.) can then be written out after all of the characters have been analyzed. 

Let us write a complete C program that will carry out such an analysis. To do so, we first define the following 
symbols. 

l i n e  = an 80-element character array containing the line of text 

vowels = an integer counter indicating the number of vowels 

consonants = an integer counter indicating the number of consonants 

d i g i t s  = an integer counter indicating the number of digits 
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whitespc = an integer counter indicating the number of whitespace characters (blank spaces or tabs) 

other = an integer counter indicating the number of characters that do not fall into any of the preceding 
categories 

Notice that newline characters are not included in the "whitespace" category, because there can be no newline characters 
within a single line of text. 

We will structure the program so that the line of text is read into the main portion of the program, and then passed to 
a function where it will be analyzed. The function will return the value of each counter after all of the characters have 
been analyzed. The results of the analysis (i.e., the value of each counter) will then be displayed from the main portion of 
the program. 

The actual analysis can be carried out by creating a loop to examine each of the characters. Within the loop we first 
convert each character that is a letter to uppercase. This avoids the need to distinguish between uppercase and lowercase 
letters. We can then categorize the character using a nest of i f  - else statements. Once the proper category has been 
identified, the corresponding counter is incremented. The entire process is repeated until the string termination character 
( \ O )  has been found. 

The complete C program is shown below. 

/ *  count the number o f  vowels, consonants, d i g i t s ,  whitespace characters, 

and ' "other"  characters i n  a l i n e  o f  t e x t  * /  

# include <stdio.h> 
#include <ctype.h> 

/ *  f unc t i on  prototype * /  
vo id  scan-line(char l i n e [ ] ,  i n t  *pv, i n t  *pc, i n t  *pd, i n t  *pw, i n t  *PO) ;  

main( ) 

t 
char l i n e [ 8 0 ] ;  / *  l i n e  o f  t e x t  * /  
i n t  vowels = 0 ;  / *  vowel counter * /  
i n t  consonants = 0; / *  consonant counter * /  
i n t  d i g i t s  = 0; / *  d i g i t  counter * /  
i n t  whitespc = 0; / *  whitespace counter * /  
i n t  other = 0; / *  remaining character counter * /  

p r i n t f  ( "Enter  a l i n e  o f  t e x t  below: \ n u ) ;  
scanf ( \ n ]  ', l i n e )  ; 

scan- l ine( l ine,  &vowels, &consonants, &d ig i t s ,  &whitespc, &other) ;  

p r i n t f ( " \ n N o .  o f  vowels: %dn, vowels); 
p r i n t f ( ' \ nNo .  o f  consonants: %d", consonants); 
p r i n t f  ( "I\nNo. o f  d i g i t s :  %d", d i g i t s ) ;  
p r i n t f ( " \ n N o .  o f  whitespace characters: %d", whitespc); 
p r i n t f ( ' \ nNo .  o f  other characters: %d", o ther) ;  

1 

void scan-line(char l i n e [ ] ,  i n t  *pv, i n t  *pc, i n t  *pd, i n t  *pw, i n t  *PO) 

/ *  analyze the characters i n  a l i n e  o f  t e x t  * /  

1 
char c; / *  uppercase character * /  
i n t  count = 0; / *  character counter * /  
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w h i l e  ( ( c  = t o u p p e r ( l i n e [ c o u n t ] ) )  I =  ' \ O n )  { 

if( c  == ' A I  1 1  c == ' E '  1 1  c == ' I '  1 1  c == '0' 1 1  c == 'U') 
++ *pv; / *  vowel * I  

e l s e  i f  ( c  >= ' A '  && c <= ' Z ' )  

++ *pc; / *  consonant * I  
e l s e  i f  ( c  >= '0'&& c <= '9') 

++ *pd; / *  d i g i t  * /  
Ie l s e  i f  ( c  == 1 1  c == ' \ t ' )  

++ *pw; I *  whitespace * I  
e l s e  

++ *po; I *  other  * /  

++count; 

1 
r e t u r n ;  

1 

Notice the function prototype for scan-line that appears at the beginning of the program. In particular, notice the 
use of the vo id  data type, and notice the manner in which the argument data types are specified. Note the distinction 
between the array argument and the remaining pointer arguments. 

Also, observe the manner in which the actual arguments are written in the call to scan-line. The array argument, 
l i n e ,  is not preceded by an ampersand, since arrays are, by definition, pointers. Each of the remaining arguments must be 
preceded by an ampersand so that its address, rather than its value, is passed to the function. 

Now consider the function scan-line. All of the formal arguments, including l i n e ,  are pointers. However, l i n e  
is declared as an array whose size is unspecified, whereas the remaining arguments are specifically declared as pointers. It 
is possible (and quite common) to declare l i n e  as a pointer rather than an array. Thus, the first line of scan-line could 
have been written as 

vo id  scan-l ine(char * l i n e ,  i n t  *pv, i n t  *pc, i n t  *pd, i n t  *pw, i n t  *PO) 

rather than as shown in the program listing. To be consistent, the corresponding function prototype would then be written 
in a similar manner. 

Incrementing the various counters also requires some explanation. First, note that it is the content of each address 
(i.e., the object of each pointer) that is incremented. Second, note that each indirection expression (e.g., *pv) is preceded 
by the unary operator ++. Since the unary operators are evaluated from right to left, we are assured that the content of 
each address, rather than the address itself, is increased in value. 

Here is a typical dialog that might be encountered when the program is executed. (The line of text entered by the 
user is underlined.) 

Enter  a l i n e  o f  t e x t  below: 
Personal  computers w i t h  memories i n  excess o f  4096 KB are  now a u i t e  common. 

The corresponding output is: 

No. o f  vowels: 23 
No. o f  consonants: 35 
No. o f  d i g i t s :  4 

No. o f  whitespace characters :  12 
No. o f  o ther  characters:  1 

Thus, we see that this particular line of text contains 23 vowels, 35 consonants, 4 digits, 12 whitespace characters (blank 
spaces), and one other character (the period). 
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Recall that the scanf function requires those arguments that are ordinary variables to be preceded by 
ampersands (see Sec. 4.4). However, array names are exempted from this requirement. This may have 
seemed somewhat mysterious back in Chap. 4 but it should now make sense, considering what we now know 
about array names and addresses. Thus, the scanf function requires that the addresses of the data items being 
entered into the computer's memory be specified. The ampersands provide a means for accessing the 
addresses of ordinary single-valued variables. Ampersands are not required with array names, since array 
names themselves represent addresses. 

EXAMPLE 10.9 The skeletal structure of a C program is shown below (repeated from Example 4.5). 

# inc lude  <stdio.h> 

main ( ) 

1 
char i t e m [ 2 0 ] ;  
i n t  p a r t  no; 
f l o a t  cost ;  

scanf ( " % s  %d %f " , i t em,  &partno, &cost ) ;  

. . . . .  
1 

The scanf statement causes a character string, an integer quantity and a floating-point quantity to be entered into the 
computer and stored in the addresses associated with item, partno and cost,  respectively. Since i t e m  is the name of an 
array, it is understood to represent an address. Hence, i t e m  need not (cannot) be preceded by an ampersand within the 
scanf statement. On the other hand, partno and cost are conventional variables. Therefore they must be written as 
&partno and &cost within the scanf statement. The ampersands are required in order to access the addresses of these 
variables rather than their values. 

If the scanf function is used to enter a single array element rather than an entire array, the name of the array element 
must be preceded by an ampersand, as shown below (from Example 9.8)l 

scanf ( "%f",& l i s t [ count] ) ; 

It is possible to pass aportion of an array, rather than an entire array, to a function. To do so, the address 
of the first array element to be passed must be specified as an argument. The remainder of the array, starting 
with the specified array element, will then be passed to the function. 

EXAMPLE 10.10 The skeletal structure of a C program is shown below. 

#include <s td io .h>  

void process(f1oat  z [ ] ) ;  

main ( ) 

1 
f l o a t  z[ lOO];  

/ *  e n t e r  values f o r  elements o f  z * /  

process(&z[50 ] ) ;  

. . . . .  
1 



290 POINTERS [CHAP. 10 

vo id  process(f1oat  f [ ] )  

/ *  process elements o f  f * /  

r e t u r n; 

1 

Within main, z is declared to be a 100-element, floating-point array. After the elements of z are entered into the 
computer, the address of z[501 (i.e., &z[ 501) is passed to the function process. Hence, the last 50 elements of z (i.e., 
the elements z [501 through z [991) will be available to process. 

In the next section we will see that the address of z [501 can be written as z + 50 rather than &z [ 501. Therefore, 
the call to process can appear as process(z + 50) rather than process(&z[50 ] ) , as shown above. Either method 
may be used, depending on the programmer’s preferences. 

Within process, the corresponding array is referred to as f. This array is declared to be a floating-point array whose 
size is unspecified. Thus, the fact that the function receives only a portion of z is immaterial; if all of the array elements 
are altered within process, only the last 50 elements will be affected within main. 

Within process, it may be desirable to declare the formal argument f as a pointer to a floating-point quantity rather 
than an array name. Thus, the outline of process may be written as 

vo id  process(f1oat  * f )  

{ 
, . . . .  
/ *  process elements o f  f * /  

r e t u r n ;  

1 

Notice the difference between the formal argument declarations in the two function outlines. Both declarations are valid. 

A function can also return a pointer to the calling portion of the program. To do so, the function 
definition and any corresponding function declarations must indicate that the function will return a pointer. 
This is accomplished by preceding the function name by an asterisk. The asterisk must appear in both the 
function definition and the function declarations. 

EXAMPLE 10.11 Shown below is the skeletal structure of a C program that transfers a double-precision array to a 
function and returns a pointer to one of the array elements. 

##include < s t d i o .  h> 

double *scan(double z [ ] ) ;  

main ( ) 

double z [  1001; / *  a r r a y  d e c l a r a t i o n  * /  
double *pz; / *  p o i n t e r  d e c l a r a t i o n  * /  

/ *  e n t e r  values f o r  elements o f  z * /  

pz = scan(z ) ;  
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, double *scan(double f [ ] )  

{ 
double *p f ;  / *  p o i n t e r  d e c l a r a t i o n  * /  

/ *  process elements o f  f * /  

p f =  . . . . . ;  
r e t u r n ( p f ) ;  

Within main we see that z is declared to be a 100-element, double-precision array, and pz is a pointer to a double- 
precision quantity. We also see a declaration for the function scan. Note that scan will accept a double-precision array 
as an argument, and it will return a pointer to (i.e., the address of) a double-precision quantity. The asterisk preceding the 
function name (*scan) indicates that the function will return a pointer. 

Within the function definition, the first line indicates that scan accepts one formal parameter (f [ 1) and returns a 
pointer to a double-precision quantity. The formal parameter will be a one-dimensional, double-precision array. The 
outline suggests that the address of one of the array elements is assigned to the pointer p f  during or &er the processing of 
the array elements. This address is then returned to main, where it is assigned to the pointer variable pz. 

10.4 POINTERS AND ONE-DIMENSIONAL ARRAYS 

Recall that an array name is really a pointer to the first element in the array. Therefore, if x is a one- 
dimensional array, then the address of the first array element can be expressed as either &x [01 or simply as x. 
Moreover, the address of the second array element can be written as either &x [ 1 ] or as ( x  + 1 ), and so on. 
In general, the address of array element (i + 1) can be expressed as either &x [ i]or as ( x  + i). Thus we 
have two different ways to write the address of any array element: We can write the actual array element, 
preceded by an ampersand; or we can write an expression in which the subscript is added to the array name. 

In the latter case, it should be understood that we are dealing with a very special and unusual type of 
expression. In the expression ( x  + i),for example, x represents an address, whereas i represents an integer 
quantity. Moreover, x is the name of an array whose elements may be characters, integers, floating-point 
quantities, etc. (though all of the the array elements must be of the same data type). Thus, we are not simply 
adding numerical values. Rather, we are specifLing an address that is a certain number of memory cells 
beyond the address of the first array element. Or, in simpler terms, we are specifying a location that is i array 
elements beyond the frrst. Hence, the expression ( x  + i) is a symbolic representation for an address 
specification rather than an arithmetic expression. 

Recall that the number of memory cells associated with an array element will depend upon the data type 
of the array as well as the particular computer’s architecture. With some computers, for example, an integer 
quantity occupies two bytes (two memory cells), a floating-point quantity requires four bytes, and a double- 
precision quantity requires eight bytes of memory. With other computers, an integer quantity may require 
four bytes, and floating-point and double-precision quantities may each require eight bytes. And so on. 

When writing the address of an array element in the form ( x  + i) ,however, you need not be concerned 
with the number of memory cells associated with each type of array element; the C compiler adjusts for this 
automatically. You must specifL only the address of the fwst array element (i.e., the name of the array) and 
the number of array elements beyond the first (i.e., a value for the subscript). The value of i is sometimes 
referred to as an ocffset when used in this manner. 

Since &x [ i] and ( x  + i)both represent the address of the ith element of x, it would seem reasonable 
that x [ i]and * ( x  + i)both represent the contents of that address, i.e., the value of the ith element of x. 
This is indeed the case. The two terms are interchangeable. Hence, either term can be used in any particular 
application. The choice depends upon your individual preferences. 
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EXAMPLE 10.12 Here is a simple program that illustrates the relationship between array elements and their addresses. 

# i n c l u d e  < s t d i o . h >  

m a i n ( ) 

t 
s t a t i c  i n t  x [ l O ]  = (10, 1 1 ,  12, 13, 14, 15, 16, 17, 18, 19); 

i n t  i ;  

f o r  ( i = 0; i <= 9; ++i) { 
/ *  d i s p l a y  a n  a r r a y  e l e m e n t  * /  
p r i n t f ( " \ n i =  %d x [ i ] =  %d * ( x + i ) =  % d n ,  i, x [ i ] ,  * ( x + i ) ) ;  

/ *  d i s p l a y  t h e  c o r r e s p o n d i n g  a r r a y  a d d r e s s  * /  
p r i n t f  ( "  & x [ i ] =  %X x + i =  % X " ,  & x [ i ] ,  ( x + i ) ) ;  

1 
1 

This program defines a one-dimensional, 10-element integer array x,  whose elements are assigned the values 10, 11, . . . , 
19. The action portion of the program consists of a loop that displays the value and the corresponding address of each 
array element. Note that the value of each array element is specified in two different ways, as x[  i ] and as * ( x + i ) ,  in 
order to illustrate their equivalence. Similarly, the address of each array element is specified in two different ways, as 
&x[ i J and as ( x + i ),for the same reason. Therefore the value and the address of each array element should appear twice. 

Execution of this program results in the following output. 

i=0 x [ i ] =  10 * ( x + i ) =  10 & x [ i ] =  72 x + i =  72 
i= 1 x [ i ] =  1 1  * ( x + i ) =  1 1  & x [ i ] =  74 x + i =  74 
i =  2 x [ i ] =  12 * ( x + i ) =  12 & x [ i ] =  76 x + i =  76 

i=3 x [ i ] =  13 * ( x + i ) =  13 & x [ i ] =  78 x + i =  78 
i =  4 x [ i ] =  14 * ( x + i ) =  14 & x [ i ] =  7A x + i =  7A 

i=5 x [ i ] =  15 * ( x + i ) =  15 & x [ i ] =  7C x + i =  7C 

i= 6 x [ i ] =  16 * ( x + i ) =  16 & x [ i ] =  7E x + i =  7E 

i=7 x [ i ] =  17 * ( x + i ) =  17 & x [ i ] =  80 x + i =  80 
i =  8 x [ i ] =  18 * ( x + i ) =  18 & x [ i ] =  82 x + i =  82 

i=9 x [ i ] =  19 * ( x + i ) =  19 & x [ i ] =  84 x + i =  84 

The output clearly illustrates the distinction between x [ i],which represents the value of the ith array element, and &x [ i], 
which represents its address. Moreover, we see that the value of the ith array element can be represented by either x [ i ] or 
* ( x + i ) , and the address of the ith element can be represented by either &x[ i] or x + i .  Thus we see another comparison, 
between * ( x + i ) , which also represents the value of the ith element, and x + i , which also represents its address. 

Notice, for example, that the first array element (corresponding to i = 0) has been assigned a value of 10 and a 
(hexadecimal) address of 72. The second array element has a value of 11 and an address of 74, etc. Thus, memory 
location 72 will contain the integer value 10, location 74 will contain 11, and so on. 

You should understand that these addresses are assigned automatically by the compiler. 

When assigning a value to an array element such as x [ i],the left side of the assignment statement may 
be written as either x [ i] or as * ( x + i). Thus, a value may be assigned directly to an array element, or it 
may be assigned to the memory area whose address is that of the array element. 

On the other hand, it issometimes necessary to assign an address to an identifier. In such situations, a 
pointer variable must appear on the left side of the assignment statement. It is not possible to assign an 
arbitrary address to an array name or to an array element. Thus, expressions such as x, ( x  + i) and &x [ i] 
cannot appear on the left side of an assignment statement. Moreover, the address of an array cannot arbitrarily 
be altered, so that expressions such as ++x are not permitted. 
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EXAMPLE 10.13 Consider the skeletal structure of the C program shown below. 

#include <stdio.h> 


main ( ) 

int line [801 ; 
int *pl; 


/ *  assign values * /  
line[2] = line[l]; 
line[2] = *(line + 1); 
*(line + 2) = line[l]; 
*(line + 2) = *(line + 1); 

I *  assign addresses * /  
pl = &line[l]; 
pl = line + 1 ;  

Each of the first four assignment statements assigns the value of the second array element (i.e, line [ 1 1) to the third 
array element (line [21). Thus, the four statements are all equivalent. An experienced programmer would probably 
choose either the first or the fourth, however, in order that the notation be consistent. 

The last two assignment statements each assigns the address of the second array element to the pointer pl. We might 
choose to do this in an actual program if it were necessary to “tag” the address of line [ 1 ] for some reason. 

Note that the address of one array element cannot be assigned to some other array element. Thus we cannot write a 
statement such as 

&line[2] = &line[l]; 

On the other hand, we can assign the value of one array element to another through a pointer if we wish, e.g., 

pl = &line[l]; 
line[2] = *pl; 

or 

p l  = line + 1 ;  
*(line + 2) = *pl; 

If a numerical array is defined as a pointer variable, the array elements cannot be assigned initial values. 
Therefore, a conventional array definition is required if initial values will be assigned to the elements of a 
numerical array. However, a character-typepointer variable can be assigned an entire string as a part of the 
variable declaration. Thus, a string can conveniently be represented by either a one-dimensional character 
array or a character pointer. 

EXAMPLE 10.14 Shown below is a simple C program in which two strings are represented as one-dimensional 
character arrays. 

#include <stdio.h> 


char x[] = “This string is declared externally\n\n”; 
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main ( ) 

{ 
s t a t i c  char y [ ]  = " T h i s  s t r i n g  i s  declared w i t h i n  main"; 

p r i n t f ("%s", x)  ; 
p r i n t f ( "%s", y )  ; 

The first string is assigned to the external array x[ 1.  The second string is assigned to the static array y[  1, which is 
defined within main. This second definition occurs within a function; therefore y[  ] must be defined as a s t a t i c  array so 
that it can be initialized. 

Here is a different version of the same program. The strings are now assigned to pointer variables rather than to one- 
dimensional arrays. 

# inc lude  <stdio.h> 

char *x = " T h i s  s t r i n g  i s  declared e x t e r n a l l y \ n \ n " ;  

main ( ) 

i 
char *y = "Th is  s t r i n g  i s  declared w i t h i n  main";  

p r i n t f ( " % s " ,  x ) ;  
p r i n t f ( "%s", y)  ; 

1 

The external pointer variable x points to the beginning of the first string, whereas the pointer variable y, declared within 
main, points to the beginning of the second string. Note that y can now be initialized without being declared s t a t i c .  

Execution of either program produces the following output. 

T h i s  s t r i n g  is declared e x t e r n a l l y  

T h i s  s t r i n g  i s  declared w i t h i n  main 

Syntactically, of course, it is possible to declare a pointer variable s t a t i c .  However, there is no reason to do so in this 
example. 

10.5 DYNAMIC MEMORY ALLOCATION 

Since an array name is actually a pointer to the first element within the array, it should be possible to define 
the array as a pointer variable rather than as a conventional array. Syntactically, the two definitions are 
equivalent. However, a conventional array definition results in a fixed block of memory being reserved at the 
beginning of program execution, whereas this does not occur if the array is represented in terms of a pointer 
variable. Therefore, the use of a pointer variable to represent an array requires some type of initial memory 
assignment before the array elements are processed. This is known as cjlnamic memory allocation. Generally, 
the malloc library function is used for this purpose, as illustrated in the next example. 

EXAMPLE 10.15 Suppose x is a one-dimensional, 10-element array of integers. It is possible to define x as a pointer 
variable rather than an array. Thus, we can write 

i n t  *x; 

rather than 

i n t  x [ l O ] ;  
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or 

#define SIZE 10 

int x[SIZE]; 


However, x is not automatically assigned a memory block when it is defined as a pointer variable, though a block of 
memory large enough to store 10 integer quantities will be reserved in advance when x is defined as an array. 

To assign sufficient memory for x, we can make use of the library function malloc, as follows. 

x = (int * )  malloc(l0 * sizeof(int)); 

This function reserves a block of memory whose size (in bytes) is equivalent to 10 integer quantities. As written, the 
function returns a pointer to an integer. This pointer indicates the beginning of the memory block. In general, the type 
cast preceding malloc must be consistent with the data type of the pointer variable. Thus, if y were defined as a pointer 
to a double-precision quantity and we wanted enough memory to store 10 double-precision quantities, we would write 

y = (double * )  malloc(l0 * sizeof(doub1e)); 

Ifthe declaration is to include the assignment of initial values, however, then x must be defned as an array rather 
than a pointer variable. For example, 

int x[lO] = (1, 2, 3, 4, 5 ,  6,  7, 8, 9, 10); 

or 

int x[] = (1, 2, 3, 4, 5 ,  6 ,  7, 8, 9, 10); 

When programming in C, it is not unusual to use pointer expressions rather than references to individual 
array elements. The resulting programs may appear strange at first, though they are straightforward once you 
become comfortable accessing values that are stored in specified addresses. Generally, a small amount of 
practice is all that is required. 

EXAMPLE 10.16 Reordering a List of Numbers To illustrate the use of pointers with dynamic memory allocation, 
let us once again consider the problem of reordering a list of integers, as described in Example 9.13. Now, however, we 
will utilize pointer expressions to access numerical values rather than refer explicitly to individual array elements. In all 
other respects, we present a program that is identical to that given in Example 9.13. 

Here is the complete C program. 

/ *  reorder a one-dimensional, integer array from smallest to largest, 
using pointer notation * /  

#include cstdio. h> 

#include <stdlib.h> 


void reorder(int n, int *x); 


main ( ) 

c 
int i, n, *x; 


/ *  read in a value for n * /  
printf('\nHow many numbers will be entered? " ) ;  
scanf ("d" an) ; 
printf ("\n"); 


/ *  allocate memory * /  
x = (int * )  malloc(n * sizeof(int)); 
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/ *  read i n  the  l i s t  of numbers * /  
f o r  ( i  = 0; i < n; ++i) { 

p r i n t f ( " i  = %d x = ' I ,  i + 1 ) ;  

scanf ( " % d ", x + 1); 

1 

/ *  reorder a l l  a r ray  elements * /  
reorder ( n ,  x )  ; 

/ *  disp lay  the  reordered list of numbers * /  
pr in t f (" \n \nReordered  L i s t  of Numbers:\n\n"); 
f o r  ( i= 0; i c n ;  ++i) 

p r i n t f ( " i  = %d x = %d\n" ,  i + 1 ,  * ( x  + 1 ) ) ;  

void r eo rde r ( in t  n ,  i n t  * x )  / *  rearrange the l i s t  of numbers * /  

{ 
i n t  i, item, temp; 

f o r  (i tem = 0; item < n - 1 ;  ++item) 

/ *  f i n d  the  smallest  of a l l  remaining elements * /  
f o r  ( i  = item + 1 ;  i c n ;  ++i) 

i f  ( * ( x  + i) c * ( x  + i t em) )  { 

/ *  interchange two elements * /  
temp = * ( x  + i t em) ;  
* ( x  + item) = * ( x  + i) ;  
* ( x  + i) = temp; 

1 
r e tu rn ;  

1 

In this program, the integer array is defined as a pointer to an integer. Memory is initially assigned to the pointer 
variable via the malloc library function. Elsewhere in the program, pointer notation is used to process the individual 
array elements. For example, the function prototype now specifies that the second argument is a pointer to an integer 
quantity rather than an integer array. This pointer will identify the beginning of the integer array. 

We also see that the scanf function now specifies the address of the ith element as x + i rather than &x [i]. 
Similarly, the p r i n t f  function now represents the value of the ith element as * ( x  + i)rather than x [ i]. The call to 
reorder, however, is the same as in the earlier progrm-namely, reorder ( n  , x )  ;. 

Within the function reorder, we see that the second formal argument is now defined as a pointer variable rather than 
an integer array. This is consistent with the function prototype. Even more pronounced, however, are the differences in 
the i f  statement. In particular, notice that each reference to an array element is now written as the contents of an address. 
Thus x [ i]is now written as * ( x  + i ) ,  and x [ item] is now written as * ( x  + i tem). This compound i f  statement can 
be viewed as a conditional interchange involving the contents of two different addresses, rather than an interchange of two 
different elements within a conventional array. 

You should compare this program with that shown in Example 9.13 in order to appreciate the differences. Both 
programs will generate identical results with the same input data. However, you should understand the syntactic 
diffenences between the two programs. 

An important advantage of dynamic memory allocation is the ability to reserve as much memory as may 
be required during program execution, and then release this memory when it is no longer needed. Moreover, 
this process may be repeated many times during execution of a program. The library hnctions malloc and 
f r e e  are used for these purposes, as illustrated in Example 11.32 (see Sec. 11.6). 
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10.6 OPERATIONS ON POINTERS 

In Sec. 10.4 we saw that an integer value can be added to an array name in order to access an individual array 
element. The integer value is interpreted as an array subscript; it represents the location of the desired array 
element relative to the first element in the array. This works because all of the array elements are of the same 
data type, and therefore each array element occupies the same number of memory cells (i.e., the same number 
of bytes or words). The actual number of memory cells that separate the two array elements will depend on 
the data type of the array, though this is taken care of automatically by the compiler and therefore need not 
concern you directly. 

This concept can be extended to pointer variables in general. Thus, an integer value can be added to or 
subtracted from a pointer variable, though the resulting expression must be interpreted very carefully. 
Suppose, for example, that px is a pointer variable that represents the address of some variable x. We can 
write expressions such as ++px, - - px, ( px + 3 ) ,  ( px + i),and ( px - i),where i is an integer variable. 
Each expression will represent an address that is located some distance from the original address represented 
by px. The exact distance will be the product of the integer quantity and the number of bytes or words 
associated with the data item to which px points. Suppose, for example, that px points to an integer quantity, 
and each integer quantity requires two bytes of memory. Then the expression (px  + 3)  will result in an 
address that is six bytes beyond the integer to which px  points, as illustrated in Fig. 10.3. It should be 
understood, however, that this new address will not necessarily represent the address of another data item, 
particularly if the data items stored between the two addresses involve different data types. 

1 2 b y t e s /PX 

( PX+3 1 
Fig. 10.3 

EXAMPLE 10.17 Consider the simple C program shown below. 

#include <s td io .h>  

main ( ) 

{ 
i n t  *px; / *  p o i n t e r  t o  an i n t e g e r  * /  
i n t  i = 1;  
f l o a t  f = 0 . 3 ;  
double d = 0.005; 
char c = I * ' ;  

px = & i ;  
p r i n t f  ( "Va lues:  i=%if=%f d=%f c=%c\n\n",  i,f ,  d,  c ) ;  
p r in t f ( "Addresses:  &i=%X &f=%X &d=%X &c=%X\n\n",  &i,&f, &d,  &c) ;  
p r i n t f ( " P o i n t e r  values: px=%X px + l = % X  px + 2=%X px + 3=%X" 

px, px + 1 ,  px + 2 ,  px + 3 ) ;  

This program displays the values and addresses associated with four different types of variables: i,an integer variable; f, 
a floating-point variable; d, a double-precision variable; and c, a character variable. The program also makes use of a 
pointer variable, px, which represents the address of i .  The values of px, px + 1, px + 2 and px + 3 are also 
displayed, so that they may be compared with the addresses of the different variables. 

Execution of the program results in the following output. 
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Values: i = l  f=0.300000 d=0.005000 c=* 

Addresses : & i = l l 7 E  &f=1180 & d = l l 8 6  &c=l18E 

P o i n t e r  values:  px=117E px + 1=1180 px + 2=1182 px + 3=1184 

The first line simply displays the values of the variables, and the second line displays their addresses, as assigned by the 
compiler. Notice that the number of bytes associated with each data item is different. Thus, the integer value represented 
by irequires two bytes (specifically, addresses 117E and 11 7F). The floating-point value represented by f appears to be 
assigned six bytes (addresses 1180 through 11 85), though only four bytes (addresses 1180 through 11 83) are actually 
used for this purpose. (Compilers allocate memory space according to their own rules.) However, eight bytes are required 
for the double-precision value represented by d (addresses 1 186 through 1 180). And finally, the character represented by 
c begins in address 118E. Only one byte is required to store this single character, though the output does not indicate the 
number of bytes between this character and the next data item. 

Now consider the third line of output, which contains the addresses represented by the pointer expressions. Clearly, 
px represents the address of i(i.e., 1 17E). This comes as no surprise, since this address was explicitly assigned to px by 
the expression px = & i .  However, px + 1 moves over only two bytes, to 1180,and px + 2 moves over another two 
bytes, to 1 182, and so on. The reason is that px points to an integer quantity, and integer quantities each require two bytes 
with this particular C compiler. Therefore, when integer constants are added to px, the constants are interpreted in terms 
of two-byte multiples. 

If px is defined as a pointer to a different type of object (e.g., a character or a floating-point quantity), then any 
integer constant that is added to or subtracted from the pointer will be interpreted differently. In particular, each integer 
value will represent an equivalent number of individual bytes if px points to a character, or a corresponding number of 
four-byte multiples if px points to a floating-point quantity. You are encouraged to verify this on your own. 

One pointer variable can be subtracted from another provided both variables point to elements of the same 
array. The resulting value indicates the number of words or bytes separating the corresponding array 
elements. 

EXAMPLE 10.18 In the program shown below, two different pointer variables point to the first and the last elements of 
an integer array. 

# inc lude  <s td io .h>  

main ( ) 

i n t  *px, *py; / *  i n t e g e r  po in ters  * /  
s t a t i c  i n t  a [ 6 ]  = ( 1 ,  2 ,  3 ,  4 ,  5 ,  6 ) ;  

px = &a[O];  

PY = W 5 1 ;  
p r i n t f  ( 'px=%X py=%X", px, py) ; 
p r i n t f ( " \ n \ n p y  - px=%X*, py - p x ) ;  

In particular, the pointer variable px points to a [  01, and py points to a [  51. The difference, py - px, should be 5, since 
a [ 51 is the fifth element beyond a [01. 

Execution of the program results in the following output. 

px=52 py=5C 

py - px=5 

The first line indicates that the address of a [0) is 52, and the address of a [51 is 5C. The difference between these two 
hexadecimal numbers is 10 (when converted to decimal). Thus, a [ 51 is stored at an address which is 10 bytes beyond the 
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address of a [ 01. Since each integer quantity occupies two bytes, we would expect the difference between py and px to be 
1012 = 5 .  The second line of output confirms this value. 

Pointer variables can be compared provided both variables are of the same data type. Such comparisons 
can be useful when both pointer variables point to elements of the same array. The comparisons can test for 
either equality or inequality. Moreover, a pointer variable can be compared with zero (which is usually 
expressed as NULL when used in this manner, as explained in Sec. 10.2). 

EXAMPLE 10.19 Suppose px and py are pointer variables that point to elements of the same array. Several logical 
expressions involving these two variables are shown below. All of the expressions are syntactically correct. 

(PX I =  PY) 

(px == NULL) 

These expressions can be used as any other logical expression. For example, 

if(PX < PY) 
p r i n t f  ( " p x  < py" ) ; 

else 

p r i n t f  ( "px >= py" ) ; 

Expressions such as (px c py) indicate whether or not the element associated with px is ranked ahead of the element 
associated with py (i.e., whether or not the subscript associated with *px is less than the subscript associated with *py). 

You should understand that the operations discussed previously are the onZy operations that can be carried 
out on pointers. These permissible operations are summarized below. 

1. A pointer variable can be assigned the address of an ordinary variable (e.g., pv = &v). 

2. A pointer variable can be assigned the value of another pointer variable (e.g., pv = px) provided both 
pointers point to objects of the same data type . 

3. A pointer variable can be assigned a null (zero) value (e.g., pv = NULL, where NULL is a symbolic 
constant that represents the value 0). 

4. An integer quantity can be added to or subtracted fkom a pointer variable (e.g., pv + 3, ++pv, etc.) 

5. One pointer variable can be subtracted fiom another provided both pointers point to elements of the same 
array. 

6. Two pointer variables can be compared provided both pointers point to objects of the same data type. 

Other arithmetic operations on pointers are not allowed. Thus, a pointer variable cannot be multiplied by 
a constant; two pointer variables cannot be added; and so on. Also, you are again reminded that an ordinary 
variable cannot be assigned an arbitrary address (i.e., an expression such as &x cannot appear on the left side 
of an assignment statement). 

10.7 POINTERS AND MULTIDIMENSIONAL ARRAYS 

Since a one-dimensional array can be represented in terms of a pointer (the array name) and an offset (the 
subscript), it is reasonable to expect that a multidimensional array can also be represented with an equivalent 
pointer notation. This is indeed the case. A two-dimensional array, for example, is actually a collection of 
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one-dimensional arrays. Therefore, we can define a two-dimensional array as a pointer to a group of 
contiguous one-dimensional arrays. Thus, a two-dimensional array declaration can be written as 

data- type ( *ptvar) [ expression 21 ; 

rather than 

data- type array[  expression I] [ expression 21 ; 

This concept can be generalized to higher-dimensional arrays; that is, 

data- type ( *ptvar)[ expression 21 [ expression 31 . . . [ expression n]  ; 

replaces 

data- type array[ expression 1) [ expression 21 . . [ expression n]  ; 

In these declarations data-type refers to the data type of the array, ptvar is the name of the pointer 
variable, array is the corresponding array name, and expression 7 ,  expression 2, . . ., 
expression n are positive-valued integer expressions that indicate the maximum number of array elements 
associated with each subscript. 

Notice the parentheses that surround the array name and the preceding asterisk in the pointer version of 
each declaration. These parentheses must be present. Without them we would be defining an array of pointers 
rather than a pointer to a group of arrays, since these particular symbols (Le., the square brackets and the 
asterisk) would normally be evaluated right to left. We will say more about this in the next section. 

EXAMPLE 10.20 Suppose x is a two-dimensional integer array having 10 rows and 20 columns. We can declare x as 

int (*x)[20]; 


rather than 

int x [ 1 0 ] [ 2 0 ] ;  

In the first declaration, x is defined to be a pointer to a group of contiguous, one-dimensional, 20-element integer arrays. 
Thus, x points to the first 20-element array, which is actually the first row (i.e., row 0) of the original two-dimensional 
array. Similarly, ( x  + 1 ) points to the second 20-element array, which is the second row (row 1) of the original two- 
dimensional array, and so on, as illustrated in Fig. 10.4. 

-EEEEE 
1st one-dimensional array 

2nd one-dimensional array 

10th one-dimensional array 

Fig. 10.4 
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Now consider a three-dimensional floating-point array t . This array can be defined as 

float (*t)[20][30]; 


rather than 

float t[10][20][30]; 


In the first declaration, t is defined as a pointer to a group of contiguous two-dimensional, 20 x 30 floating-point arrays. 
Hence, t points to the first 20 x 30 array, (t + 1 ) points to the second 20 x 30 array, and so on. 

An individual array element within a multidimensional array can be accessed by the repeated use of the 
indirection operator. Usually, however, this procedure is more awkward than the conventional method for 
accessing an array element. The following example illustrates the use of the indirection operator. 

EXAMPLE 10.21 Suppose x is a two-dimensional integer array having 10 rows and 20 columns, as declared in the 
previous example. The item in row 2, column 5 can be accessed by writing either 

or 

* ( * ( x  + 2 )  + 5 )  

The second form requires some explanation. First, note that (x + 2 )  is a pointer to row 2. Therefore the object of this 
pointer, * ( x  + 2),refers to the entire row. Since row 2 is a one-dimensional array, * ( x  + 2 )  is actually a pointer to the 
first element in row 2. We now add 5 to this pointer. Hence, ( *  (x + 2 )  + 5 )  is a pointer to element 5 (i.e., the sixth 
element) in row 2. The object of this pointer, * ( * (x + 2 )  + 5),therefore refers to the item in column 5 of row 2, which 
is x [ 21 [ 51. These relationships are illustrated in Fig. 10.5. 

X I 
1st one-dimensional array 

o( + 1) b 

( x  + 2) b 
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Programs that make use of multidimensional arrays can be written in several different ways. In particular, 
there are different ways to define the arrays, and different ways to process the individual array elements. The 
choice of one method over another is often a matter of personal preference. In applications involving 
numerical arrays, it is often easier to define the arrays in the conventional manner, thus avoiding any possible 
subtleties associated with initial memory assignments. The following example, however, illustrates the use of 
pointer notation to process multidimensional numerical arrays. 

EXAMPLE 10.22 Adding Two Tables of Numbers In Example 9.19 we developed a C program to calculate the sum 
of the corresponding elements of two tables of integers. That program required three separate two-dimensional arrays, 
which were defined and processed in the conventional manner. Here is a variation of the program, in which each two-
dimensional array is defined as an array of pointers to a set of one-dimensional integer arrays. 

/ *  c a l c u l a t e  the  sum o f  t he  elements i n  two tab les  o f  i n tege rs  * /  

/ *  each 2-dimensional  a r ray  i s  processed as an a r ray  
o f  p o i n t e r s  t o  a se t  o f  1-dimensional  i n tege r  a r rays  * /  

# inc lude <s td io .h> 
# inc lude <s td l i b .h>  

#def ine  MAXROWS 20 

/ *  f u n c t i o n  pro to types  * /  
v o i d  read input  ( i n t  *a[MAXROWS], i n t  nrows, i n t  nco ls ) ;  
v o i d  computesums(int *a[MAXROWS], i n t  *b[MAXROWS], 

i n t  *c[MAXROWS], i n t  nrows, i n t  nco ls ) ;  
v o i d  w r i t e o u t p u t ( i n t  *c[MAXROWS], i n t  nrows, i n t  nco ls ) ;  

main( ) 

{ 
i n t  row, nrows, ncols;  

/ *  p o i n t e r  d e f i n i t i o n s  * /  
i n t  *a[MAXROWS], *b[MAXROWS], *c[MAXROWS]; 

p r i n t f  ( "How many rows? ' I )  ; 
scanf ( "%d", &nrows) ; 
p r i n t f ( " H o w  many columns? " ) ;  

scanf ( "%d" ,  &nco ls ) ;  

/ *  a l l o c a t e  i n i t i a l  memory * /  
f o r  (row = 0; row < nrows; ++row) { 

a[row] = ( i n t  * )  mal loc (nco ls  * s i z e o f ( i n t ) ) ;  
b [ row]  = ( i n t  * )  malloc (nco ls  * s i z e o f ( i n t ) ) ;  
c [  row] = ( i n t  * )  malloc (nco ls  * s i zeo f  ( i n t ) )  ; 

1 

p r i n t f ( " \ n \ n F i r s t  t a b l e : \ n " ) ;  
read input (a ,  nrows, nco ls ) ;  

p r i n t f ( " \ n \ n S e c o n d  t a b l e : \ n " ) ;  
read input (b ,  nrows, nco ls ) ;  

computesums(a, b, c ,  nrows, nco ls ) ;  

p r i n t f  ("\n\nSums o f  t he  elements: \ n \ n " )  ; 
w r i t e o u t p u t ( c ,  nrows, nco ls ) ;  

1 
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v o i d  r e a d i n p u t ( i n t  *a[MAXROWS], i n t  m, i n t  n )  
/ *  read i n  a t a b l e  o f  i n tege rs  * /  

{ 
i n t  row, c o l ;  

f o r  (row = 0; row < m; ++row) { 
p r i n t f ( ” \ n E n t e r  da ta  f o r  row no. %2d\nn, row + 1);  

f o r  ( c o l  = 0; c o l  < n; ++col) 
scanf (n%dn,  ( * ( a  + row) + c o l ) ) ;  

1 
re tu rn ;  

1 

v o i d  computesums(int *a[MAXROWS], i n t  *b[MAXROWS], i n t  *c[MAXROWS], i n t  m, i n t  n )  
/ *  add the  elements o f  two in tege r  tab les  * /  

i n t  row, c o l ;  

f o r  (row = 0; row < m; ++row) 
f o r  ( c o l  = 0; c o l  < n; ++col)  

* ( * ( c  + row) + c o l )  = * ( * ( a  + row) + c o l )  + * ( * ( b  + row) + c o l ) ;  
r e t u r n ;  

v o i d  w r i t e o u t p u t ( i n t  *a[MAXROWS], i n t  m, i n t  n) 
/ *  w r i t e  ou t  a t a b l e  o f  i n tege rs  * /  

{ 
i n t  row, c o l ;  

f o r  (row = 0; row < m; ++row) { 
f o r  ( c o l  = 0; c o l  < n; ++col) 

p r i n t f ( ” % 4 d u ,  * ( * ( a  + row) + c o l ) ) ;  
p r i n t f  ( ‘I \nn) ; 

} 
re tu rn ;  

In this program a, b and c are each defined as an array of pointers to integers. Each array has a maximum of MAXROWS 
elements. The function prototypes and the formal argument declarations within the subordinate functions also represent 
the arrays in this manner. 

Since each element of a, b and c is a pointer, we must provide each pointer with enough memory for each row of 
integer quantities, using the malloc function as described in Sec. 10.5. These memory allocations appear in main, after 
the values for nrows and nco ls  have been entered. Consider the first memory allocation; i.e., 

a[row] = ( i n t  * )  malloc(nco1s * s i z e o f ( i n t ) ) ;  

In this statement a[01 points to the the first row. Similarly, a[ 1 ] points to the second row, a [ 21 points to the third row, 
and so on. Thus, each array element points to a block of memory large enough to store one row of integer quantities 
(ncols integer quantities). Similar memory allocations are written for the other two arrays. 

The individual array elements are processed by repeated use of the indirection operator. In readinput, for example, 
each array element is referenced as 
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s c a n f ( " % d " ,  ( * ( a  + row) + c o l ) ) ;  

Similarly, the addition of the array elements within computesums is written as 

* ( * ( c  + row) + c o l )  = * ( * ( a  + row) + c o l )  + * ( * ( b  + row) + c o l ) ;  

and the first p r i n t f  statement within wr i teoutput  is written as 

p r i n t f ( " % 4 d N ,  * ( * ( a  + row) + c o l ) ) ;  

We could, of course, have used the more conventional notation within the functions. Thus, in readinput we could 
have written 

scanf ( "%d", a [  row] [ c o l ]  ) ; 

instead of 

s c a n f ( " % d " ,  ( * ( a  + row) + c o l ) ) ;  

Similarly, in computesums we could have written 

c [ r o w ] [ c o l ]  = a [ r o w ] [ c o l ]  + b [ r o w ] [ c o l ] ;  

instead of 

* ( * ( c  + row) + c o l )  = * ( * ( a  + row) + c o l  + * ( * ( b  + row + c o l ) ;  

and in wr i teoutput  we could have written 

p r i n t f ( " % 4 d n y  a [ r o w J [ c o l ] ) ;  

rather than 

p r i n t f ( " % 4 d " ,  * ( * ( a  + row) + c o l ) ) ;  

This program will generate output identical to that shown in Example 9.19 when executed with the same input data. 

10.8 ARRAYS OF POINTERS 

A multidimensional array can be expressed in terms of an array of pointers rather than a pointer to a group of 
contiguous arrays. In such situations the newly defined array will have one less dimension than the original 
multidimensional array. Each pointer will indicate the beginning of a separate (n- 1)-dimensional array. 

In general terms, a two-dimensional array can be defined as a one-dimensional array of pointers by 
writing 

data - type *array[ expression 7 )  ; 

rather than the conventional array definition, 

data - type array[  expression 7 ] [ expression 21 ; 

Similarly, an n-dimensional array can be defined as an (n - 1)-dimensional array of pointers by writing 

data-  type *array[ expression 7 1  [ expression 2) . . . [ expression n- 71  ; 

rather than 

data- type array[  expression I ] [ expression 21 . . . [ expression n]  ; 
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In these declarations data - type refers to the data type of the original n-dimensional array, array is the array 
name, and expression I ,  expression 2, . . ., expression n are positive-valued integer 
expressions that indicate the maximum number of elements associated with each subscript. 

Notice that the array name and its preceding asterisk are not enclosed in parentheses in this type of 
declaration. (Compare carehlly with the pointer declarations presented in the last section.) Thus, a right-to- 
left rule first associates the pairs of square brackets with array, defining the named object as an array. The 
preceding asterisk then establishes that the array will contain pointers. 

Moreover, note that the Zast (i.e., the rightmost) expression is omitted when defining an array of pointers, 
whereas thefirst (i.e., the leftmost) expression is omitted when defining a pointer to a group of arrays. (Again, 
compare carefully with the declarations presented in the last section.) You should understand the distinction 
between this type of declaration and that presented in the last section. 

When an n-dimensional array is expressed in this manner, an individual array element within the n-
dimensional array can be accessed by a single use of the indirection operator. The following example 
illustrates how this is done. 

EXAMPLE 10.23 Suppose x is a two-dimensional integer array having 10 rows and 20 columns, as in Example 10.20. 
We can define x as a one-dimensional array of pointers by writing 

int * x [ l O ] ;  

Hence, x [  01 points to the beginning of the first row, x [  1 ] points to the beginning of the second row, and so on. Note that 
the number of elements within each row is not explicitly specified. 

X [ O l  1st one-dimensional array 

x i 1 1  2nd one-dimensional array 

b 

x [ 2 1  3rd one-dimensional array 

* ( x i 2 1  + 5 )  

m m m m m 

x [ 9 1  10th one-dimensional array 

Fig. 10.6 
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An individual array element, such as x[  21 [ 51, can be accessed by writing 

In this expression, x [ 21 is a pointw t9 the first element in row 2, so that ( x [ 2 J + 5) points to element 5 (actually, the 
sixth element) within row 2. The object of this pointer, * ( x [ 2 J + 5 ) , therefore refers to x[  2)  [51. These relationships 
are illustrated in Fig. 10.6. 

Now consider a three-dimensional floating-point array t. Suppose the dimensionality o f t  is 10 x 20 x 30. This 
array can be expressed as a two-dimensional array of pointers by writing 

f l o a t  * t [ 1 0 ] [ 2 0 ] ;  

Therefore we have 200 pointers (10 rows, 20 columns), each pointing to a one-dimensional array. 
An individual array element, such as t [21 [31 (51, can be accessed by writing 

In this expression, t [21 [ 31 is a pointer to the first element in the one-dimensional array represented by t [ 21 [31. Hence, 
( t [ 21 [ 31 + 5) points to element 5 (the sixth element) within this array. The object of this pointer, * ( t [ 21 [31 + 5), 
therefore represents t [ 21 [ 3)  [ 51. This situation is directly analogous to the two-dimensional case described above. 

EXAMPLE 10.24 Adding Two Tables of Numbers Here is yet another version of the programs presented in 
Examples 9.19 and 10.22, which calculate the sum of the corresponding elements of two tables of integers. Now each 
two-dimensional array is represented as an array of pointers to one-dimensional arrays. Each one-dimensional array will 
correspond to one row within the original two-dimensional array. 

/ *  c a l c u l a t e  t h e  sum o f  t h e  elements i n  two t a b l e s  o f  i n t e g e r s  * /  

/ *  each 2-d imensional  a r r a y  i s  represented as an a r r a y  o f  p o i n t e r s  
each p o i n t e r  i n d i c a t e s  a row i n  t h e  o r i g i n a l  2-d imensional  a r r a y  * /  

# inc lude <std io .h> 

# inc lude < s t d l i b . h >  

#def ine  MAXROWS 20 
#def ine  MAXCOLS 30 

/ *  f u n c t i o n  pro to types  * /  
v o i d  r e a d i n p u t ( i n t  *a[MAXROWS], i n t  nrows, i n t  n c o l s ) ;  
v o i d  computesums(int *a[MAXROWS], i n t  *b[MAXROWS], 

i n t  *c[MAXROWS], i n t  nrows, i n t  n c o l s ) ;  
v o i d  w r i t e o u t p u t ( i n t  *c[MAXROWS], i n t  nrows, i n t  n c o l s ) ;  

main( ) 

i n t  row, nrows, nco ls ;  

/ *  a r r a y  d e f i n i t i o n s  * /  
i n t  *a[MAXROWS], *b[MAXROWS], *c[MAXROWS]; 

p r i n t f  ( “How many rows? ‘ I )  ; 
scanf ( ”%d”,  &nrows) ; 
p r i n t f ( ” H o w  many columns? ” ) ;  
scanf ( “%d” ,  &ncols)  ; 
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/ *  a l l o c a t e  i n i t i a l  memory * /  
f o r  (row = 0; row <= nrows; row++) { 

a[row] = ( i n t  *)  malloc(nco1s * s i z e o f ( i n t ) ) ;  
b[row] = ( i n t  * )  malloc(nco1s * s i z e o f ( i n t ) ) ;  
c[row] = ( i n t  * )  malloc(nco1s * s i z e o f ( i n t ) ) ;  

1 
p r i n t f ( " \ n \ n F i r s t  t a b l e : \ n " ) ;  
readinput(a,  nrows, nco ls ) ;  

p r in t f ( " \n \nSecond t a b l e : \ n " ) ;  
readinput(b,  nrows, nco ls ) ;  

computesums(a, b, c, nrows, ncols) ;  

p r in t f ( " \n \nSums o f  the elements: \n\n") ;  
wr i teoutpu t (c ,  nrows, ncols) ;  

1 

vo id  read inpu t ( i n t  *a[MAXROWS], i n t  m, i n t  n)  
/ *  read i n  a t a b l e  o f  in tegers  * /  

{ 
i n t  row, co l ;  

f o r  (row = 0; row < m; ++row) { 

p r i n t f ( " \ n E n t e r  data f o r  row no. %2d\n", row + 1 ) ;  

f o r  ( c o l  = 0; c o l  < n; ++col) 
scanf("%d",  (a[row] + c o l ) ) ;  

1 
r e t u r n ; 

1 

vo id  computesums(int *a[MAXROWS], i n t  *b[MAXROWS], 
i n t  *c[MAXROWS], i n t  m, i n t  n)  

/ *  add the elements o f  two in teger  tab les  * /  

{ 
i n t  row, co l ;  

f o r  (row = 0; row < m; ++row) 
f o r  ( c o l  = 0; c o l  < n; ++col) 

*(c[rOw] + c o l )  = *(a[row] + c o l )  + * (b [ row]  + c o l ) ;  
r e t u r n; 

vo id  w r i t e o u t p u t ( i n t  *a[MAXROWS], i n t  m, i n t  n)  
/ *  w r i t e  out a t a b l e  o f  in tegers  * /  

{ 
i n t  row, co l ;  

f o r  (row = 0; row < m; ++row) { 
f o r  ( c o l  = 0; c o l  < n; ++col) 

p r i n t f  ("%%4duu, * (a [  row] + c o l ) )  ; 
p r i n t f  ( " \ n u ) ;  

1 
re tu rn ;  

1 
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Notice that a, b and c are now defined as one-dimensional arrays of pointers. Each array will contain MAXROWS 
elements (i.e., MAXROWS pointers). Each array element will point to a one-dimensional array of integers. The function 
prototypes and the formal argument declarations within the subordinate functions also represent the arrays in this manner. 

Each one-dimensional array that is the object of a pointer (i.e., each row within each of the tables) must be allocated 
an initial block of memory. The malloc function accomplishes this. For example, each row within the first table is 
allocated an initial block of memory in the following manner. 

a[row] = (int * )  malloc(nco1s * sizeof(int)); 

This statement associates a block of memory large enough to store ncols integer quantities with each pointer (i.e., with 
each element of a). Similar memory allocations are written for b and c. These malloc statements are placed within a for 
loop in order to allocate a block of memory for each of the nonzero rows within the three tables. 

Notice the way the individual array elements are processed, using a combination of array and pointer notation. For 
example, in readinput each array element is now referenced as 

scanf("%d", (atrow] + col)); 

Similarly, in computesums and writeoutput the individual array elements are referenced as 

*(c[row] + col) = *(a[row] t col) + *(b[row] + col); 

and 

printf("%4dU, *(a[row] + col)); 

respectively. These statements could also have been written using conventional two-dimensional array notation. 
This program, as well as the program presented in Example 10.22, will generate output that is identical to that shown 

in Example 9.19 when executed with the same input data. You may wish to veriQ this on your own. If this problem were 
being programmed from scratch, however, the conventional approach shown in Example 9.19, using two-dimensional 
arrays, would most likely be chosen. 

Pointer arrays offer a particularly convenient method for storing strings. In this situation, each array 
element is a character-type pointer that indicates the beginning of a separate string. Thus, an n-element array 
can point to n different strings. Each individual string can be accessed by referring to its corresponding 
pointer. 

EXAMPLE 10.25 Suppose the following strings are to be stored in a character-type array 

P A C I F I C  

ATLANTIC 
I N D I A N  

CAR IBBEAN 

BERING 
BLACK 

RED 

NORTH 

BALTIC 

CASPIAN 

These strings can be stored in a two-dimensional character-type array; e.g., 

char names[l0][12]; 


Note that names contains 10 rows, to accommodate the 10 strings. Each row must be large enough to store at least 10 
characters, since CARIBBEAN contains 9 letters plus the null character ( \ O )  at the end. To provide for larger strings, we are 
allowing each row to contain asmany as 12 characters. 
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A better way to do this is to define a 10-element array of pointers; i.e. 

char *names[lO]; 

Thus, names[01 will point to PACIFIC, names[ 1 ] will point to ATLANTIC, and so on. Note that it is not necessary to 
include a maximum string size within the array declaration. However, a specified amount of memory will have to be 
allocated for each string later in the program, e.g., 

names[i ]  = (char * )  m a l l o c ( l 2  * s i zeo f ( cha r ) ) ;  

Just as individual strings can be accessed by referring to the corresponding pointer (i.e., the corresponding 
array element), so can individual string elements be accessed through the use of the indirection operator. For 
example, * ( * (names + 2 )  + 3) refers to the fourth character (Le., character number 3) in the third string 
(row number 2) of the array names, as defmed in the preceding example. 

Rearrangement of the strings can be accomplished simply by reassigning the pointers (i.e., by reassigning 
the elements in an array of pointers). The strings themselves need not be moved. 

EXAMPLE 10.26 Reordering a List of Strings Consider once again the problem of entering a list of strings into the 
computer and rearranging them into alphabetical order. We saw one approach to this problem in Example 9.20, where the 
list of strings was stored in a two-dimensional array. Let us now approach this problem using a one-dimensional array of 
pointers, where each pointer indicates the beginning of a string. The string interchanges can now be carried out simply by 
reassigning the pointers, as required. 

The complete program is presented below. 

/ *  s o r t  a l i s t  o f  s t r i n g s  i n t o  a lphabe t i ca l  order using an a r ray  o f  p o i n t e r s  * /  

# inc lude <s td io .h> 
# inc lude <s td l i b .h>  
# inc lude <s t r ing .h> 

v o i d  r e o r d e r ( i n t  n, char * x [ ] ) ;  

main( ) 

{ 
i n t  i,n = 0; 
char * x [ l O ] ;  

p r i n t f ( " E n t e r  each s t r i n g  on a separate l i n e  be low\n \n" ) ;  
p r i n t f ( " T y p e  \ 'END\ '  when f i n i s h e d \ n \ n " ) ;  

/ *  read i n  the  l i s t  o f  s t r i n g s  * /  

do { 
/ *  a l l o c a t e  memory * /  
x [ n ]  = (char * )  ma l l oc ( l2  * s i z e o f ( c h a r ) ) ;  

p r i n t f ( ' s t r i n g  %d: ', n + 1) ;  
scanf ( "%s" ,  x [ n ] ) ;  

1 
wh i le  ( s t  rcmp ( x  [ n++] , 'END" ) ) ; 

/ *  reorder  the  l i s t  o f  s t r i n g s  * /  
r e o r d e r ( - - n ,  x ) ;  

/ *  d i s p l a y  the  reordered l i s t  o f  s t r i n g s  * /  
p r i n t f ( " \ n \nReorde red  L i s t  o f  S t r i n g s : \ n " ) ;  
f o r  ( i  = 0; i< n; + + i )  

p r i n t f ( " \ n s t r i n g  %d: % s * ,  i+ 1, x [ i ] ) ;  
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vo id  r e o r d e r ( i n t  n ,  char * x [ ] )  / *  rearrange the  l i s t  o f  s t r i n g s  * /  

{ 
char *temp; 
i n t  i,item;  

f o r  ( i t e m  = 0; i t e m  < n - 1; ++item) 

/ *  f i n d  the  lowest  of a l l  remaining s t r i n g s  * /  
f o r  ( i  = i t e m  + 1;  i < n; + + i )  

i f  (s t rcmp(x [ i tem] ,  x [ i ] )  > 0) { 

/ *  interchange the  two s t r i n g s  * /  
temp = item]; 
x [ i t e m ]  = x [ i ] ;  
x [ i ]  = temp; 

1 
r e t u r n ;  

The logic is esentially the same as that shown in Example 9.20, though the array containing the strings is now defined 
as an array of pointers. Notice that the second formal argument in the function reorder is declared in the same manner. 
Also, notice the string interchange routine (i.e., the i f  statement) within reorder.  It is now the pointers, not the actual 
strings, that are interchanged. Hence the library function strcpy, which was used in Example 9.20, is not required. The 
program will therefore run somewhat faster than the earlier version. 

Execution of this program will generate the same dialog as that shown in Example 9.20. 

If the elements of an array are string pointers, a set of initial values can be specified as a part of the array 
declaration. In such cases the initial values will be strings, where each string corresponds to a separate array 
element. Remember, however, that an array must be declared static if it is initialized within a function. 

An advantage to this scheme is that a fixed block of memory need not be reserved in advance, as is done 
when initializing a conventional array. Thus, if the initial declaration includes many strings and some of them 
are relatively short, there may be a substantial savings in memory allocation. Moreover, if some of the strings 
are particularly long, there is no need to worry about the possibility of exceeding some maximum specified 
string length (Le., the maximum number of characters per row). Arrays of this type are often referred to as 
ragged arrays. 

EXAMPLE 10.27 The following array declaration appears within a function. 

s t a t i c  char *names[lO] = { 

I'PACIFIC I' , 
"ATLANTIC", 

I' INDIAN", 
'CARIBBEAN', 

'I BERING 'I , 
'BLACKm, 
I' REDI' , 
" NORTH", 
"BALTIC", 
CASPIAN ' 

}; 

In this example, names is a 10-element array of pointers. Thus, the first array element (i.e., the first pointer) will point to 
PACIFIC, the second array element will point to ATLANTIC, and so on. 
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Notice that the array is declared as s t a t i c  so that it can be initialized within the function. If the array declaration 
were external to all program functions, the s t a t i c  storage class designation would not be necessary. 

Since the array declaration includes initial values, it is really not necessary to include an explicit size designation 
within the declaration. The size of the array will automatically be set equal to the number of strings that are present. 
Thus, the above declaration can be written as 

s t a t i c  char *names[] = { 
I"PACIFIC , 
"ATLANTIC", 

I' INDIAN", 
"CARIBBEAN"
j 

" BER I NG I" , 
"BLACK", 

"RED", 
" NORTH I" , 
"BALTIC", 
" CASP I AN I" 

}; 

It should be understood that the ragged-array concept refers only to the initialization of string arrays, not 
the assignment of individual strings that may be read into the computer via the scanf function. Thus, 
applications requiring that strings be read into the computer and then processed, as in Example 10.26, still 
require the allocation of a specified amount of memory for each array element. 

Initialized string values can be accessed by referring to their corresponding pointers (i.e., their 
corresponding array elements), in the usual manner. These pointers can be reassigned other string constants 
elsewhere in the program if necessary. 

EXAMPLE 10.28 Displaying the Day of the Year Let us develop a program that will accept three integer 
quantities, indicating the month, day and year, and then display the corresponding day of the week, the month, the day and 
the year in a more legible manner. For example, suppose we were to enter the date 5 24 1997; this would produce the 
output Saturday, May 24, 1997. Programs of this type are often used to display information that is stored in a 
computer's internal memory in an encoded format. 

Our basic strategy will be to enter a date into the computer, in the form month, day, year (mm dd y y y y ) ,  and then 
convert this date into the number of days relative to some base date. The day of the week corresponding to the specified 
date can then be determined quite easily, provided we know the day of the week corresponding to the base date. Let us 
arbitrarily choose Monday, January 1, 1900 as the base date. We will then convert any date beyond January I ,  1900 
(actually, any date between January 1, I900 and December 3 1,2099) into an equivalent day of the week. 

The computation can be carried out using the following empirical rules. 

1. Enter numerical values for the variables mm, dd and yy, which represent the month, day and year, respectively 
(e.g., 5 24 1997). 

2. Determine the approximate day of the current year, as 
ndays = ( long)  (30.42 * (mm - 1 ) )  + dd; 

3. If mm == 2 (February), increase the value of ndays by 1. 

4. If mm > 2 and mm < 8 (March, April, May, June or July), decrease the value of ndays by 1. 

5 .  Convert the year into the number of years beyond the base date; i.e., yy - = 1900. Then test for a leap year as 
follows: If ( yy % 4 )  == 0 and mm > 2, increase the value of ndays by 1. 

6. Determine the number of complete 4-year cycles beyond the base date as yy / 4. For each complete 4-year 
cycle, add 1461 to ndays. 

7. Determine the number of full years beyond the last complete 4-year cycle as yy % 4. For each full year, add 
365 to ndays. Then add 1, because the first year beyond a full 4-year cycle will be a leap year. 
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8. If ndays > 59 (i.e., if the date is any day beyond February 28, 1900), decrease the value of ndays by 1, 
because 1900 is not a leap year. (Note that the last year of each century is not a leap year, except those years 
that are evenly divisible by 400. Therefore 1900, the last year of the ninteenth century, is not a leap year, but 
2000, the last year of the twentieth century, is a leap year.) 

9. Determine the numerical day of the week corresponding to the specified date as day = (ndays % 7 ) .  

Note that day == 1 corresponds either to the base date, which is a Monday, or another date that also occurs on a 
Monday. Hence, day == 2 will refer to a Tuesday, day == 3 will refer to a Wednesday, . . . ,day == 6 will refer to a 
Saturday, and day == 0 will refer to a Sunday. 

Here is a complete function, called convert,  that carries out steps 2 through 9. Note that convert  accepts the 
integers mm, dd and yy as input parameters, and returns the integer quantity (ndays % 7) .  Also, notice that ndays and 
ncyc les are long integer variables, whereas all other variables are ordinary integers. 

i n t  c o n v e r t ( i n t  mm, i n t  dd, i n t  yy) / *  convert  date t o  numerical  day o f  week * /  

t 
l ong  ndays; / *  number o f  days from s t a r t  o f  1900 * /  
l ong  ncycles;  / *  number o f  4-year cyc les  beyond 1900 * I  
i n t  nyears; / *  number o f  years beyond l a s t  4-year cyc le  * /  
i n t  day; / *  day o f  week (0, 1, 2, 3, 4, 5 or 6 )  * /  

/ *  numerical  conversions * /  
yy - =  1900; 
ndays = ( l ong )  (30.42 * (mm - 1 ) )  + dd; / *  approximate day o f  year * /  

i f  (mm == 2 )  ++ndays; / *  ad jus t  f o r  February * /  
i f  ( ( m m  > 2 )  && ( m m  < 8 ) )  --ndays; / *  ad jus t  f o r  March - J u l y  * /  
i f  ( ( y y  % 4 == 0) && ( m m  > 2 ) )  ++ndays; / *  ad jus t  f o r  leap  year * /  

ncycles = yy / 4; / *  4-year cyc les  beyond 1900 * /  
ndays += ncycles * 1461; / *  add days f o r  4-year cyc les  * /  

nyears = yy % 4; / *  years beyond l a s t  4-year cyc le  * /  
i f  (nyears > 0) / *  add days f o r  y r s  beyond l a s t  4-year cyc le  * /  

ndays += 365 * nyears + 1; 

i f  (ndays > 59) --ndays; / *  ad jus t  f o r  1900 (NOT a l eap  year)  * /  

day = ndays % 7; 

re tu rn (day ) ;  

The names of the days of the week can be stored as strings in a 7-element array; i.e., 

s t a t i c  char *weekday[ ] = {"Sunday" "Monday" "Tuesday" "Wednesday", 
"Thursday", "F r iday " ,  "Saturday"} ;  

Each day corresponds to the value assigned to day, where day = (ndays % 7 ) .  The days begin with Sunday because 
Sunday corresponds to day == 0, as explained above. If the base date were not a Monday, this particular ordering of the 
days of the week would have to be changed. 

Similarly, the names of the months can be stored as strings in a 12-element array; i.e., 

s t a t i c  char *month[ ] = { "January" ,  "February",  "March", " A p r i l " ,  "May", "June", " J u l y " ,  
"August", "September", "October",  "November", "December"}; 

Each month corresponds to the value of mm - 1 
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Here is an entire C program that will carry out the conversion interactively. 

/ *  convert a numerical date (mm dd yyyy) i n t o  "day o f  week, month, day, year" 

(e.g., 5 24 1997 -> Saturday, May 24, 1997') * /  

#include <stdio.h> 

vo id read inpu t ( i n t  *pm, i n t  *pd, i n t  *py); / *  f unc t i on  prototype * /  
i n t  conve r t ( i n t  mm, i n t  dd, i n t  yy); / *  funct ion prototype * /  

main( ) 

{ 
i n t  mm, dd, yy; 
i n t  day-of-week; / *  day of the week (0 - >  Sunday, 

1 -> Monday, 
, . .  

6 -> Saturday) * /  

s t a t i c  char *weekday[] = {"Sunday", "Monday", YTuesday*, "Wednesday", 
"Thursday", "Friday',  'Saturday"}; 

s t a t i c  char *month[] = {"January', 'February', "March', " A p r i l ' ,  
"May", 'June", 'Ju ly" ,  'August", "September", 
"October", "November', "December"}; 

/ *  opening message * /  
p r i n t f ( " D a t e  Conversion Routine\nTo STOP, enter 0 0 O n ) ;  

readinput(&mm, &dd, &yy); 

/ *  convert date t o  numerical day o f  week * /  
whi le  (mm > 0) { 

day-of-week = convert(mm, dd, yy); 
p r i n t f ( " \ n % s ,  %s %d, %dN, weekday[day-of-week], month[mm-11, dd, yy);  

readinput(&mm, &dd, 8yy); 

} 
1 

vo id  read inpu t ( i n t  *pm, i n t  *pd, i n t  *py) / *  read i n  the numerical date * /  

{ 
p r i n t f ( " \ n \ n E n t e r  mm dd yyyy: " ) ;  

scanf("%d %d %d", pm, pd, py) ;  
re turn;  

} 

i n t  conve r t ( i n t  mm, i n t  dd, i n t  yy) / *  convert date t o  numerical day o f  week * /  

long ndays; / *  number o f  days from s t a r t  o f  1900 * /  
long ncycles; / *  number o f  4-year cycles beyond 1900 * /  
i n t  nyears; / *  number o f  years beyond l a s t  4-year cycle * /  
i n t  day; / *  day o f  week (0, 1, 2, 3, 4, 5 o r  6) * /  



3 14 PCiWTERS [CHAP. 10 

/ *  numerical  conversions * /  

yy -=  i300; 
ndays = ( long)  (30.42 * (m - 1 ) )  + dd; / *  approximate day o f  year * /  

i f  (mm == 2j ++days ;  / *  ad jus t  f o r  February * /  
i f  ( ( m m  > 2) && (mm < 8 ) )  --nciays; / *  ad jus t  f o r  March - J u l y  * /  
if( ( y y  % 4 == O j  && (mm > 2 ) )  ++ndays; / *  ad jus t  f o r  l eap  year * /  

-~ 

ncyc les  = yy / 4;  / *  4-year cyc les  beyond 1900 * /  
ndays += ncycles * 1461;- / *  add days f o r  4-year cyc les  * /  

nyears = yy % 4; / *  years beyond l a s t  4-year cyc le  * /  
i f  (nyears > 0) / * -add d%ys f o r  y r s  beyond l a s t  4 -year  cyc le  * /  

ndays += 365 * nyears + 1; 

i f  (ndays > 59) --ndays; / *  ad jus t  f o r  1900 (NOT a leap year)  * /  

day = ndays % 7; 

return!day);  

1 

This program includes a loop that repeatedly accepts a date in the form of three integers (i.e., mm dd yyyy) aiib returns 
the corresponding day and date in a more legible form. The program will continue to run until a value of 0 is entered for 
mm. Note that the prompt indicates that three zeros must be entered in order to stop the program execution; i.e., 0 0 0. 

Actually, however, the program only checks the value of mm. 
A typical interactive session is shown below. As usual, the user’s responses are underlined. 

Date Conversion Routine 
To STOP, en ter  0 0 0 

Enter  mm ad yyyy: 10 29 1929 

Tuesday, October 29, 1929 

Enter  mm dd yyyy: fi 1942 

Wednesday, August 15, 1945 

Enter  mm dd yyyy: L 2p 1969 

Sunday, J u l y  20, 1969 

Enter mm dd yyyy: 2 a 5997 

Saturday, May 24, 7297 

Enter  mm dd yyyy: 5 3p U Q 

Monday, August 30, 2010 

Enter  mm dd yyyy: 4 12 206Q 

Fr iday ,  A p r i l  12, 2069 

Enter  mm dd yyyy: Q Q Q 
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10.9 PASSING FUNCTIONS TO OTHER FUNCTIONS 

A pointer to a function can be passed to another function as an argument. This allows one function to be 
transferred to another, as though the first function were a variable. Let us refer to the first function as the 
guestfinction, and the second function as the hostfirnction. Thus, the guest is passed to the host, where it can 
be accessed. Successive calls to the host function can pass different pointers (i.e., different guest functions) to 
the host. 

When a host function accepts the name of a guest function as an argument, the formal argument 
declaration must identifL that argument as a pointer to the guest function. In its simplest form, the formal 
argument declaration can be written as 

data- type ( *  function-name) ( ) 

where data- type refers to the data type of the quantity returned by the guest and function-name is the 
name of the guest. The formal argument declaration can also be written as 

data-type ( *  function-name) ( type 7 ,  type 2, . . . ) 

or as 

data-type ( *  function-name) ( type 7 arg 7 ,  type 2 arg 2, . . . ) 

where type I , type 2, . . . refer to the data types of the arguments associated with the guest, and arg 
I , arg 2, . . . refer to the names of the arguments associated with the guest. 

The guest function can be accessed within the host by means of the indirection operator. To do so, the 
indirection operator must precede the guest function name (i.e., the formal argument). Both the indirection 
operator and the guest functioD name must be enclosed in parentheses; i.e., 

( *  function-name) (argument 1 ,  argument 2, . . . , argument n )  ; 

where argument I, argument 2, . . . , argument n refer to the arguments that are required in 
the function call. 

Now consider the function declaration for the host function. It may be written as 

funct- data- type funct-name( arg-data-type ( * )  ( type 7 ,  type 2, . . ) J  

I- pointer to guest firnction ---+I 

data types o f  other funct args);  

where funct-data- type refers to the data type of the quantity returned by the host function; funct-name 
refers to the name of the host function; arg-data- type refers to the data type of the quantity returned by the 
guest function, and type 7, type 2) . . . refer to the data types of guest function’s arguments. 
Notice that the indirection operator appears in parentheses, to indicate a pointer to the guest function. 
Moreover, the data types of the guest function’s arguments follow in a separate pair of parentheses, to indicate 
that they are function arguments. 

When full function prototyping is used, the host function declaration is expanded as follows. 

funct -data - type funct -name 

(arg-data-type ( *p t -var ) (  type I arg 7 ,  type 2 arg 2, . . . ) )  

l- pointer to guest Jirnction -I 

data types and names o f  other funct args);  
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The notation is the same as above, except that p t - var refers to the pointer variable pointing to the guest 
function, and type I arg I ,  type 2 arg 2, . . . refer to the data types and the corresponding 
names of the guest function’s arguments. 

EXAMPLE 10.29 The skeletal outline of a C program is shown below. This program consists of four functions: main, 
process, f u n c t l  and funct2. Note that process is a host function for f u n c t l  and funct2. Each of the three 
subordinate functions returns an integer quantity. 

i n t  process( in t  ( * ) ( i n t ,  i n t ) ) ;  / *  funct ion dec larat ion (host)  * /  
i n t  f u n c t l ( i n t ,  i n t ) ;  / *  funct ion dec larat ion (guest) * /  
i n t  f u n c t 2 ( i n t ,  i n t ) ;  / *  funct ion dec larat ion (guest) * /  

main( ) 

1 
i n t  i,j ;  
. . . . .  
i= process(funct1);  / *  pass f u n c t l  t o  process; re tu rn  a value f o r  i* /  

. . . . .  
j = process(funct2);  I *  pass funct2 t o  process; re tu rn  a value f o r  j * /  

. . . . .  
1 

process( in t  ( * p f ) ( i n t ,  i n t ) )  / *  host funct ion d e f i n i t i o n  * /  
/ *  ( formal  argument i s  a po inter  t o  a funct ion)  * /  

{ 
i n t  a, b, c; 

. . . . .  
c = ( * p f ) ( a ,  b ) ;  / *  access the funct ion passed t o  t h i s  funct ion;  

re tu rn  a value f o r  c * /  

. . . . .  
r e t u r n ( c ) ;  

1 

f u n c t l  (a, b)  / *  guest funct ion d e f i n i t i o n  * /  
i n t  a, b; 

t 
i n t  c; 

c = .  . . / *  use a and b t o  evaluate c * /  

r e t u r n ( c ) ;  

funct2(x,  y )  / *  guest funct ion d e f i n i t i o n  * /  
i n t  x ,  y; 

1 
i n t  z; 

z = .  . . / *  use x and y t o  evaluate z * /  

r e t u r n ( z ) ;  

1 
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Notice that this program contains three function declarations. The declarations for f u n c t l  and funct2 are 
straightforward. However the declaration for process requires some explanation. This declaration states that process is 
a host function that returns an integer quantity and has one argument. The argument is a pointer to a guest function that 
returns an integer quantity and has two integer arguments. The argument designation for the guest function is written as 

i n t  ( * ) ( i n t ,  i n t )  

Notice the way the argument designation fits into the entire host function declaration; i.e., 

i n t  process( in t  ( * ) ( i n t ,  i n t ) ) ;  

Now consider the formal argument declaration that appears within process; i.e., 

i n t  ( * p f )  ( i n t ,  i n t )  ; 

This declaration states that p f  is a pointer to a guest function. The guest function will return an integer quantity, and it 
requires two integer arguments. 

Here is another version of this same outline, utilizing full function prototyping. The changes are shown in boldface. 

i n t  p rocess ( in t  ( * p f ) ( i n t  a, i n t  b ) ) ;  / *  func t i on  prototype (host )  * /  
i n t  f u n c t l ( i n t  a, i n t  b) ;  / *  func t i on  prototype (guest)  * /  
i n t  f u n c t 2 ( i n t  a, i n t  b) ;  / *  func t i on  prototype (guest) * /  

main( ) 

i n t  i,j ;  
. . . . .  
i= process(funct1);  / *  pass f u n c t l  t o  process; re tu rn  a value f o r  i * /  

. . . . .  
j = process(funct2);  / *  pass funct2 t o  process; re tu rn  a value f o r  j * /  

. . . . .  
} 

p rocess ( in t  ( * p f ) ( i n t  a, i n t  b ) )  / *  host f unc t i on  d e f i n i t i o n  * /  

t 
i n t  a, b, c; 

. . . . .  
c = ( *p f ) (a ,  b ) ;  / *  access the funct ion passed t o  t h i s  funct ion;  

re tu rn  a value f o r  c * /  

. . . . .  
re tu rn (c ) ;  

} 

f u n c t l  ( i n t  a, i n t  b)  / *  guest f unc t i on  d e f i n i t i o n  * I  
t 

i n t  c; 

c = .  . . / *  use a and b t o  evaluate c * /  

re tu rn (c ) ;  

} 
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f u n c t 2 ( i n t  x ,  i n t  y )  / *  guest func t ion  d e f i n i t i o n  * /  

{ i n t  z;  

z = .  . . I *  use x and y t o  evaluate z * /  

r e t u r n ( z ) ;  
1 

The function prototypes include argument names as well as argument data types. Moreover, the prototype for 
process now includes the name of the variable (pf) that points to the guest function. Notice that the declaration of the 
formal argument pf within process is consistent with the function prototype. 

Some programming applications can be formulated quite naturally in terms of one function being passed 
to another. For example, one function might represent a mathematical equation, and the other might contain a 
computational strategy to process the equation. In such cases the function representing the equation might be 
passed to the function that processes the equation. This is particularly useful if the program contains several 
different mathematical equations, one of which is selected by the user each time the program is executed. 

EXAMPLE 10.30 Future Value of Monthly Deposits (Compound Interest Calculations) Suppose a person decides 
to save a fixed amount of money at the end of every month for n years. If the money earns interest at i percent per year, 
then it is natural to ask how much money will accumulate after n years (i.e., after 12n monthly deposits). The answer, of 
course, depends upon how much money is deposited each month, the interest rate, and the frequency with which the 
interest is compounded. For example, if the interest is compounded annually, semiannually, quarterly or monthly, the 
future amount of money that will accumulate after n years is given by 

where F is the future accumulation, A is the amount of money deposited each month, i is the annual interest rate 
(expressed as a decimal), and m is the number of compounding periods per year (e.g., m = 1 for annual compounding, m =  
2 for semiannual compounding, m =4 for quarterly compounding and m = 12 for monthly compounding). 

If the compounding periods are shorter than the payment periods, such as in the case of daily compounding, then the 
future amount of money is determined by 

Note that rn is customarily assigned a value of 360 when the interest is compounded daily. 
Finally, in the case of continuous compounding, the future amount of money is determined as 

Suppose we wish to determine F as a function of the annual interest rate i ,  for given values of A,  m and n. Let us 
develop a program that will read the required input data into main, and then carry out the calculations within a separate 
function, called tab le .  Each of the three formulas for determining the ratio FIA will be placed in one of three 
independent functions, called mdl ,md2 and md3, respectively. Thus, the program will consist of five different functions. 

When t a b l e  is called from main, one of the arguments passed to t ab le  will be the name of the function containing 
the appropriate formula, as indicated by an input parameter (f req). The values of A, m and n that are read into main will 
also be passed to t a b l e  as arguments. A loop will then be initiated within tab le ,  in which values of F are determined 
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for interest rates ranging from 0.01 (i.e., 1 percent per year) to 0.20 (20 percent per year). The calculated values will be 
displayed as they are generated. The entire program is shown below. 

/ *  personal  f inance ca l cu la t i ons  * /  

# include <stdio.h> 
#include <s td l ib .h>  
#include <ctype.h> 
#include <math.h> 

/ *  func t i on  prototypes * /  
vo id  t a b l e  (double (*pf)(double i,i n t  m, double n),  double a, i n t  m J  double n ) ;  
double mdl (double 1, i n t  m J  double n ) ;  
double md2(double iJi n t  m, double n);  
double md3(double 1, i n t  m, double n ) ;  

main ( ) / *  ca l cu la te  the fu tu re  value o f  a ser ies  o f  monthly deposi ts * /  

{ 
i n t  m; / *  number o f  compounding per iods per year * /  
double n; / *  number o f  years * I  
double a; / *  amount o f  each monthly payment * /  
char f req ;  / *  frequency o f  compounding i n d i c a t o r  * /  

/ *  en ter  i npu t  data * /  
printf("\nFUTURE VALUE OF A SERIES OF MONTHLY DEPOSITS\n\n"); 
p r in t f ( "Amount  o f  Each Monthly Payment: " ) ;  

scanf ( '%lf &a) ;' I ,  

pr int f ("Number o f  Years: ' ) ;  

scanf ( "%lf an) ;" I ,  

/ *  en ter  frequency o f  compounding * /  

do { 
p r in t f ( "Frequency  o f  Compounding (A, S, Q, M, D, C ) :  I " ) ;  

scanf ( "1 s", &freq) ; 
f req = toupper ( f  req) ; / *  convert t o  upper case * /  
i f  ( f r e q  == ' A ' )  { 

m = 1; 
p r i n t f  ( 'I \nAnnual Compounding\n" ) ; 

1 
e lse  i f  ( f r e q  == I S ' )  { 

m = 2; 
p r i n t f  ( \nSemiannual Compounding\n" ) ; 

k 

e lse  i f  ( t r e q  == I Q ' )  { 

m = 4; 
p r i n t f ( " \ n Q u a r t e r l y  Compounding\n")); 

e lse i f  ( f r e q  == " M " )  { 

m = 12; 
p r i n t f ( " \ n M o n t h l y  Compounding\n"); 

1 
e lse  i f  ( f r e q  == I D ' )  { 

m = 360; 
p r i n t f ( " \ n D a i l y  Compounding\n"); 

1 
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e lse  i f  ( f r e q  == ' C ' )  { 

m = 0; 
p r in t f ( ' \nCont inuous  Compounding\n"); 

} 
e lse  

printf("\nERROR - Please Repeat\n\n") ;  
} wh i le  ( f r e q  I =  ' A '  && f r e q  I =  ' S '  && f r e q  I =  'Q' && 

f r e q  I =  ' M '  && f r e q  I =  I D '  && f r e q  I =  ' C l ) ;  

/ *  ca r ry  out the ca l cu la t i ons  * /  
i f  ( f r e q  == ' C l )  

table(md3, a, m, n ) ;  / *  continuous compounding * /  
e lse  i f  ( f r e q  == I D ' )  

table(md2, a, m, n ) ;  / *  d a i l y  compounding * /  
e lse  

table(md1, a, m, n ) ;  / *  annual, semiannual, qua r te r l y  o r  monthly compounding * /  

1 

vo id  t a b l e  (double ( *p f ) (doub le  1, i n t  m, double n ) ,  double a, i n t  m, double n) 
/ *  t a b l e  generator ( t h i s  func t i on  accepts a po in te r  t o  another func t i on  as an argument) 

NOTE: double ( *p f ) (doub le  i,i n t  m, double n) i s  a POINTER TO A FUNCTION * /  

{ 
i n t  count; / *  loop counter * /  
double i; / *  annual i n t e r e s t  r a t e  * /  
double f ;  / *  f u t u r e  value * /  

p r i n t f ( " \ n I n t e r e s t  Rate Future Amount\n\n"); 
f o r  (count = 1; count <= 20; ++count) { 

i= 0.01 * count; 
f = a * ( * p f ) ( i ,  m, n ) ;  / *  ACCESS THE FUNCTION PASSED AS A POINTER * /  
p r i n t f  ( " %2d %. 2 f  \ n "  , count , f )  ; 

1 
re tu rn ;  

1 

double mdl (double i, i n t  m, double n) 
/ *  monthly deposits, pe r iod i c  compounding * /  

{ 
double f a c t o r ,  r a t i o ;  

f a c t o r  = 1 + i /m ;  
r a t i o  = 12 * (pow(factor, m*n) - 1 )  / i; 
r e t u r n ( r a t i 0 ) ;  

1 

double md2(double i,i n t  m, double n) 
/ *  monthly deposi ts,  d a i l y  compounding * /  

I 
double fac to r ,  r a t i o ;  

f a c t o r  = 1 + i / m ;  
r a t i o  = (pow(factor,  m*n) - 1)  / (pow(factor,  m/12) - 1 ) ;  
r e t u r n (  r a t i o )  ; 

} 
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double md3(double i,i n t  dummy, double n )  
/ *  monthly deposits,  continuous compounding * /  

{ 
double r a t i o ;  

r a t i o  = ( e x p ( i * n )  - 1 )  / ( e x p ( i / l 2 )  - 1 ) ;  
r e t u r n ( r a t i 0 ) ;  

Notice the function prototypes, particularly the prototype for t a b l e .  The first argument passed to t a b l e  is a pointer 
to a guest function that receives two double-precision arguments and an integer argument, and returns a double-precision 
quantity. This pointer is intended to represent mdl, md2 or md3. The prototypes for these three functions follow the 
prototype for t a b l e .  Each of these functions accepts two double-precision arguments and an integer argument, and 
returns a double-precision quantity, as required. 

An interactive dialog for the input data is generated within main. In particular, the program accepts numerical values 
for a and n. It also accepts a one-character string for the character variable f req ,  which indicates the frequency of 
compounding. The only allowable characters that can be assigned to f req are A, S, Q, M, D or C (for Annual, Semiannual, 
Quarterly, Monthly, Daily or Continuous compounding, respectively). This character can be entered in either upper- or 
lowercase, since it is converted to uppercase within the program. Note that the program contains an error trap preventing 
characters other than A, S, Q, M, D or C from being entered. 

An appropriate numerical value is assigned to m as soon as the frequency of compounding is determined. The 
program then accesses t a b l e ,  passing either mdl, md2 or md3 as an argument, as determined by the character assigned to 
f req. (See the multiple i f  - e l s e  statement at the end of main.) 

Now examine the host function t a b l e .  The last three formal arguments (a, m and n) are declared as ordinary double- 
precision or integer variables. However, the first formal argument (pf)  is declared as a pointer to a guest hnction that 
accepts two double-precision arguments and an integer argument, and returns a double-precision quantity. These formal 
argument declarations are consistent with the function prototype for tab le .  

The values for i (i.e., the interest rates) are generated internally within t a b l e .  These values are determined as 0 . 0 1  
* count. Since count ranges from 1 to 20, we see that the interest rates range from 0.01 to 0.20, as required. 

Notice the manner in which the values for f are calculated within tab le ;  i.e., 

f = a * ( * p f ) ( i ,  m ,  n ) ;  

The expression ( * p f  ) refers to the guest function whose name is passed to t a b l e  (i.e., either mdl, md2 or md3). This is 
accompanied by the required list of arguments, containing the current values for i,m and n. The value returned by the 
guest function is then multiplied by a, and the product is assigned to f .  

The three remaining functions, mdl, md2 and md3, are straightforward. Notice that the second argument in md3 is 
called dummy, because the value of this argument is not utilized within the function. We could have done this with md2 as 
well, since the value of m is always 360 in the case of daily compounding. 

Execution of the program produces the following representative dialog. 

FUTURE VALUE OF A SERIES OF MONTHLY DEPOSITS 

Amount o f  Each Monthly Payment: 100 
Number o f  Years: 3 
Frequency o f  Compounding (A, S,  Q,  M,  D, C) :  p 

ERROR - Please Repeat 

Frequency o f  Compounding (A, S,  Q,  M ,  D, C) :  m 

Monthly Compounding 
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I n t e r e s t  Rate Future Amount 

1 3653.00 

2 3707.01 

3 3762.06 
4 3818.16 

5 3875.33 

6 3933.61 

7 3993.01 

8 4053.56 

9 4115.27 

10 4178.18 

11 4242.31 

12 4307.69 

13 4374.33 

14 4442.28 

15 4511 .55 
16 4582.17 

17 4654.18 

18 4727.60 
19 4802.45 
20 4878.78 

10.10 MORE ABOUT POINTER DECLARATIONS 

Before leaving this chapter we mention that pointer declarations can become complicated, and some care is 
required in their interpretation. This is especially true of declarations that involve functions or arrays. 

One difficulty is the dual use of parentheses. In particular, parentheses are used to indicate functions, and 
they are used for nesting purposes (to establish precedence) within more complicated declarations. Thus, the 
declaration 

int *p(int a ) ;  

indicates a function that accepts an integer argument, and returns a pointer to an integer. On the other hand, 
the declaration 

int (*p) (int a )  ; 

indicates a pointer to a function that accepts an integer argument and returns an integer. In this last 
declaration, the first pair of parentheses is used for nesting, and the second pair is used to indicate a function. 

The interpretation of more complex declarations can be increasingly troublesome. For example, consider 
the declaration 

int *(*p)(int ( * a ) [ ] ) ;  

In this declaration, ( *p)  ( . . . ) indicates a pointer to a function. Hence, int * ( *p) ( . . . ) 
indicates a pointer to a function that returns a pointer to an integer. Within the last pair of parentheses (the 
function’s argument specification), ( * a )  [ ] indicates a pointer to an array. Therefore, int ( * a )  [ ] 
represents a pointer to an array of integers. Putting the pieces together, ( *p) ( int ( * a )  [ ] ) represents a 
pointer to a function whose argument is a pointer to an array of integers. And finally, the entire declaration 

int *(*p)(int ( * a ) [ ] ) ;  

represents a pointer to a function that accepts a pointer to an array of integers as an argument, and returns a 
pointer to an integer. 
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Remember that a left parenthesis immediately following an identifier name indicates that the identifier 
represents a fbnction. Similarly, a left square bracket immediately following an identifier name indicates that 
the identifier represents an array. Parentheses that identify fbnctions and square brackets that identify arrays 
have a higher precedence than the unary indirection operator (see Appendix C). Therefore, additional 
parentheses are required when declaring a pointer to a fbnction or a pointer to an array. 

The following example provides a number of illustrations. 

EXAMPLE 10.31 Several declarations involving pointers are shown below. The individual declarations range from 
simple to complex. 

i n t  *p; / *  p i s  a p o i n t e r  t o  an i n t e g e r  q u a n t i t y  * /  

i n t  *p [ lO] ;  / *  p i s  a 10-element a r r a y  o f  p o i n t e r s  t o  i n t e g e r  q u a n t i t i e s  * /  

i n t  ( *p )  [ 101; / *  p i s  a p o i n t e r  t o  a 10-element i n t e g e r  a r r a y  * /  

i n t  *p ( v o i d )  ; / *  p i s  a f u n c t i o n  t h a t  
r e t u r n s  a p o i n t e r  t o  an i n t e g e r  q u a n t i t y  * /  

i n t  p (char  *a ) ;  / *  p i s  a f u n c t i o n  t h a t  
accepts an argument which i s  a p o i n t e r  t o  a charac ter  and 
r e t u r n s  an i n t e g e r  q u a n t i t y  * /  

i n t  *p(char  a* ) ;  / *  p i s  a f u n c t i o n  t h a t  
accepts an argument which i s  a p o i n t e r  t o  a charac ter  
r e t u r n s  a p o i n t e r  t o  an i n t e g e r  q u a n t i t y  * /  

i n t  ( * p ) ( c h a r  *a ) ;  / *  p i s  a p o i n t e r  t o  a f u n c t i o n  t h a t  
accepts an argument which is a p o i n t e r  t o  a charac ter  
r e t u r n s  an i n t e g e r  q u a n t i t y  * /  

i n t  ( *p (char  * a ) ) [ l O ] ;  / *  p i s  a f u n c t i o n  t h a t  
accepts an argument which i s  a p o i n t e r  t o  a charac ter  
r e t u r n s  a p o i n t e r  t o  a 10-element i n t e g e r  a r r a y  * /  

i n t  p (char  ( * a ) [ ] ) ;  / *  p i s  a f u n c t i o n  t h a t  
accepts an argument which i s  a p o i n t e r  t o  a charac ter  a r r a y  
r e t u r n s  an i n t e g e r  q u a n t i t y  * /  

i n t  p (char  * a [ ] ) ;  / *  p i s  a f u n c t i o n  t h a t  
accepts an argument which i s  an a r r a y  o f  p o i n t e r s  t o  

charac ters  
r e t u r n s  an i n t e g e r  q u a n t i t y  * /  

i n t  *p(char  a [ ] ) ;  / *  p i s  a f u n c t i o n  t h a t  
accepts an argument which i s  a charac ter  a r r a y  
r e t u r n s  a p o i n t e r  t o  an i n t e g e r  q u a n t i t y  * /  

i n t  *p(char  ( * a ) [ ] ) ;  / *  p i s  a f u n c t i o n  t h a t  
accepts an argument which i s  a p o i n t e r  t o  a charac ter  a r r a y  
r e t u r n s  a p o i n t e r  t o  an i n t e g e r  q u a n t i t y  * /  

i n t  *p(char  * a [ ] ) ;  / *  p i s  a f u n c t i o n  t h a t  
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accepts an argument which i s  an a r r a y  o f  p o i n t e r s  t o  
charac ters  

r e t u r n s  a p o i n t e r  t o  an i n t e g e r  q u a n t i t y  * /  

i n t  ( * p ) ( c h a r  ( * a ) [ ] ) ;  / *  p i s  a p o i n t e r  t o  a f u n c t i o n  t h a t  
accepts an argument which i s  a p o i n t e r  t o  a charac ter  a r r a y  
r e t u r n s  an i n t e g e r  q u a n t i t y  * /  

i n t  * ( * p ) ( c h a r  ( * a ) [ ] ) ;  / *  p i s  p o i n t e r  t o  a f u n c t i o n  t h a t  
accepts an argument which i s  a p o i n t e r  t o  a charac ter  a r r a y  
r e t u r n s  a p o i n t e r  t o  an i n t e g e r  q u a n t i t y  * /  

i n t  * ( * p ) ( c h a r  * a [ ] ) ;  / *  p i s  a p o i n t e r  t o  a f u n c t i o n  t h a t  
accepts an argument which i s  an a r r a y  o f  p o i n t e r s  t o  

charac ters  
r e t u r n s  a p o i n t e r  t o  an i n t e g e r  q u a n t i t y  * /  

i n t  ( * p [ l O ] ) ( v o i d ) ;  / *  p i s  a 10-element a r r a y  o f  p o i n t e r s  t o  f u n c t i o n s ;  
each f u n c t i o n  r e t u r n s  an i n t e g e r  q u a n t i t y  * /  

i n t  ( * p [ l O ] ) ( c h a r  a ) ;  / *  p i s  a 10-element a r r a y  o f  p o i n t e r s  t o  f u n c t i o n s ;  
each f u n c t i o n  accepts an argument which i s  a charac ter ,  and 
r e t u r n s  an i n t e g e r  q u a n t i t y  * /  

i n t  * ( * p [ l O ] ) ( c h a r  a ) ;  / *  p i s  a 10-element a r r a y  o f  p o i n t e r s  t o  f u n c t i o n s ;  
each f u n c t i o n  accepts an argument which i s  a charac ter ,  and 
r e t u r n s  a p o i n t e r  t o  an i n t e g e r  q u a n t i t y  * /  

i n t  * ( * p [ l O ] ) ( c h a r  *a) ;  / *  p is a 10-element a r r a y  o f  p o i n t e r s  t o  f u n c t i o n s ;  
each f u n c t i o n  accepts an argument which i s  a p o i n t e r  t o  a 

charac ter ,  and 
r e t u r n s  a p o i n t e r  t o  an i n t e g e r  q u a n t i t y  * /  

Review Questions 

10.1 For the version of C available on your particular computer, how many memory cells are required to store a single 
character? An integer quantity? A long integer? A floating-poing quantity? A double-precision quantity? 

10.2 What is meant by the address of a memory cell? How are addresses usually numbered? 

10.3 How is a variable’s address determined? 

10.4 What kind of information is represented by a pointer variable? 

10.5 What is the relationship between the address of a variable v and the corresponding pointer variable pv? 

10.6 What is the purpose of the indirection operator? To what type of operand must the indirection operator be 
applied? 

10.7 What is the relationship between the data item represented by a variable v and the corresponding pointer variable 
pv? 

10.8 What precedence is assigned to the unary operators compared with the multiplication, division and remainder 
operators? In what order are the unary operators evaluated? 

10.9 Can the address operator act upon an arithmetic expression, such as 2 * (U + v ) ?  Explain the reasons for your 
answer. 

10.10 Can an expression involving the indirection operator appear on the left side of an assignment statement? Explain. 
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10.11 What kinds of objects can be associated wit+ pointer variables? 


10.12 How is a pointer variable declared? What is the purpose of the data type included in the declaration? 


10.13 In what way can the assignment of an initial value be included in the declaration of a pointer variable? 


10.14 Are integer values ever assigned to pointer variables? Explain. 


10.15 Why is it sometimes desirable to pass a pointer to a function as an argument? 


10.16 Suppose a function receives a pointer as an argument. Explain how the function prototype is written. In 

particular, explain how the data type of the pointer argument is represented. 

10.17 Suppose a function receives a pointer as an argument. Explain how the pointer argument is declared within the 

function definition. 

10.18 What is the relationship between an array name and a pointer? How is an array name interpreted when it appears 

as an argument to a function? 

10.19 Suppose a formal argument within a funciion definition is an array. How can the array be declared within the 

function? 

10.20 How can a portion of an array be passed to a function? 


10.21 How can a function return a pointer to its calling routine? 


10.22 Describe two different ways to specifL the address of an array element. 


10.23 Why is the value of an array subscript sometimes referred to as an offset when the subscript is a part of an 

expression indicating the address of an array element? 

10.24 Describe two different ways to access an array element, Compare your answer to that of question 10.22. 


10.25 Can an address be assigned to an array name or an array element? Can an address be assigned to a pointer variable 

whose object is an array? 

10.26 Suppose a numerical array is defined in terms of a pointer variable. Can the individual array elements be 

in it ia1 ized? 

10.27 Suppose a character-type array is defined in terms of a pointer variable. Can the individual array elements be 

initialized? Compare your answer with that of the previous question. 

10.28 What is meant by dynamic memory allocation? What library function is used to allocate memory dynamically? 

How is the size of the memory block specified? What kind of information is returned by the library function? 

10.29 Suppose an integer quantity is added to or subtracted from a pointer variable. How will the sum or difference be 

interpreted? 

10.30 Under what conditions can one pointer variable be subtracted from another? How will this difference be 

interpreted? 

10.31 Under what conditions can two pointer variables be compared? Under what conditions are such comparisons 

useful? 

10.32 How is a multidimensional array defined in terms of a pointer to a collection of contiguous arrays of lower 

dimensionality? 

10.33 How can the indirection operator be used to access a multidimensional array element? 


10.34 How is a multidimensional array defined in terms of an array of pointers? What does each pointer represent? 

How does this definition differ from a pointer to a collection of contiguous arrays of lower dimensionality? 

10.35 How can a one-dimensional array of pointers be used to represent a collection of strings? 


10.36 If several strings are stored within a one-dimensional array of pointers, how can an individual string be accessed? 


10.37 If several strings are stored within a one-dimensional array of pointers, what happens if the strings are reordered? 

Are the strings actually moved to different locations within the array? 

10.38 Under what conditions can the elements of a multidimensional array be initialized if the array is defined in terms 

of an array of pointers? 

10.39 When transferring one function to another, what is meant by the guest function? What is the host function? 
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10.40 Suppose a formal argument within a host function definition is a pointer to another function. How is the formal 
argument declared? Within the declaration, to what does the data type refer? 

10.41 Suppose a formal argument within the definition of the host function p is a pointer to the guest function q. How is 
the formal argument declared within p? In this declaration, to what does the data type refer? How is function q 
accessed within function p? 

10.42 Suppose that p is a host function, and one of p’s arguments is a pointer to function q. How would the declaration 
for p be written if full function prototyping is used? 

10.43 For what types of applications is it particularly useful to pass one function to another? 

Problems 

10.44 Explain the meaning of each of the following declarations. 

i n t  *px; 

f l o a t  a, b; 
f l o a t  *pa, *pb; 

f l o a t  a = -0.167; 

f l o a t  *pa = &a; 

char c l ,  c2, c3; 
char *pc l ,  *pc2, *pc3 = 

double funct(doub1e *a, 

double * func t (doub le  *a, 

double ( *a ) [12 ] ;  

double *a [12 ] ;  

char *a [12 ] ;  

& c l ;  

double *b, i n t  * c ) ;  

double *b, i n t  * c ) ;  

char *d [4 ]  = { “no r th ‘ ,  ‘south”, “eas t ” ,  “wes t ” } ;  

l ong  (*P)[101[201; 

l ong  *p[  101 [20 ]  ; 

char sample( int  ( * p f ) ( c h a r  a, char b ) ) ;  

i n t  ( * p f ) ( v o i d ) ;  

i n t  ( * p f ) ( c h a r  a, char b ) ;  

i n t  ( * p f ) ( c h a r  *a, char * b ) ;  

10.45 Write an appropriate declaration for each of the following situations. 

Declare two pointers whose objects are the integer variables iand j . 
Declare a pointer to a floating-point quantity, and a pointer to a double-precision quantity. 

Declare a funtion that accepts two integer arguments and returns a pointer to a long integer. 

Declare a function that accepts two arguments and returns a long integer. Each argument will be a pointer 
to an integer quantity. 

Declare a one-dimensional floating-point array using pointer notation. 

Declare a two-dimensional floating-point array, with 15 rows and 30 columns, using pointer notation. 

Declare an array of strings whose initial values are “red,” “green” and “blue.” 

Declare a function that accepts another function as an argument and returns a pointer to a character. The 
function passed as an argument will accept an integer argument and return an integer quantity. 

Declare a pointer to a function that accepts three integer arguments and returns a floating-point quantity. 

Declare a pointer to a function that accepts three pointers to integer quantities as arguments and returns a 
pointer to a floating-point quantity. 



CHAP. 101 POINTERS 327 

10.46 A C program contains the following statements. 

char U, v = ' A ' ;  

char *pu, *pv = &v; 

*pv = v + 1; 
U = *pv + 1; 

pu = &U; 

Suppose each character occupies 1 byte of memory. If the value assigned to U is stored in (hexadecimal) address 
F8C and the value assigned to v is stored in address F8D, then 

(a) What value is represented by &v? 

(6) What value is assigned to pv? 

(c) What value is represented by *pv? 

(6) What value is assigned to U? 

(e) What value is represented by &U? 

v) What value is assigned to pu? 

(g) What value is represented by *pu? 

10.47 A C program contains the following statements. 

i n t  1, j = 25; 

i n t  * p i ,  * p j  = & j ;  

* p j  = j + 5; 

i= * p j  + 5; 

p i  = p j ;  
* p i  = i+ j ;  

Suppose each integer quantity occupies 2 bytes of memory. If the value assigned to ibegins at (hexadecimal) 
address F9C and the value assigned to j begins at address F9E, then 

(a) What value is represented by & i ?  

(b) What value is represented by &j ?  

(c) What value is assigned to p j ?  

(6) What value is assigned to *p j ?  

(e )  What value is assigned to i ?  

U> What value is represented by pi? 

(g) What final value is assigned to *p i?  

(h )  What value is represented by ( p i  + 2)? 

(i) What value is represented by the expression ( * p i  + 2 ) ?  

0') What value is represented by the expression * ( p i  + 2)? 

10.48 A C program contains the following statements. 

f l o a t  a = 0.001, b = 0,003; 
f l o a t  c, *pa, *pb; 

pa = &a; 
*pa = 2 * a; 
pb = &b; 
c = 3 * (*pb - *pa); 
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Suppose each floating-point number occupies 4 bytes of memory. If the value assigned to a begins at 
(hexadecimal) address 1 1 30, the value assigned to b begins at address 1 134, and the value assigned to c begins at 
1 138, then 

(a)  What value is assigned to &a? 

(b) What value is assigned to &b? 

(c )  What value is assigned to &c? 

(6) What value is assigned to pa? 

( e )  What value is represented by *pa? 

v) What value is represented by &( *pa)? 

(s) What value is assigned to pb? 

(h )  What value is represented by *pb? 

( i )  What value is assigned to c? 

10.49 The skeletal structure of a C program is shown below. 

i n t  f unc t l ( cha r  a, char b) ;  
i n t  funct2(char *pa, char *pb); 

main( ) 

{ 
char a = ' X I ;  

char b = ' Y ' ;  

i n t  i,j ;  

. . . . .  
i = func t l (a ,  b); 
p r i n t f ( "a=%c b=%c\n*, a, b) ;  

. . . . .  
j = funct2(&aJ &b); 
p r i n t f  ("a=%c b=%c", a, b) ; 

1 

i n t  f unc t l ( cha r  c l ,  char c2)  

{ 
c l  = ' P I ;  

c2 = I Q ' ;  

. . . . .  
re tu rn ( (c1  < c2) ? c l  : c2);  

i n t  funct2(char *c1, char *c2) 

{ 
* c l  = , P I ;  
*c2 = I Q , ;  

. . . . .  
r e t u r n ( ( * c l  == *c2) ? * c l  : *c2); 

1 

(a)  Within main, what value is assigned to i? 

(b)  What value is assigned to j ?  
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(c) What values are displayed by the first printf statement? 

(d) What values are displayed by the second printf statement? 

Assume ASCII characters. 

10.50 The skeletal structure of a C program is shown below. 

void funct(int *p); 


main ( ) 

{ 
static int a[5] = { l O ,  20, 30, 40, 5 0 ) ;  

. . . . .  
f unct (a) ; 

. . . . .  
1 

void funct(int *p) 


int i, sum = 0 ;  
for (i = 0; i < 5; ++i) 

sum += *(p + i); 
printf("sum=%d", sum); 

return; 


1 

(a) What kind of argument is passed to f unct? 

(b) What kind of information is returned by f unct? 

(c) What kind of formal argument is defined within funct? 

(6) What is the purpose of the for loop that appears within f unct? 

(e)  What value is displayed by the printf statement within f unct? 

10.51 The skeletal structure of a C program is shown below. 

v o i d  funct(int * p ) ;  

main ( ) 
{ 

static int a [ 5 ]  = (10, 20, 30, 40, 5 0 ) ;  

. . . . .  
funct(a + 3); 

. . . . .  

vo id  funct(int *p) 

int i, sum = 0 ;  
for (i = 3; i < 5; ++i) 

sum += *(p + i); 
printf("sum=%d", sum); 

return; 


1 
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(a) What kind of argument is passed to f unct? 

(6) What kind of information is returned by f unct? 

(c) What information is actually passed to f unct? 

(d) What is the purpose of the f o r  loop that appears within f unct? 

(e) What value is displayed by the p r i n t f  statement within f unct? 

Compare your answers with those of the previous problem. In what ways do these two skeletal outlines differ? 

10.52 The skeletal structure of a C program is shown below. 

i n t  * f unct ( i n t  *p) ; 

main( ) 

t 
s t a t i c  i n t  a [5 ]  = (10, 20, 30, 40, 50); 
i n t  *p t  max ; 

ptmax = func t (a ) ;  
p r i n t f  ( "max=%d", *ptmax) ; 

i n t  * f u n c t ( i n t  *p) 

t 
i n t  i,imax, max = 0; 
f o r  (i= 0; i.C 5; ++i )  

i f  ( * ( p  + i)> max) ( 

max = * ( p  + i); 
imax = i; 

1 
re tu rn (p  + imax); 

(a) Within main, what is ptmax? 

(6) What kind of information is returned by f unct? 

(c) What is assigned to ptmax when the function is accessed? 

(d) What is the purpose of the f o r  loop that appears within f unct? 

(e) What value is displayed by the p r i n t f  statement within main? 

Compare your answers with those of the previous two problems. In what ways are the skeletal outlines different? 

10.53 A C program contains the following declaration. 

s t a t i c  i n t  x [ 8 ]  = (10, 20, 

(a) What is the meaning of x? 

(6) What is the meaning of (x  + 2)? 

(c )  What is the value of *x? 

(d) What is the value of ( *x  + 2)? 

(e )  What is the value of * (x  + 2 ) ?  

30, 40, 50, 6 0 ,  7 0 ,  8 0 ) ;  
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10.54 A C program contains the following declaration. 

static float table[2][3) = { 

t l . 1 ,  1.2, 1.3), 
{2.1, 2.2, 2.3) 


1; 

What is the meaning of table? 

What is the meaning of (table + 1 ) ?  

What is the meaning of * (table + 1 ) ?  

What is the meaning of (*(table + 1 ) + 1 ) ?  

What is the meaning of ( * (table) + 1 ) ? 

Whatisthevalueof*(*(table + 1)  + l)? 

Whatisthevalueof*(*(table) + I ) ?  

What is the value of * ( *(table + 1 ) ) ?  

Whatisthevalueof*(*(table) + 1 )  + l? 

10.55 A C program contains the following declaration. 

static char *color[6] = {"red", "green", "blue", "white", "black", "yellow"); 

(a) What is the meaning of color? 

(6) What is the meaning of (color + 2)? 

(c) What is the value of "color? 

(6) What is the value of * (color + 2)? 

(e )  How do color [ 51 and * (color + 5)differ? 

10.56 The skeletal structure of a C program is shown below. 

float one(f1oat x ,  float y); 
float two(f1oat x ,  float y); 
float three(f1oat (*pt)(float x ,  float y)); 

main ( ) 

float a, b; 


. . . . .  
a = three(one); 

. . . . .  
b = three(two); 

. . . . .  
) 

float one(f1oat x ,  float y) 
{ 

float z; 


z = .  . . . . 
return(z); 
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f l o a t  two( f1oat  p, f l o a t  q)  

f l o a t  r; 

r = . . . . .  

r e t u r n ( r ) ;  

1 

f l o a t  t h ree ( f1oa t  ( * p t ) ( f l o a t  x, f l o a t  y ) )  

f l o a t  a, b, c; 

. . . . .  
r e t u r n ( c ) ;  

1 

(a)  Interpret each of the function prototypes. 

(6) Interpret the definitions of the functions one and two. 

(c) Interpret the definition of the function three. How does th ree  differ from one and two? 

(d) What happens within main each time th ree  is accessed? 

10.57 The skeletal structure of a C program is shown below. 

f l o a t  one(f1oat *px, f l o a t  *py) ;  
f l o a t  two( f1oat  *px, f l o a t  *py);  
f l o a t  * th ree  ( f l o a t  ( * p t  ) ( f l o a t  *px, f l o a t  *py) ) ; 

main( ) 

{ 
f l o a t  *pa, *pb; 

. . . . .  
pa = three(one);  

. . . . .  
pb = th ree( two) ;  

. . . . .  
1 

f l o a t  one(f1oat *px, f l o a t  *py) 

{ 
f l o a t  z; 

z = .  . . . . 
r e t u r n ( z ) ;  

1 
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float two(f1oat *pp, float *pq) 


{ 
float r; 


r = . . . . .  


return(r); 


1 

float *three(float (*pt)(float *px, float * p y ) )  

{ 
float a, b,  c; 

c = (*pt)(&a, &b);  

return(&c); 


1 

(a) Interpret each of the function prototypes. 

(6) Interpret the definitions of the functions one and two. 

(c) Interpret the definition of the function three. How does three differ from one and two? 

(6) What happens within main each time three is accessed? 

(e )  How does this program outline differ from the outline shown in the last example? 

10.58 Explain the purpose of each of the following declarations. 

(a) float (*x) (int *a) ; 
(b) float (*x (int *a) ) [ 20] ; 

(c) float x(int (*a)[]); 

(6) float x(int *a[]); 

( e )  float *x(int a[]); 
v) float *x(int (*a)[]); 
(g) float *x(int *a[]); 

(h)  float (*x)(int (*a)[]); 
(i) float *(*x)(int *a[]); 

(j) float (*x[2O])(int a); 
(k) float *(*x[20])(int *a); 

10.59 Write an appropriate declaration for each of the following situations involving pointers. 

(a) Declare a function that accepts an argument which is a pointer to an integer quantity and returns a pointer to 
a six-element character array. 

(6)  Declare a function that accepts an argument which is a pointer to an integer array and returns a character. 

(c) Declare a function that accepts an argument which is an array of pointers to integer quantities and returns a 
character. 

(d) Declare a function that accepts an argument which is an integer array and returns a pointer to a character. 

(e )  Declare a function that accepts an argument which is a pointer to an integer array and returns a pointer to a 
character. 

U> Declare a function that accepts an argument which is an array of pointers to integer quantities and returns a 
pointer to a character. 
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Declare a pointer to a function that accepts an argument which is a pointer to an integer array and returns a 
character. 

Declare a pointer to a function that accepts an argument which is a pointer to an integer array and returns a 
pointer to a character. 

Declare a pointer to a function that accepts an argument which is an array of pointers to integer quantities 
and returns a pointer to a character. 

Declare a 12-element array of pointers to functions. Each function will accept two double-precision 
quantities as arguments and will return a double-precision quantity. 

Declare a 12-element array of pointers to functions. Each function will accept two double-precision 
quantities as arguments and will return a pointer to a double-precision quantity. 

Declare a 12-element array of pointers to functions. Each function will accept two pointers to double- 
precision quantities as arguments and will return a pointer to a double-precision quantity. 

Programming Problems 

10.60 Modify the program shown in Example 10.1as follows. 

( a )  Use floating-point data rather than integer data. Assign an initial value of 0.3 to U. 

(6) Use double-precision data rather than integer data. Assign an initial value of 0.3 x 1045 to U. 

(c )  Use character data rather than integer data. Assign an initial value of ‘ C to U. 

Execute each modification and compare the results with those given in Example 10.1. Be sure to modify the 
p r i n t f  statements accordingly. 

10.61 Modify the program shown in Example 10.3 as follows. 

(a )  Use floating-point data rather than integer data. Assign an initial value of 0.3 to v. 

(b) Use double-precision data rather than integer data. Assign an initial value of 0.3 x 1045 to v .  

(c )  Use character data rather than integer data. Assign an initial value of ’ C to v. 

Execute each modification and compare the results with those given in Example 10.3. Be sure to modify the 
p r i n t f  statements accordingly. 

10.62 Modify the program shown in Example 10.7 so that a single one-dimensional, character-type array is passed to 
f unct 1. Delete f unct2 and all references to f unct2. Initially, assign the string ” red” to the array within main. 
Then reassign the string “green” to the array within f unct1. Execute the program and compare the results with 
those shown in Example 10.7. Remember to modify the p r i n t f  statements accordingly. 

10.63 Modify the program shown in Example 10.8 (analyzing a line of text) so that it also counts the number of words 
and the total number of characters in the line of text. (Note: A new word can be recognized by the presence of a 
blank space followed by a nonwhitespace character.) Test the program using the text given in Example 10.8. 

10.64 Modify the program shown in Example 10.8 (analyzing a line of text) so that it can process multiple lines of text. 
First enter and store all lines of text. Then determine the number of vowels, consonants, digits, whitespace 
characters and “other” characters for each line. Finally, determine the average number of vowels per line, 
consonants per line, etc. Write and execute the program two different ways. 

(a )  Store the multiple lines of text in a two-dimensional array of characters. 

( b )  Store the multiple lines of text as individual strings whose maximum length is unspecified. Maintain a 
pointer to each string within a one-dimensional array of pointers. 

In each case, identify the last line of text in some predetermined manner (e.g., by entering the string “END’). Test 
the program using several lines of text of your own choosing. 

10.65 Modify the program shown in Example 10.12 so that the elements of x are long integers rather than ordinary 
integers. Execute the program and compare the results with those shown in Example 10.12. (Remember to 
modify the p r i n t f  statement to accommodate the long integer quantities.) 
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10.66 ModifL the program shown in Example 10.16 so that any one of the following rearrangements can be carried out: 

(a) Smallest to largest, by magnitude 

(b) Smallest to largest, algebraic 

(c) Largest to smallest, by magnitude 

(d) Largest to smallest, algebraic 

Use pointer notation to represent individual integer quantities, as in Example 10.16. (Recall that an array version 
of this problem was presented in Example 9.13.) Include a menu that will allow the user to select which 
rearrangement will be used each time the program is executed. Test the program using the following 10 values. 

4.7 -8.0 
-2.3 11.4 
12.9 5. I 
8.8 -0.2 
6.0 -14.7 

10.67 Modify the program shown in Example 10.22 (adding two tables of numbers) so that each element in the table c is 
the larger of the corresponding elements in tables a and b (rather than the sum of the corresponding elements in a 
and b). Represent each table (each array) as a pointer to a group of one-dimensional arrays, as in Example 10.22. 
Use pointer notation to access the individual table elements. Test the program using the tabular data provided in 
Example 9.19. (You may wish to experiment with this program, using several different ways to represent the 
arrays and the individual array elements.) 

10.68 Repeat the previous problem, representing each table (each array) as a one-dimensional array of pointers, as 
discussed in Example 10.24. 

10.69 ModifL the program shown in Example 10.26 (reordering a list of strings) so that the list of strings can be 
rearranged into either alphabetical or reverse-alphabetical order. Use pointer notation to represent the beginning 
of each string. Include a menu that will allow the user to select which rearrangement will be used each time the 
program is executed. Test the program using the data provided in Example 9.20. 

10.70 ModifL the program shown in Example 10.28 (displaying the day of the year) so that it can determine the number 
of days between two dates, assuming both dates are beyond the base date of January 1, 1900. (Hint: Determine the 
number of days between the first specified date and the base date; then determine the number of days between the 
second specified date and the base date. Finally, determine the difference between these two calculated values.) 

10.71 Modify the program shown in Example 10.30 (compound interest calculations) so that it generates a table of F-
values for various interest rates, using different compounding frequencies. Assume that A and n are input values. 
Display the output in the following manner. 

A = .  . 
n = .  . . 

I n t e r e s t  r a t e  = 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 

Frequency o f  
Compounding 

Annual - - - - - - - - - - -
Semiannual - - - - - - - - - - -
Quarter ly - - - - - - - - - - -
Monthly - - - - - - - - - - -
Dai l y  - - - - - - - - - - -
Continuously - - - - - - - - - - -

Notice that the first four rows are generated by one function with different arguments, and each of the last two 
rows is generated by a different function. 
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10.72 ModifL the program shown in Example 10.30 (compound interest calculations) so that it generates a table of F-
values for various time periods, using different compounding frequencies. Assume that A and iare input values. 
Display the output in the following manner. 

A = .  . . 
i = .  . . 

= 3 4 5 6 7 8 9 10Time per iod (n) 

Frequency o f  
Compounding 

Annual 
Semiannual 
Quarter ly 
Monthly 
Da i l y  
Continuously 

Notice that the first four rows are generated by one function with different arguments, and each of the last two 
rows is generated by a different function. 

10.73 Repeat the previous problem, but transpose the table so that each row represents a different value for n and each 
column represents a different compounding frequency. Consider integer values of n ranging from 1 to 50. Note 
that this table will consist of 50 rows and 6 columns. (Hint: Generate the table by columns, storing each column 
in a two-dimensional array. Display the entire array after all the values have been generated.) 

Compare the programming effort required for this problem with the programming effort required for the 
preceding problem. 

10.74 Examples 9.8 and 9.9 present programs to calculate the average of a list of numbers and then calculate the 
deviations about the average. Both programs make use of one-dimensional, floating-point arrays. Modifi both 
programs so that they utilize pointer notation. (Note that the program shown in Example 9.9 includes the 
assignment of initial values to individual array elements.) Test both programs using the data given in the 
examples. 

10.75 Modify the program given in Example 9.14 (piglatin generator) so that it uses character-type arrays. Modify the 
program so that is uses pointer notation. Test the program using several lines of text of your own choosing. 

10.76 Write a complete C program, using pointer notation in place of arrays, for each of the following problems taken 
from the end of Chap. 9. 

Problem 9.39 (read a line of text, store it within the computer’s memory, and then display it backwards). 

Problem 9.40 (process a set of student exam scores). Test the program using the data given in Prob. 9.40. 

Problem 9.42 (process a set of weighted student exam scores, and calculate the deviation of each student’s 
average about the overall class average). Test the program using the data given in Prob. 9.40. 

Problem 9.44 (generate a table of compound interest factors). 

Problem 9.45 (convert from one foreign currency to another). 

Problem 9.46 (determine the capital for a specified country, or the country whose capital is specified). Test 
the program using the list of countries and their capitals given in Prob. 9.46. 

Problem 9.47(a) (matridvector multiplication). Test the program using the data given in Prob. 9.47(a). 

Problem 9.47(6)(matrix multiplication). Test the program using the data given in Prob. 9.47(6). 

Problem 9.47(4 (Lagrange interpolation). Test the program using the data given in Prob. 9.47(4. 

Problem 9.48(a) (blackjack). 
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(k) Problem 9.48(b) (roulette). 

(0 Problem 9.48(c) (BINGO). 

( m )  Problem 9.49 (encode and decode a line of text). 

10.77 Write a complete C program, using pointer notation, that will generate a table containing the following three 
columns: 

t aebt sin ct aebt cos ct 

Structure the program in the following manner: write two special functions, f 1 and f2 ,  where f 1 evaluates the 
quantity aebt sin ct and f 2  evaluates aebt cos ct. Have main enter the values of a ,  b and c, and then call a 
function, table-gen, which will generate the actual table. Pass f 1 and f 2  to table-gen as arguments. 

Test the program using the values a = 2, b = -0.1, c = 0.5 where the values o f t  are 1,2 ,3 ,  . . . ,60. 



Chapter 11 


Structures and Unions 


In Chap. 9 we studied the array, which is a data structure whose elements are all of the same data type. We 
now turn our attention to the structure, in which the individual elements can differ in type. Thus, a single 
structure might contain integer elements, floating-point elements and character elements. Pointers, arrays and 
other structures can also be included as elements within a structure. The individual structure elements are 
referred to as members. 

This chapter is concerned with the use of structures within a C program. We will see how structures are 
defined, and how their individual members are accessed and processed within a program. The relationships 
between structures and pointers, arrays and functions will also be examined. 

Closely associated with the structure is the union, which also contains multiple members. Unlike a 
structure, however, the members of a union share the same storage area, even though the individual members 
may differ in type. Thus, a union permits several different data items to be stored in the same portion of the 
computer’s memory at different times. We will see how unions are defined and utilized within a C program. 

11.1 DEFININGA STRUCTURE 

Structure declarations are somewhat more complicated than array declarations, since a structure must be 
defined in terms of its individual members. In general terms, the composition of a structure may be defined as 

s t r u c t  tag { 
member 7; 
member 2; 
. . . . .  
member m; 

1 ;  

In this declaration, s t r u c t  is a required keyword; tag is a name that identifies structures of this type (i.e., 
structures having this composition); and member I ,  member 2, . . . , member m are individual member 
declarations. (Note: There is no formal distinction between a structure definition and a structure declurution; 
the terms are used interchangeably.) 

The individual members can be ordinary variables, pointers, arrays, or other structures. The member 
names within a particular structure must be distinct from one another, though a member name can be the same 
as the name of a variable that is defined outside of the structure. A storage class, however, cannot be assigned 
to an individual member, and individual members cannot be initialized within a structure type declaration. 

Once the composition of the structure has been defined, individual structure-type variables can be 
declared as follows: 

storage-class s t r u c t  tag variable I ,  variable 2, . . . , variable n; 

where storage - class is an optional storage class specifier, struct is a required keyword, tag is the name 
that appeared in the structure declaration, and variable 7 ,  variable 2, . . . , variable n are 
structure variables of type tag. 

338 
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EXAMPLE 11.1 A typical structure declaration is shown below. 

s t r u c t  account { 

i n t  acct-no; 
char acct-type; 
char name[80]; 
f l o a t  balance; 

1; 

This structure is named account (i.e., the tag is account). It contains four members: an integer quantity (acct-no), a 
single character (acct-type), an 80-element character array (name [80]),and a floating-point quantity (balance). The 
composition of this account is illustrated schematically in Fig. 1 1.1. 

(structure) 

acct-no I (member) 

(member) 

balance (member) 

Fig. 11.1 

We can now declare the structure variables oldcustomer and newcustomer as follows. 

s t r u c t  account oldcustomer, newcustomer; 

Thus, oldcustomer and newcustomer are variables of type account. In other words, oldcustomer and newcustomer 
are structure-type variables whose composition is identified by the tag account. 

It is possible to combine the declaration of the structure composition with that of the structure variables, 
as shown below. 

storage-class s t r u c t  tag { 
member I ;  
member 2; 
. . . . .  
member m; 

1 variable 7, variable 2, . . ., variable n; 

The tag is optional in this situation. 

EXAMPLE 11.2 The following single declaration is equivalent to the two declarations presented in the previous 
example. 
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s t r u c t  account { 

i n t  acct-no; 
char acct-type; 
char name(80); 
f l o a t  balance ; 

1 oldcustomer, newcustomer; 

Thus, oldcustomer and newcustomer are structure variables of type account. 
Since the variable declarations are now combined with the declaration of the structure type, the tag (i.e., account) 

need not be included. Thus, the above declaration can also be written as 

s t r u c t  { 

i n t  acct-no; 
char acct-t  ype ; 
char name[80]; 
f l o a t  balance; 

1 oldcustomer, newcustomer; 

A structure variable may be defined as a member of another structure. In such situations, the declaration 
of the embedded structure must appear before the declaration of the outer structure. 

EXAMPLE 11.3 A C program contains the following structure declarations. 

s t r u c t  date { 

i n t  month; 
i n t  day; 
i n t  year ;  

1 ;  

s t r u c t  account { 

i n t  acct-no; 
char acct-type; 
char name[80]; 
f l o a t  balance; 

s t r u c t  date lastpayment ; 
1 oldcustomer, newcustomer; 

The second structure (account) now contains another structure (date) as one of its members. Note that the declaration of 
date precedes the declaration of account. The composition of account is shown schematically in Fig. 11.2. 

The members of a structure variable can be assigned initial values in much the same manner as the 
elements of an array. The initial values must appear in the order in which they will be assigned to their 
corresponding structure members, enclosed in braces and separated by commas. The general form is 

storage-class s t r u c t  tag variable = {value 1 ,  value 2, . . . ,  value tn);  

where value I refers to the value of the first member, value 2refers to the value of the second member, 
and so on. A structure variable, like an array, can be initialized only if its storage class is either e x t e r n a l  or 
s t a t i c .  

EXAMPLE 11.4 This example illustrates the assignment of initial values to the members of a structure variable. 

s t r u c t  date { 

i n t  month; 
i n t  day; 
i n t  year;  

} ;  
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s t r u c t  account ( 

i n t  acct-no; 
char acct-type; 
char name[80]; 
f l o a t  balance ; 
s t r u c t  date lastpayment; 

1; 

s t a t i c  s t r u c t  account customer = (12345, ' R I ,  "John W .  Smith",  586.30,  5 ,  24,  90); 

Thus, customer is a static structure variable of type account, whose members are assigned initial values. The first 
member (acct-no) is assigned the integer value 12345, the second member (acct-type) is assigned the character ' R  I ,  

the third member (name [ 801) is assigned the string John W .  Smith ",and the fourth member (balance) is assigned the 
floating-point value 586.30. The last member is itself a structure that contains three integer members (month, day and 
year). Therefore, the last member of customer is assigned the integer values 5, 24 and 90. 

-(structure) 

acct-no (member)t= 

(member) 

(member) 

(member) 

lastpayment (structure member) 

month (member) 

(member) 

(member) 

Fig. 11.2 

It is also possible to define an array of structures; i.e., an array in which each element is a structure. The 
procedure is illustrated in the following example. 
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EXAMPLE 11.5 A C program contains the following structure declarations. 

s t r u c t  date { 

i n t  month; 
i n t  day; 
i n t  year; 

1 ;  

s t r u c t  account { 

i n t  acct-no; 
char acct-type; 
char name[80]; 
f l o a t  balance; 
s t r u c t  date lastpayment; 

} customer[ 1001 ; 

In this declaration customer is a 100-element array of structures. Hence, each element of customer is a separate 
structure of type account (i.e., each element of customer represents an individual customer record). 

Note that each structure of type account includes an array (name[80]) and another structure (date) as members. 
Thus, we have an array and a structure embedded within another structure, which is itself an element of an array. 

It is, of course, also permissible to define customer in a separate declaration, as shown below. 
s t r u c t  date { 

i n t  month; 
i n t  day; 
i n t  year; 

1 ;  

s t r u c t  account { 

i n t  acct-no; 
char acct-type; 

char name(801; 
f l o a t  balance ; 
s t r u c t  date lastpayment; 

1 ;  

s t r u c t  account customer[100]; 

An array of structures can be assigned initial values just as any other array. Remember that each array 
element is a structure that must be assigned a corresponding set of initial values, as illustrated below. 

EXAMPLE 11.6 A C program contains the following declarations. 

s t r u c t  date { 

char name(801; 

i n t  month; 
i n t  day; 
i n t  year; 

1 ;  

s t a t i c  s t r u c t  date b i r t h d a y [ ]  = ("Amy", 12, 30, 73, 
" G a i l " ,  5, 13, 66, 
"Marc", 7, 15, 72, 
"Marla",  11, 29, 70, 
"Megan', 2, 4, 77, 
HSharonw,12, 29, 63, 

"Susan", 4, 12, 69); 
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In this example b i r t h d a y  is an array of structures whose size is unspecified. The initial values will define the size of the 
array, and the amount of memory required to store the array. 

Notice that each row in the variable declaration contains four constants. These constants represent the initial values, 
i.e., the name, month, day and year, for one array element. Since there are 7 rows (7 sets of constants), the array will 
contain 7 elements, numbered 0 to 6. 

Some programmers may prefer to embed each set of constants within a separate pair of braces, in order to delineate 
the individual array elements more clearly. This is entirely permissible. Thus, the array declaration can be written 

s t a t i c  s t r u c t  date b':thday[] = { 
{*Amy*, 12, 30, 73}, 
{ " G a l l " ,  5, 13, 66}, 
{*Mart*, 7, 15, 72}, 
{ " M a r l a m , 1 1 ,  29, 70}, 
{"Megan", 2, 4, 77}, 
{"Sharon",  12, 29, 63}, 
{"Susan",  4, 12, 69) 

1; 

Remember that each structure is a self-contained entity with respect to member definitions. Thus, the 
same member name can be used in different structures to represent different data. In other words, the scope of 
a member name is confined to the particular structure within which it is defined. 

EXAMPLE 11.7 Two different structures, called f i r s t  and second, are declared below. 

s t r u c t  f i r s t  { 
f l o a t  a ;  
i n t  b; 
char c ;  

1; 

s t r u c t  second { 

char a ;  
f l o a t  b ,  c ;  

1; 

Notice that the individual member names a, b and c appear in both structure declarations, but the associated data types are 
different. Thus, a represents a floating-point quantity in f i r s t  and a character in second. Similarly, b represents an 
integer quantity in f i r s t  and a floating-point quantity in second, whereas c represents a character in f i r s t  and a 
floating-point quantity in second. This duplication of member names is permissible, since the scope of each set of 
member definitions is confined to its respective structure. Within each structure the member names are distinct, as 
required. 

11.2 PROCESSING A STRUCTURE 

The members of a structure are usually processed individually, as separate entities. Therefore, we must be 
able to access the individual structure members. A structure member can be accessed by writing 

variable.  member 

where variable refers to-the name of a structure-type variable, and member refers to the rAm e  of a member 
within the structure. Notice the period (.) that separates the variable name from the menher name. This 
period is an operator; it is a member of the highest precedence group, and its associativity is left to right (see 
Appendix C). 
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EXAMPLE 11.8 Consider the following structure declarations. 

s t r u c t  date { 

i n t  month; 
i n t  day; 
i n t  year ; 

1; 

s t r u c t  account { 

i n t  acct-no; 
char acct-type; 
char name[80]; 
f l o a t  balance; 
s t  r u c t  date lastpayment; 

1 customer; 

In this example customer is a structure variable of type account. If we wanted to access the customer’s account 
number, we would write 

customer.acct-no 

Similarly, the customer’s name and the customer’s balance can be accessed by writing 

customer.name 

and 

customer.balance 

Since the period operator is a member of the highest precedence group, this operator will take precedence 
over the unary operators as well as the various arithmetic, relational, logical and assignment operators. Thus, 
an expression of the form ++variable.  member is equivalent to ++( variable.  member) ; i.e., the ++ 
operator will apply to the structure member, not the entire structure variable. Similarly, the expression 
& variable.  member is equivalent to & ( variable. member) ;thus, the expression accesses the address of the 
structure member, not the starting address of the structure variable. 

EXAMPLE 11.9 Consider the structure declarations given in Example 1 1.8; i.e., 

s t r u c t  date { 

i n t  month ; 
i n t  day ; 
i n t  year; 

1; 

s t r u c t  account { 

i n t  acct-no; 
char acct-type; 
char narne[bO); 
f l o a t  balance ; 
s t r u c t  date lastpayment; 

1 customer; 

Several expressions involving the structure variable customer and its members are given below. 
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kkmw-Qa erm-

++customer.balance Increment the value of customer. balance 
customer.balance++ Increment the value of customer. balance after accessing its value 
--customer.acct-no Decrement the value of customer. acct-no 
&cust ome r Access the beginning address of customer 
&customer.acct-no Access the address of customer. acctno 

More complex expressions involving the repeated use of the period operator may also be written. For 
example, if a structure member is itself a structure, then a member of the embedded structure can be accessed 
by writing 

variable.  member. submember 

where member refers to the name of the member within the outer structure, and submember refers to the name 
of the member within the embedded structure. Similarly, if a structure member is an array, then an individual 
array element can be accessed by writing 

variable. member[ expression] 

where expression is a nonnegative value that indicates the array element. 

EXAMPLE 11.10 Consider once again the structure declarations presented in Example 11.8. 

s t r u c t  date { 

i n t  month; 
i n t  day; 
i n t  year; 

1; 

s t r u c t  account { 
i n t  acct-no; 
char acct-type; 
char name[80]; 
f l o a t  balance ; 
s t r u c t  date lastpayment; 

} customer; 

The last member of customer is customer. lastpayment, which is itself a structure of type date. To access the month 
of the last payment, we would therefore write 

customer.lastpayment.month 


Moreover, this value can be incremented by writing 

++customer.lastpayment.month 


Similarly, the third member of customer is the character array customer. name. The third character within this 
array can be accessed by writing 

customer.name[2] 

This character’s address can be obtained as 

&customer.name[2] 
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The use of the period operator can be extended to arrays of structures, by writing 

array[  expression] .member 

where array refers to the array name, and array[expression] is an individual array element (a structure 
variable). Therefore array[  expression] ,member will refer to a specific member within a particular 
structure. 

EXAMPLE 11.1 1 Consider the following structure declarations, which were originally presented in Example 11.5. 

s t r u c t  date { 

i n t  month ; 
i n t  day; 
i n t  year;  

1;  

s t r u c t  account { 

i n t  acct-no; 
char acct-type; 
char name[80]; 
f l o a t  balance; 
s t r u c t  date lastpayment; 

} customer[100];  

In this example customer is an array that may contain as many as 100 elements. Each element is a structure of type 
account. Thus, if we wanted to access the account number for the 14th customer (i.e., customer[ 131, since the 
subscripts begin with 0), we would write customer[ 131 .acct-no. Similarly, this customer's balance can be accessed 
by writing customer[ 131. balance. The corresponding address can be obtained as &customer[ 131. balance. 

The 14th customer's name can be accessed by writing customer[ 131 .name. Moreover, we can access an individual 
character within the name by specifying a subscript. For example, the 8th character within the customer's name can be 
accessed by writing customer[ 131 .name[7]. In a similar manner we can access the month, day and year of the 14th 
customer's last payment by specifying the individual members of customer[ 131 .lastpayment, i.e., 
customer[l3].lastpaymenth, customer[l3].lastpayment.day, customer[l3].lastpayment.year. 

Moreover, the expression ++customer [ 131 .lastpayment.  day causes the value of the day to be incremented. 

Structure members can be processed in the same manner as ordinary variables of the same data type. 
Single-valued structure members can appear in expressions, they can be passed to functions, and they can be 
returned from functions, as though they were ordinary single-valued variables. Complex structure members 
are processed in the same way as ordinary data items of that same type. For example, a structure member that 
is an array can be processed in the same manner as an ordinary array, and with the same restrictions. 
Similarly, a structure member that is itself a structure can be processed on a member-by-member basis (the 
members here refer to the embedded structure), the same as any other structure. 

EXAMPLE 11.12 Several statements or groups of statements that access individual structure members are shown 
below. All of the structure members conform to the declarations given in Example 1 1.8. 

customer.balance = 0; 

customer.balance -=  payment; 

customer.1astpayment.month = 12; 

p r i n t f ( " " a m e :  % s \ n " ,  customer.name); 

i f  (customer.acct-type == ' P I )  
p r i n t f ( " P r e f e r r e d  account no.:  % d \ n w l  customer.acct-no); 

e l s e  
p r i n t f ( " R e g u 1 a r  account no.:  %d\n" ,  customer.acct-no); 
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The first statement assigns a value of zero to customer balance, where- the second statement causes the value of 
customer. balance to be decreased by the value of payment. The third statement causes the value 12 to be assigned to 
customer. lastpayment.  month. Note that customer. lastpayment.  month is a member of the embedded structure 
customer.1astpayment. 

The fourth statement passes the array customer. name to the p r i n t f  function, causing the customer name to be 
displayed. Finally, the last example illustrates the use of structure members in an i f  - e l s e  statement. Also, we see a 
situation in which the structure member customer. acct-no is passed to a function as an argument. 

In some older versions of C, structures must be processed on a member-by-member basis. With this 
restriction, the only permissible operation on an entire structure is to take its address (more about this later). 
However, the current ANSI standard permits entire structures to be assigned to one another provided the 
structures have the same composition. 

EXAMPLE 11.13 Suppose oldcustomer and newcustomer are structure variables having the same composition; i.e., 

s t r u c t  date { 

i n t  month; 
i n t  day; 
i n t  year;  

1; 

s t r u c t  account { 

i n t  acct-no; 
char acct-type; 
char name[80]; 
f l o a t  balance; 
s t r u c t  date lastpayment; 

} oldcustomer, newcustomer; 

as declared in Example 11.8. Let us assume that all of the members of oldcustomer have been assigned individual 
values. In most newer versions of C, it is possible to copy these values to newcustomer simply by writing 

newcustomer = oldcustomer; 

On the other hand, some older versions of C may require that the values be copied individually, member by member; for 
example, 

newcustomer.acct-no = oldcustomer.acct-no; 
newcustomer.acct-type = oldcustomer.acct-type; 

newcustomer.lastpayment.year = oldcustomer.1astpayment.year; 

It is also possible to pass entire structures to and from functions, though the way this is done varies fiom 
one version of C to another. Older versions of C allow only pointers to be passed, whereas the ANSI standard 
allows passing of the structures themselves. We will discuss this further in Sec. 11.5. Before moving on to 
the relationship between structures and pointers and the methods for passing structures to functions, however, 
let us consider a more comprehensive example that involves the processing of structure members. 

EXAMPLE 11.14 Updating Customer Records To illustrate further how the individual members of a structure can 
be processed, consider a very simple customer billing system. In this system the customer records will be stored within an 
array of structures. Each record will be stored as an individual structure (i.e., as an array element) containing the 
customer’s name, street address, city and state, account number, account status (current, overdue or delinquent), previous 
balance, current payment., new balance and payment date. 
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The overall strategy will be to enter each customer record into the computer, updating it as soon as it is entered, to 
reflect current payments. All of the updated records will then be displayed, along with the current status of each account. 
The account status will be based upon the size of the current payment relative to the customer’s previous balance. 

The structure declarations are shown below. 

s t r u c t  date { 
i n t  month; 
i n t  day; 
i n t  year;  

}; 

s t r u c t  account { 

char name[80]; 
char s t r e e t [ 8 0 ] ;  
char c i t y [  801 ; 
i n t  acct-no; 
char acct-type; 
f l o a t  oldbalance;  
f l o a t  newbalance ; 
f l o a t  payment; 
s t r u c t  date lastpayment; 

} customer [ 1001; 

Notice that customer is a 100-element array of structures. Thus, each array element (each structure) will represent one 
customer record. Each structure includes three members that are character-type arrays (name, s t r e e t  and c i t y ) ,  and 
one member that is another structure ( l a s t  payment). 

The status of each account will be determined in the following manner: 

1. If the current payment is greater than zero but less than 10 percent of the previous outstanding balance, the 
account will be overdue. 

2. If there is an outstanding balance and the current payment is zero, the account will be delinquent. 

3. Otherwise, the account will be current. 

The overall program strategy will be as follows. 

Specify the number of customer accounts (i.e., the number of structures) to be processed. 

For each customer, read in the following items. 

(a) name (e) previous balance 
(b)  street v) current payment 
(4 city (g) payment date 
(d) account number 

As each customer record is read into the computer, update it in the following manner. 

(a) Compare the current payment with the previous balance and determine the appropriate account status. 

(b) Calculate a new account balance by subtracting the current payment from the previous balance (a negative 
balance will indicate a credit). 

After all of the customer records have been entered and processed, write out the following information for each 
customer. 

(a) name (e) old balance 
(6) account number U> current payment 
(c) street (g) new balance 
(4 city (h) account status 

Let us write the program in a modular manner, with one function to enter and update each record and another 
function to display the updated data. Ideally, we would like to pass every customer record (i.e., every array element) to 
each of these functions. Since each customer record is a structure, however, and we have not yet discussed how to pass a 
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structure to or from a function, we will define the array of structures as an external array. This will allow us to access the 
array elements, and the individual structure members, directly from all of the functions. 

The individual program modules are straightforward, though some care is required in reading the individual structure 
members into the computer. Here is the entire program. 

/ *  update a ser ies o f  customer accounts ( s i m p l i f i e d  b i l l i n g  system) * /  
/ *  maintain the customer accounts as an external  array o f  s t ructures * /  

# include <stdio.h> 

vo id readinput(1nt 1); 

void w r i t e o u t p u t ( i n t  1); 

s t r u c t  date { 

i n t  month; 
i n t  day; 
i n t  year; 

1; 
s t r u c t  account { 

char name[80]; 
char s t ree t [80 ] ;  
char c i t y [ 8 0 ] ;  
i n t  acct-no; / *  (pos i t i ve  in teger)  * /  
char acct-type; / *  C (current ) ,  0 (overdue), o r  D (del inquent)  * /  
f l o a t  oldbalance; / *  (nonnegative quant i ty )  * /  
f l o a t  newbalance; / *  (nonnegative quant i ty )  * /  
f l o a t  payment; / *  (nonnegative quant i ty )  * /  
s t r u c t  date lastpayment; 

} customer[100]; / *  maintain as many as 100 customers * /  

main( ) 

1 
i n t  i,n; 

printf("CUST0MER BILLING SYSTEM\n\n'); 
p r i n t f ( "How many customers are there? ' I ) ;  

scanf ("%d",  an) ; 

f o r  ( i  = 0; i< n; ++i )  { 

readinput ( i )  ; 

/ *  determine account s ta tus * /  

i f  (customer[i].payment > 0) 
customer[ i ] .acct-type = 

(customer[i].payment < 0.1 * customer[ i ] .oldbalance) ? '0' : 'C ' ;  
e lse 

customer[i].acct-type = 
(customer[ i ] .oldbalance > 0) ? I D '  : 'C ' ;  

/ *  adjust  account balance * /  

customer[i].newbalance = customer[ i ] .oldbalance - customer[i].payment; 

1; 
f o r  ( i  = 0; i< n; + + i )  

w r i t e o u t p u t ( i ) ;  

} 
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void readinput ( i n t  1)  

/ *  read inpu t  data and update record f o r  each customer * /  

{ 
pr in t f ( " \nCustomer no. %d\nnJi+ 1);  

p r i n t f ( "  Name: " ) ;  

scanf( "  % [ ^ \ n ] " ,  customer[i].name); 
p r i n t f  ( ' Street :  " ) ; 
scanf( "  % [ ^ \ n ] " ,customer[ i ] .s t reet ) ;  
p r i n t f ( "  C i t y :  " ) ;  

scanf( "  % [ ^ \ n J m J  cus tomer [ i ] . c i t y ) ;  
p r i n t f ( "  Account number: ' ) ;  

scanf("%d",  &customer[ i ] .acct~no) ;  
p r i n t f ( "  Previous balance: " ) ;  

scan f ( "%f " ,  &customer[i].oldbalance); 
p r i n t f ( "  Current payment: " ) ;  

scanf( "%f ' ,  &customer[i].payment); 
p r i n t f ( "  Payment date (mm/dd/yyyy): " ) ;  

scanf("%d/%d/%d",&customer[i].lastpayment.month, 
&customer[i].lastpayment.day, 

&customer[i].lastpayment.year); 


re tu rn; 

void w r i t e o u t p u t ( i n t  i )  

/ *  d isp lay current  informat ion f o r  each customer * /  

pr int f (" \nName: % s " ,  customer[i].name); 
p r i n t f  ( ' I  Account number: %d\n", customer[ i ] .acct~no) ;  
p r i n t f ( " S t r e e t :  %s\n" ,  customer[ i ] .s t reet ) ;  
p r i n t f ( " C i t y :  %s\n\n" ,  cus tomer [ i ] . c i t y ) ;  
p r i n t f ( " 0 l d  balance: %7.2fU, customer[i].oldbalance); 
p r i n t f ( "  Current payment: %7.2fH,  customer[i].payment); 
p r i n t f ( "  New balance: %7.2f \n\n1' ,  customer[i].newbalance); 
pr in t f ( "Accoun t  status:  " ) ;  

switch (customer[ i ] .acct-type) { 

case ' C ' :  
printf("CURRENT\n\n"); 
break; 

case '0': 
p r i n t f  ("OVERDUE\n\n" ) ; 
break; 

case I D ' :  

p r i n t f ( * D E L I N Q U E N T \ n \ n " ) ;  
break; 

de fau l t  : 
p r i n t f  ("ERROR\n\n") ; 

1 
re tu rn; 

1 
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Now suppose the program is used to process four fictitious customer records. The input dialog is shown below, with 
the user’s responses underlined. 

CUSTOMER BILLING SYSTEM 

How many customers are  there?  4 

Customer no. 1 
Name: Steve Johnson 
S t ree t :  123 Mountainview Dr ive  
C i t y :  Denver. 
Account number: 4208 
Previous balance: 247.88 
Current payment: 25.00 
Payment date (mmlddlyyyy): 6/14/1998 

Customer no. 2 
Name: Susan Richards 
S t ree t :  4383 A l l i a a t o r  B l vd  
C i t y :  F o r t  Lauderdale. 
Account number: 2219 
Previous balance: 135.00 
Current payment: 135.04 
Payment date (mm/dd/yyyy): 8110/2000 

Customer no. a 
Name: M a r t i n  Peterson 
S t ree t :  1787 P a c i f i c  Parkway 
C i t y :  San Dieao, CA 
Account number: 8452 
Previous balance: 387.42 
Current payment: 35.00 
Payment date (mm/dd/yyyy): 9/22/1999 

Customer no. 4 
Name: P h v l l i s  Smith 
S t ree t :  1000 Great White Way 
C i t y :  New York. NY 
Account number: 711 
Previous balance: 260.0Q 
Current payment: Q 
Payment date (mm/dd/yyyy): 11/27/2001 

The program will then generate the following output data: 

Name: Steve Johnson Account number: 4208 
S t r e e t :  123 Mountainview Dr ive  
C i t y :  Denver, CO 

Old balance: 247.88 Current payment: 25.00 New balance: 222.88 

Account s ta tus :  CURRENT 
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Name: Susan Richards Account number: 2219 
Street :  4383 A l l i g a t o r  Blvd 
C i t y :  For t  Lauderdale, FL 

Old balance: 135.00 Current payment: 135.00 New balance: 0.00 

Account status:  CURRENT 

Name: Mar t in  Peterson Account number: 8452 
Street :  1787 P a c i f i c  Parkway 
C i t y :  San Diego, CA 

Old balance: 387.42 Current payment: 35.00 New balance: 352.42 

Account s ta tus:  OVERDUE 

Name: P h y l l i s  Smith Account number: 711 
Street :  1000 Great White Way 
C i t y :  New York, NY 

Old balance: 260.00 Current payment: 0.00 New balance: 260.00 

Account s ta tus:  DELINQUENT 

You should understand that this example is unrealistic from a practical standpoint, for two reasons. First, the array of 
structures (customer) is defined to be external to all of the functions within the program. It would be preferrable to 
declare customer within main, and then pass it to or from readinput or writeouput as required. We will learn how to 
do this in Sec. 11.5. 

A more serious problem is the fact that a real customer billing system will store the customer records within a data 
file on an auxiliary memory device, such as a hard disk or a magnetic tape. To update a record we would access the record 
from the data file, change the data where necessary, and then write the updated record back to the data file. The use of 
data files will be discussed in Chap. 12. Since the present example does not make use of data files, we must reenter all of 
the customer records whenever the program is run. This is rather contrived, though it does provide a simple example 
illustrating the manner in which structures can be processed on a member-by-member basis. 

It is sometimes useful to determine the number of bytes required by an array or a structure. This 
information can be obtained through the use of the s izeof  operator, originally discussed in Sec. 3.2. For 
example, the size of a structure can be determined by writing either s izeof  variableor s izeof  ( s t r u c t  
tag)-

EXAMPLE 11.15 An elementary C program is shown below. 

#include <stdio.h> 

main() / *  determine the size o f  a s t ructure * /  

{ 
s t r u c t  date { 

i n t  month; 
i n t  day; 
i n t  year; 

}; 
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s t r u c t  account { 

i n t  acct-no; 
char acct-type; 
char name[80]; 
f l o a t  balance ; 
s t r u c t  date lastpayment; 

} customer; 

p r i n t f  ( " % d \ n " ,  s i zeof  customer) ; 
p r i n t f  ( "%d', s izeof  ( s t  r u c t  account ) ) ; 

} 

This program makes use of the s izeof  operator to determine the number of bytes associated with the structure variable 
customer (or equivalently, the structure account). The two p r i n t f  statements illustrate different ways to utilize the 
s i z e o f  operator. Both p r i n t f  statements will produce the same output. 

Execution of the program will result in the following output. 

93 

93 


Thus, the structure variable customer (or the structure account) will occupy 93 bytes. This value is obtained as follows. 

,Ttructure member Number of bvtes 

acct-no 2 
acct-type 1 
name 80 
balance 4 
lastpayment 6 

Total 93 

Some compilers may assign two bytes to acct-type in order to maintain an even number of bytes. Hence, the total byte 
count may be 94 rather than 93. 

11.3 USER-DEFINED DATA TYPES ( typedef)  

The typedef  feature allows users to define new data-types that are equivalent to existing data types. Once a 
user-defined data type has been established, then new variables, arrays, structures, etc. can be declared in 
terms of this new data type. 

In general terms, a new data type is defined as 

typedef  type new- type; 

where type refers to an existing data type (either a standard data type, or previous user-defined data type), 
and new- type refers to the new user-defined data type. It should be understood, however, that the new data 
type will be new in name only. In reality, this new data type will not be fundamentally different from one of 
the standard data types. 

EXAMPLE 11.16 Here is a simple declaration involving the use of typedef.  

typedef i n t  age; 

In this declaration age is a user-defined data type, which is equivalent to type i n t .  Hence, the variable declaration 
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age male, female; 

is equivalent to writing 

i n t  male, female; 

In other words, male and female are regarded as variables of type age, though they are actually integer-type variables. 
Similarly, the declarations 

typedef f l o a t  he ight [ 1001; 
he ight  men, women; 

define he ight  as a 100-element, floating-point array type-hence, men and women are 100-element, floating-point arrays. 
Another way to express this is 

typedef  f l o a t  he ight ;  
he ight  men[100], women[100]; 

though the former declaration is somewhat simpler. 

The typedef feature is particularly convenient wllen defining structures, since it eliminates the need to 
repeatedly write s t r u c t  tag whenever a structure is referenced. Hence, the structure can be referenced 
more concisely. In addition, the name given to a user-defined structure type often suggests the purpose of the 
structure within the program. 

In general terms, a user-defined structure type can be written as 

typedef s t r u c t  { 
member I ;  
member 2; 
. . . . .  
Member m; 

} new-type; 

where new- type is the user-defined structure type. Structure variables can then be defined in terms of the 
new data type. 

EXAMPLE 11.17 The following declarations are comparable to the structure declarations presented in Examples 11. I 
and 1 1.2. Now, however, we introduce a user-defined data type to describe the structure. 

typedef  s t r u c t  { 

i n t  acct-no; 
char acct-type; 
char name[80]; 
f l o a t  balance ; 

} record;  

record oldcustomer, newcustomer; 

The first declaration defines record as a user-defined data type. The second declaration defines oldcustomer and 
newcustomer as structure variables of type record. 

The typedef feature can be used repeatedly, to define one data type in terms of other user-defined data 
types. 
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EXAMPLE 11.18 Here are some variations of the structure declarations presented in Example 1 1.5. 

typedef s t r u c t  { 

i n t  month; 
i n t  day; 
i n t  year; 

} date; 

typedef s t r u c t  { 

i n t  acct-no; 
char acct-type; 
char name[80]; 
f l o a t  balance ; 
date lastpayment; 

} record; 

record customer[100]; 

In this example date and record are user-defined stucture types, and customer is a 100-element array whose elements 
are structures of type record. (Recall that date was a tag rather than an actual data type in Example 11.5.) The 
individual members within the ith element of customer can be written as customer [ i ]  .acct-no, customer [ i ]  .name, 
customer[ i].lastpayment .month, etc., as before. 

There are, of course, variations on this theme. Thus, an alternate declaration can be written as 

typedef s t r u c t  { 
i n t  month; 
i n t  day; 
i n t  year; 

} date; 

typedef s t r u c t  { 

i n t  acct-no; 
char acct-type; 
char name[80]; 
f l o a t  balance; 
date lastpayment; 

} record[ 1001; 

record customer; 

or simply 

typedef s t r u c t  { 

i n t  month; 
i n t  day; 
i n t  year; 

} date; 

s t r u c t  { 

i n t  acct-no; 
char acct-type; 
char name[80]; 
f l o a t  balance ; 
date lastpayment; 

} customer [ 1001; 

All three sets of declarations are equivalent. 
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11.4 STRUCTURES AND POINTERS 

The beginning address of a structure can be accessed in the same manner as any other address, through the use 
of the address (a) operator. Thus, if variable represents a structure-type variable, then &variable 
represents the starting address of that variable. Moreover, we can declare a pointer variable for a structure by 
writing 

type *ptvar;  

where type is a data type that identifies the composition of the structure, and ptvar represents the name of 
the pointer variable. We can then assign the beginning address of a structure variable to this pointer by 
writing 

ptvar = &variable; 

EXAMPLE 11.19 Consider the following structure declaration, which is a variation of the declaration presented in 
Example 11.l. 

typedef s t r u c t  { 

i n t  acct-no; 
char acct-type; 
char name[bO]; 
f l o a t  balance; 

} account; 

account customer, *pc; 

In this example customer is a structure variable of type account, and pc is a pointer variable whose object is a structure 
variable of type account. Thus, the beginning address of customer can be assigned to pc by writing 

pc = &customer; 

The variable and pointer declarations can be combined with the structure declaration by writing 

s t r u c t  { 
menber I ;  
member 2; 
. . . . .  
member m;  

1 variable, *ptvar; 

where variable again represents a structure-type variable, and ptvar represents the name of a pointer 
variable. 

EXAMPLE 11.20 The following single declaration is equivalent to the two declarations presented in the previous 
example. 

s t  r u c t  { 

i nt acc t-no ; 
char acct-type; 
char name[80]; 
f l o a t  balance ; 

customer, *pc; 

The beginning address of customer can be assigned to pc by writing 
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pc = &customer; 

as in the previous example. 

An individual structure member can be accessed in terms of its corresponding pointer variable by writing 

ptvar-  >member 

where ptvar refers to a structure-type pointer variable and the operator - > is comparable to the period (.) 
operator discussed in Sec. 1 1.2. Thus, the expression 

ptvar->member 

is equivalent to writing 

variable.  member 

where variable is a structure-type variable, as discussed in Sec. 1 1.2. The operator - > falls into the highest 
precedence group, like the period operator (.). Its associativity is left to right (see Appendix C). 

The ->  operator can be combined with the period operator to access a submember within a structure (i.e., 
to access a member of a structure that is itself a member of another structure). Hence, a submember can be 
accessed by writing 

ptvar-  >member. submember 

Similarly, the ->  operator can be used to access an element of an array that is a member of a structure. This is 
accomplished by writing 

ptvar-  >member[ expression] 

where expression is a nonnegative integer that indicates the array element. 

EXAMPLE 11.21 Here is a variation of the declarations shown in Example 11.8. 

typedef s t r u c t  { 
i n t  month; 
i n t  day; 
i n t  year;  

} date ;  

s t r u c t  { 
i n t  acct-no; 
char acct-type; 
char name(801; 
f l o a t  balance; 
date lastpayment; 

} customer, *pc = &customer; 

Notice that the pointer variable pc is initialized by assigning it the beginning address of the structure variable customer. 
In other words, pc will point to customer. 

If we wanted to access the customer’s account number, we could write any of the following: 

customer.acct-no pc->acct-no (*pc).acct-no 

The parentheses are required in the last expression because the period operator has a higher precedence than the 
indirection operator (*). Without the parentheses the compiler would generate an error, because pc (a pointer) is not 
directly compatible with the dot operator. 
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Similarly, the customer's balance can be accessed by writing any of the following: 

customer.balance pc->balance (*pc).balance 

and the month of the last payment can be accessed by writing any of the following: 

customer.1astpayment.month pc->lastpayment.month (*pc).lastpayment.month 

Finally, the customer's name can be accessed by writing any of the following: 

customer. name pc ->name (*pc).name 

Therefore, the third character of the customer's name can be accessed by writing any of the following (see Sec. 10.4). 

customer.name[2] pc->name[2] (*pc).name[2] 

*(customer. name + 2) pc->(name + 2) *((*pc).name + 2) 

A structure can also include one or more pointers as members. Thus, if ptmember is both a pointer and a 
member of var iab le ,  then * variable.ptmember will access the value to which ptnember points. 
Similarly, if p t v a r  is a pointer variable that points to a structure and ptmember is a member of that structure, 
then * p t v a r -  >ptmenberwill access the value to which ptmemberpoints. 

EXAMPLE 11.22 Consider the simple C program shown below 

# inc lude <stdio.h> 

main( ) 

t 
i n t  n = 3333; 
char t = " C " ;  
f l o a t  b = 99.99; 

typedef s t r u c t  { 

i n t  month; 
i n t  day; 
i n t  year; 

} date; 

s t r u c t  { 

i n t  *acct-no; 
char *acct-type; 
char *name; 
f l o a t  *balance; 
date lastpayment; 

} customer, *pc = &customer; 

customer.acct-no = 8n; 
customer. acct-type = 8t;  
customer.name = "Smith";  
customer.balance = &b; 

p r i n t f ( " " % d  %c %s %.2 f \nn ,  *customer.acct-no, *customer.acct-type, 
customer.name, *customer.balance); 

p r i n t f ( ' % d  %c %s %.2 fn ,  *pc->acct-no, *pc-sacct-type, 
pc->name, *pc->balance); 
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Within the second structure, the members acct-no, acct-type, name and balance are written as pointers. Thus, the 
value to which acct-no points can be accessed by writing either *customer.acct-no or *pc->acct-no. The same is 
true for acct-type and balance. Moreover, recall that a string can be assigned directly to a character-type pointer. 
Therefore, if name points to the beginning of a string, then the string can be accessed by writing either customer. name or 
pc ->name. 

Execution of this simple program results in the following two lines of output. 

3333 C Smith 99.99 
3333 C Smith 99 .99  

The two lines of output are identical, as expected. 

Since the - > operator is a member of the highest precedence group, it will be given the same high priority 
as the period (.) operator, with left-to-right associativity. Moreover, this operator, like the period operator, 
will take precedence over any unary, arithmetic, relational, logical or assignment operators that may appear in 
an expression. We have already discussed this point, as it applies to the period operator, in Sec. 11.2. 
However, some additional consideration should be given to certain unary operators, such as ++, as they apply 
to structure-type pointer variables. 

We already know that expressions such as ++ptvar- >member and ++ptvar- >member. submember are 
equivalent to ++(ptvar -  >member) and ++(ptvar -  >member. submember), respectively. Thus, such 
expressions will cause the value of the member or the submember to be incremented, as discussed in Sec. 
11.2. On the other hand, the expression ++ptvar will cause the value of ptvar to increase by whatever 
number of bytes is associated with the structure to which ptvar points. (The number of bytes associated with 
a particular structure can be determined through the use of the s i z e o f  operator, as illustrated in Example 
11.15.) Hence, the address represented by ptvar will change as a result of this expression. Similarly, the 
expression (++ptvar).member will cause the value of ptvar to increase by this number of bytes before 
accessing member. There is some danger in attempting operations like these, because ptvar may no longer 
point to a structure variable once its value has been altered. 

EXAMPLE 11.23 Here is a variation of the simple C program shown in Example 1 1.15. 

# inc lude  <s td io .h>  

main ( ) 

typedef s t r u c t  
i n t  month; 
i n t  day; 
i n t  year;  

} date;  

s t r u c t  { 

i n t  acct-no; 
char acct-type; 
char name[80]; 
f l o a t  balance ; 
date lastpayment; 

} customer, *p t  = &customer; 

pr in t f ( "Number  o f  bytes (dec):  %d\n" ,  s i zeof  * p t ) ;  
p r i n t f  ("Number o f  bytes (hex) : %x\n\n", s izeof  * p t )  ; 
p r i n t f ( " S t a r t i n g  address (hex) :  % x \ n " ,  p t ) ;  
p r in t f ( "1ncremented  address (hex):  ++pt ) ;%XI ' ,  

1 



360 STRUCTURES AND UNIONS [CHAP.11  

Notice that p t  is a pointer variable whose object is the structure variable customer. 
The first p r i n t f  statement causes the number of bytes associated with customer to be displayed as a decimal 

quantity. The second p r i n t f  statement displays this same value as a hexadecimal quantity. The third p r i n t f  statement 
causes the value of p t  (i.e., the starting address of customer) to be displayed in hexadecimal, whereas the fourth p r i n t f  
statement shows what happens when p t  is incremented. 

Execution of the program causes the following output to be generated. 

Number o f  bytes (dec) :  93 
Number o f  bytes (hex) :  5d 

S t a r t i n g  address (hex):  f 7 2  
Incremented address (hex):  f c f  

Thus, we see that customer requires 93 decimal bytes, which is 5d in hexadecimal. The initial value assigned to p t  (i.e., 
the starting address of customer) is f72,  in hexadecimal. When p t  is incremented, its value increases by 5d hexadecimal 
bytes, to fc f .  

It is interesting to alter this program by replacing the character array member name [ 801 with the character pointer 
*name, and then execute the program. What do you think will happen? 

11.5 PASSING STRUCTURES TO FUNCTIONS 

There are several different ways to pass structure-type information to or from a function. Structure members 
can be transferred individually, or entire structures can be transferred. The mechanics for carrying out the 
transfers vary, depending on the type of transfer (individual members or complete structures) and the 
particular version of C. 

Individual structure members can be passed to a function as arguments in the function call, and a single 
structure member can be returned via the r e t u r n  statement. To do so, each structure member is treated the 
same as an ordinary single-valued variable. 

EXAMPLE 11.24 The skeletal outline of a C program is shown below. This outline makes use of the structure 
declarations presented earlier. 

f l o a t  ad jus t (char  name[], i n t  acct-no, f l o a t  balance);  / *  funct  prototype * /  

main ( ) 

{ 
typedef s t r u c t  { / *  st ructure  dec lara t ion  * /  

i n t  month; 
i n t  day; 
i n t  year;  

) date;  

s t r u c t  { / *  st ructure  dec lara t ion  * /  
i n t  acct-no; 
char acct-type ; 
char name[80]; 
f l o a t  balance ; 
date lastpayment; 

} customer; 

customer.balance = adjust(customer.name, custorner.acct-no, customer.balance);  
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f l o a t  adjust(char name[], i n t  acct-no, f l o a t  balance) 

{ 
f l o a t  newbalance ; / *  l o c a l  var iab le dec larat ion * /  

newbalance = . . . . .; / *  adjust  value o f  balance * /  

return(newba1ance); 

This program outline illustrates the manner in which structure members can be passed to a function. In particular, 
customer. name, customer. acct-no and customer. balance are passed to the function ad just .  Within ad just ,  the 
value assigned to newbalance presumably makes use of the information passed to the function. This value is then 
returned to main, where it is assigned to the structure member customer. balance. 

Notice the function declaration in main. This declaration could also have been written without the argument names, 
as follows: 

f l o a t  adjust(char [ I ,  i n t ,  f l o a t ) ;  

Some programmers prefer this form, since it avoids the specification of dummy argument names for data items that are 
actually structure members. We will continue to utilize full function prototypes, however, to take advantage of the 
resulting error checking. 

A complete structure can be transferred to a function by passing a structure-type pointer as an argument. 
In principle, this is similar to the procedure used to transfer an array to a function. However, we must use 
explicit pointer notation to represent a structure that is passed as an argument. 

You should understand that a structure passed in this manner will be passed by reference rather than by 
value. Hence, if any of the structure members are altered within the function, the alterations will be 
recognized outside of the function. Again, we see a direct analogy with the transfer of arrays to a function. 

EXAMPLE 11.25 Consider the simple C program shown below. 

#include <stdio.h> 

typedef s t r u c t  { 

char *name; 
i n t  acct-no; 
char acct-type; 
f l o a t  balance ; 

) record; 

main() / *  t rans fe r  a s t ructure- type pointer  t o  a func t i on  * /  
{ 

vo id ad just ( record *p t ) ;  / *  func t i on  dec larat ion * /  

s t a t i c  record customer = {'Smithu, 3333, I C I ,  33.33); 

p r i n t f ( " % s  %d %c %.2f \nn,  customer.name, customer.acct-no, 
customer.acct-type, customer.balance); 

adjust(&customer); 
p r i n t f ( ' % s  %d %c %.2f\n' ,  customer.name, customer.acct-no, 

customer.acct-type, customer.balance); 
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vo id  a d j u s t ( r e c o r d  * p t )  / *  funct ion  d e f i n i t i o n  * /  

1 
pt->name = "Jones";  
pt->acct-no = 9999; 
pt->acct- type = ' R I ;  

pt ->balance = 99.99; 
r e t u r n; 

1 

This program illustrates the transfer of a structure to a function by passing the structure's address (a pointer) to the 
function. In particular, customer is a static structure of type record, whose members are assigned an initial set of 
values. These initial values are displayed when the program begins to execute. The structure's address is then passed to 
the function adj ust ,  where different values are assigned to the members of the structure. 

Within ad just ,  the formal argument declaration defines p t  as a pointer to a structure of type record. Also, notice 
the empty r e t u r n  statement; i.e., nothing is explicitly returned from ad just  to main. 

Within main, we see that the current values assigned to the members of customer are displayed a second time, after 
a d j u s t  has been accessed. Thus, the program illustrates whether or not the changes made in a d j  us t  carry over to the 
calling portion of the program. 

Execution of the program results in the following output. 

Smith 3333 C 33.33 
Jones 9999 R 99.99 

Thus, the values assigned to the members of customer within ad just  are recognized within main, as expected. 

A pointer to a structure can be returned from a function to the calling portion of the program. This feature 
may be useful when several structures are passed to a function, but only one structure is returned. 

EXAMPLE 11.26 Locating Customer Records Here is a simple C program that illustrates how an array of 
structures is passed to a function, and how a pointer to a particular structure is returned. 

Suppose we specify an account number for a particular customer and then locate and display the complete record for 
that customer. Each customer record will be maintained in a structure, as in the last example. Now, however, the entire 
set of customer records will be stored in an array called customer. Each element of customer will be an independent 
structure. 

The basic strategy will be to enter an account number, and then transfer both the account number and the array of 
records to a function called search. Within search, the specified account number will be compared with the account 
number that is stored within each customer record until a match is found, or until the entire list of records has been 
searched. If a match is found, a pointer to that array element (the structure containing the desired customer record) is 
returned to main, and the contents of the record are displayed. 

If a match is not found after searching the entire array, then the function returns a value of NULL (zero) to main. The 
program then displays an error message requesting that the user reenter the account number. This overall search procedure 
will continue until a value of zero is entered for the account number. 

The complete program is shown below. Within this program, customer is an array of structures of type record, 
and p t  is a pointer to a structure of this same type. Also, search is a function that accepts two arguments and returns a 
pointer to a structure of type record. The arguments are an array of structures of type record and an integer quantity, 
respectively. Within search, the quantity returned is either the address of an array element, or NULL (zero). 

/ *  f i n d  a customer record t h a t  corresponds t o  a s p e c i f i e d  account number * /  

# inc lude  <s td io .h>  

#def ine  N 3 

#def ine  NULL 0 
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typedef s t r u c t  { 

char *name ; 
i n t  acct-no; 
char acct- t  ype ; 
f l o a t  balance; 

} record;  

record  *search(record t a b l e [ ] ,  i n t  acctn);  / *  f u n c t i o n  pro to type * /  

main( ) 

s t a t i c  record  customer[N] = { 

{ "Smi th" ,  3333, ' C l ,  33.33}, 
{"Jones",  6666, 'O', 66.66), 
{lfBrown", 9999, I D ' ,  99.99) 

1; / *  a r ray  o f  s t ruc tu res  * /  

i n t  acctn; / *  va r iab le  dec la ra t i on  * /  
record  *p t ;  / *  p o i n t e r  dec la ra t i on  * /  

p r in t f ( "Cus tomer  Account Locator \n ' ) ;  
p r i n t f  ( " T o  END, en ter  0 f o r  the  account number\n"); 
p r i n t f ( " \ n A c c o u n t  no.: " ) ;  / *  en ter  f i r s t  account number * /  
scanf ( "%d",  &acctn) ; 

wh i l e  (acc tn  != 0) { 

= search(customer, acc tn) ;  

( p t  != NULL) { / *  found a match * /  
p r i n t f  ("\nName: %s\n" ,  pt->name); 
p r i n t f ( " A c c o u n t  no.: %d\n",  pt->acct-no);  
p r i n t f  ("Account type: %c\n", pt->acct- type) ; 
pr in t f ( "Ba1ance:  %.2 f \nn ,  p t ->ba lance) ;  

e l se  
p r i n t f  ( I' \nERROR - Please t r y  aga in \n " )  ; 

p r i n t f  ( I' \nAccount no : " ) ;  / *  en ter  next account number * /  
scanf ( "%d",  &acctn) ; 

1 

record  *search(record table"] ,  i n t  acctn) / *  f u n c t i o n  d e f i n i t i o n  * /  

/ *  accept an a r ray  o f  s t ruc tu res  and an account number, 
r e t u r n  a p o i n t e r  t o  a p a r t i c u l a r  s t ruc tu re  (an a r ray  element) 
i f  the  account number matches a member o f  t h a t  s t ruc tu re  * /  

{ 
i n t  count; 

f o r  (count = 0; count < N; ++count) 
i f  ( table[count] .acct-no == acctn) / *  found a match * /  

re tu rn (& tab le [coun t ] ) ;  / *  r e t u r n  p o i n t e r  t o  a r ray  element * /  

return(NULL); 

} 
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The array size is expressed in terms of the symbolic constant N. For this simple example we have selected a value of 
N = 3. That is, we are storing only three sample records within the array. In a more realistic example, N would have a 
much greater value. 

Finally, it should be mentioned that there are much better ways to search through a set of records than examining 
each record sequentially. We have selected this simple though inefficient procedure in order to concentrate on the 
mechanics of transferring structures between main and its subordinate function search. 

Shown below is a typical dialog that might result from execution of the program. The user’s responses are 
underlined, as usual. 

Customer Account Locator 
To END, e n t e r  0 f o r  the  account number 

Account n o . :  3333 

Name: Smith 
Account n o . :  3333 
Account type:  C 

Balance: 33.33 

Account no. : 9999 

Name: Brown 
Account no . :  9999 
Account type:  D 

Balance: 99 .99  

Account no . :  666 

ERROR - Please t r y  again 

Account no . :  6666 

Name: Jones 
Account no . :  6666 

Account type:  o 
Balance: 66.66 

Account no.:  0 

Newer versions of C permit an entire structure to be transferred directly to a function as an argument, and 
returned directly from a function via the re turn  statement. (Notice the contrast with mays,  which cannot be 
returned via the r e t u r n  statement.) These features are included in the current ANSI standard. 

When a structure is passed directly to a function, the transfer is by value rather than by reference. This is 
consistent with other direct (nonpointer) transfers in C. Therefore, if any of the structure members are altered 
within the function, the alterations will not be recognized outside of the function. However, if the altered 
structure is returned to the calling portion of the program, then the changes will be recognized within this 
broader scope. 

EXAMPLE 11.27 In Example 11.25 we saw a program that transferred a structure-type pointer to a function. Two 
different p r i n t f  statements within main illustrated the fact that transfers of this type are by reference; i.e., alterations 
made to the structure within the function are recognized within main. A similar program is shown below. However, the 
present program transfers a complete structure, rather than a structure-type pointer, to the function. 
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# inc lude <s td io .h> 

typedef s t r u c t  { 

char *name; 
i n t  acct-no; 
char acct-type; 
f l o a t  balance ; 

} record;  

v o i d  ad jus t ( reco rd  customer); / *  f u n c t i o n  pro to type* /  

main()  / *  t r a n s f e r  a s t ruc tu re  t o  a f u n c t i o n  * /  

s t a t i c  record  customer = {"Smith",  3333, 'C', 33.33); 

p r i n t f ( " % s  %d %c % . 2 f \ n " ,  customer.name, customer.acct-no, 
customer.acct-type, customer.balance); 

adjust(customer);  
p r i n t f  (I'%s %d %c %.2f \ n u ,  customer.name, customer.acct-no, 

customer.acct-type, customer.balance); 

1 

v o i d  ad jus t ( reco rd  cus t  / *  f u n c t i o n  d e f i n i t i o n  * /  

{ 
cus t .  name = "Jones" 
cust.acct-no = 9999; 
cust.acct-type = ' R I ;  

cust.balance = 99.99; 
re tu rn ;  

1 

Notice that the function ad jus t  now accepts a structure of type record as an argument, rather than a pointer to a 
structure of type record, as in Example 11.25. Nothing is returned from ad j  us t  to main in either program. 

When the program is executed, the following output is obtained. 

Smith 3333 C 33.33 
Smith 3333 C 33.33 

Thus, the new assignments made within ad jus t  are not recognized within main. This is expected, since the transfer of 
the structure customer from main to ad jus t  is by value rather than by reference. (Compare with the output shown in 
Example 1 1.25.) 

Now suppose we modify this program so that the altered structure is returned from ad jus t  to main. Here is the 
modified program. 

# inc lude <s td io .  h> 

typedef s t r u c t  { 

char *name; 
i nt acc t-no ; 
char acct-type; 
f l o a t  balance; 

} record;  

record  ad jus t ( reco rd  customer); / *  f u n c t i o n  pro to type *I 
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main( )  / *  t r a n s f e r  a s t ruc ture  t o  a funct ion  and r e t u r n  the  s t r u c t u r e  * /  

s t a t i c  record customer = { N S m i t h " , 3333, 'C', 33.33); 

p r i n t f ( " % s  %d %c % . 2 f \ n " ,  customer.name, customer.acct-no, 
customer.acct-type, customer.balance);  

customer = adjust(customer);  
p r i n t f ( " % s  %d %c % . 2 f \ n " ,  customer.name, customer.acct-no, 

customer.acct-type, customer.balance);  

record ad just  (record cust )  / *  funct ion  d e f i n i t i o n  * /  

{ 
cust .  name = "Jones"; 
cust.acct-no = 9999; 
cust .acct- type = ' R I ;  

cust .balance = 99.99;  
r e t u r n ( c u s t ) ;  

1 

Notice that a d j u s t  now returns a structure of type record to main. The r e t u r n  statement is modified accordingly. 
Execution of this program results in the following output. 

Smith 3333 C 33.33 
Jones 9999 R 9 9 . 9 9  

Thus, the alterations that were made within ad just  are now recognized within main. This is expected, since the altered 
structure is now returned directly to the calling portion of the program. (Compare with the output shown in Example 
I 1.25 as well as the output shown earlier in this example.) 

Most versions of C allow complicated data structures to be transferred freely between functions. We have 
already seen examples involving the transfer of individual structure members, entire structures, pointers to 
structures and arrays of structures. As a practical matter, however, there are some limitations on the 
complexity of data structures that can easily be transferred to or from a function. In particular, some 
compilers may have difficulty executing programs that involve complex data structure transfers, because of 
certain memory restrictions. Beginning programmers should be aware of these limitations, though the details 
of this topic are beyond the scope of the current text. 

EXAMPLE 11.28 Updating Customer Records Example 11.14 presented a simple customer billing system 
illustrating the use of structures to maintain and update customer records. In that example the customer records were 
stored within a global (external) array of structures. We now consider two variations of that program. In each program 
the array of structures is maintained locally, within main. The individual array elements (i.e., individual customer 
records) are transferred back and forth between functions, as required. 

In the first program, complete structures are transferred between the functions. In particular, the function readinput 
allows information defining each customer record to be entered into the computer. When an entire record has been 
entered, the corresponding structure is returned to main, where it is stored within the 100-element array called customer 
and adjusted for the proper account type. After all the records have been entered and adjusted, they are transferred 
individually to the function writeoutput ,  where certain information is displayed for each customer. 

The entire program is shown below. 
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/ *  update a s e r i e s  of customer accounts ( s i m p l i f i e d  b i l l i n g  system) * /  

# inc lude <s td io .h> 

/ *  m a i n t a i n  t h e  customer accounts as an a r r a y  o f  s t r u c t u r e s ,  
t r a n s f e r  complete s t r u c t u r e s  t o  and f rom f u n c t i o n s  * /  

typedef  s t r u c t  { 

i n t  month; 
i n t  day; 
i n t  year; 

} date;  

typedef  s t r u c t  { 
char  name[80]; 
char  s t r e e t [ 8 0 ] ;  
char  c i t y ( 8 0 1 ;  
i n t  acct-no; / *  ( p o s i t i v e  i n t e g e r )  * /  
char  acct-type; / *  C ( c u r r e n t ) ,  0 (overdue), o r  D ( d e l i n q u e n t )  * /  
f l o a t  o ldbalance;  / *  (nonnegative q u a n t i t y )  * /  
f l o a t  newbalance; / *  (nonnegative q u a n t i t y )  * I  
f l o a t  payment; / *  (nonnegative q u a n t i t y )  * /  
da te  lastpayment; 

record;  

r e c o r d  read input  ( i n t  1 )  ; / *  f u n c t i o n  pro to type * /  
v o i d  w r i t e o u t p u t ( r e c o r d  customer); / *  f u n c t i o n  pro to type * /  

main( ) 

/ *  read customer accounts, process each account, and d i s p l a y  ou tpu t  * /  

i n t  i,n; / *  v a r i a b l e  d e c l a r a t i o n s  * /  
record  customer[lOO]; / *  a r r a y  d e c l a r a t i o n  ( a r r a y  o f  s t r u c t u r e s )  * /  

printf('CUST0MER BILLING SYSTEM\n\n"); 
p r i n t f ( " H o w  many customers are  there?  " ) ;  
scanf ( "%d" an) ; 

f o r  (i = 0; i< n; + + i )  { 

cus tomer [ i ]  = read input (1 ) ;  

/ *  determine account s t a t u s  * /  

i f  (customer[ i ] .payment > 0) 
customer[ i ] .acct - type = 

(customer[ i ] .payment < 0.1 * cus tomer [ i ] .o ldba lance)  7 '0' : ' C ' ;  

e l s e  
cus tomer [ i ] .acc t - type  = 

(cus tomer [ i ] .o ldba lance > 0) 7 I D '  : ' C ' ;  

/ *  a d j u s t  account balance * /  

customer[ i ] .newbalance = customer[ i ] .o ldbalance - customer[ i) .payment; 

1 

f o r  ( i  = 0; i< n; + + i )  
writeoutput(customer[i]); 


1 
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record read inpu t ( i n t  i )  

/ *  read inpu t  data f o r  a customer * /  

t 
record customer; 

p r i n t f  ("\nCustomer no. %d\n", i+ 1);  

p r i n t f ( '  Name: " ) ;  

scanf( "  % [ ^ \ n ] " ,  customer.name); 
I'p r i n t f  ( St reet :  " ) ; 

scanf( "  % [ ^ \ n ] ' ,  customer.street);  
p r i n t f  ( '' C i t y :  " ) ; 
scanf( "  % [ - \ n ] " ,  customer.city); 
p r i n t f ( "  Account number: ' ) ;  
scanf ( "%d", &customer. acct-no) ; 
p r i n t f ( "  Previous balance: " ) ;  

scanf ( '%f &customer. oldbalance) ;' I ,  

p r i n t f ( '  Current payment: " ) ;  

scan f ( "%f " ,  &customer.payment); 
p r i n t f  ( I' Payment date (mm/dd/yyyy) : I' ) ; 
scanf("%d/%d/%d",&customer.lastpayment.month, 

&customer.lastpayment.day, 
&customer.lastpayment.year);  

return(customer); 

vo id  wr i teoutput ( record customer) 

/ *  d isp lay current in format ion f o r  a customer * /  

{ 
p r i n t f  ( ' \nName: %s", customer. name) ; 
p r i n t f  ( I '  Account number: %d\n", customer.acct-no); 
p r i n t f  ( "S t ree t :  %s\n',  customer.street);  
p r i n t f  ( "C i t y :  %s\n\n", customer . c i t y )  ; 
p r i n t f ( ' 0 1 d  balance: %7.2f ' ,  customer.oldba1ance); 
p r i n t f ( "  Current payment: %7.2f" ,  customer.payment); 
p r i n t f ( "  New balance: %7.2f \n\n",  customer.newbalance); 
p r i n t f ( "Accoun t  status:  ' ) ;  

swi tch (customer.acct-type) { 

case ' C '  : 
p r i n t f  ("CURRENT\n\n") ; 
break; 

case '0': 
printf('OVERDUE\n\n"); 
break; 

case I D ' :  

pr in t f ( "DELINQUENT\n \n" ) ;  
break; 

de fau l t  : 
printf("ERROR\n\n');  

1 
re turn;  

1 
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The next program is very similar to the previous program. Now, however, the transfers involve pointers to structures 
rather than the structures themselves. Thus, the structures are now transferred by reference, whereas they were transferred 
by value in the previous program. 

For brevity, this program is outlined rather than listed in its entirety. The missing blocks are identical to the 
corresponding portions of the previous program. 

/ *  update a ser ies  o f  customer accounts ( s i m p l i f i e d  b i l l i n g  system) * /  

#include cstdio.h> 

/ *  maintain the customer accounts as an ar ray  o f  s t ruc tu res ,  
t r a n s f e r  po in te rs  t o  s t ruc tu res  t o  and from func t ions  * /  

/ *  ( s t ruc tu re  d e f i n i t i o n s )  * /  

record *readinput ( i n t  i )  ; / *  func t i on  prototype * /  
vo id  wr i teoutpu t ( record  *cus t ) ;  / *  f unc t i on  prototype * /  

main ( ) 

/ *  read customer accounts, process each account, and d isp lay  output * /  

i n t  i,n; / *  var iab le  declarat ions * /  
record customer [ 1001; / *  array dec la ra t ion  (a r ray  o f  s t ruc tu res)  * /  

. . . . .  

f o r  ( i  = 0; ic n; ++i){ 
customer[ i ]  = * read input ( i ) ;  

/ *  determine account s ta tus  * /  

. . . . .  

/ *  ad jus t  account balance * /  

. . . . .  
1 

f o r  ( i  = 0; ic n; + + i )  
writeoutput(&customer[iJ); 


1 

record * read inpu t ( i n t  1) 

/ *  read inpu t  data f o r  a customer * /  

{ 
record customer; 

/ *  en ter  i npu t  data * /  

return(&customer); 

1 
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vo id  wr i teoutput ( record  * p t )  

/ *  d i s p l a y  cur rent  in format ion  f o r  a customer * /  

record customer; 

customer = * p t ;  

/ *  d i s p l a y  output  da ta  * I  

r e t u r n ;  

1 

Both of these programs will behave in the same manner as the program given in Example 11.14 when executed. 
Because of the complexity of the data structure (i.e., the array of structures, where each structure contains embedded 
arrays and embedded structures), however, the compiled programs may not be executable with certain compilers. In 
particular, a stack overflow condition (a type of inadequate memory condition) may be experienced with some compilers. 

This problem would not exist if the program were more realistic; i.e., if the customer records were stored within a file 
on an auxiliary memory device, rather than in an array that is stored within the computer’s memory. We will discuss this 
problem in Chap. 12, where we consider the use of data files for situations such as this. 

11.6 SELF-REFERENTIAL STRUCTURES 

It is sometimes desirable to include within a structure one member that is a pointer to the parent structure type. 
In general terms, this can be expressed as 

struct tag { 
member 7; 
member 2; 
. . . . .  
struct tag *name; 

1 ;  

where name refers to the name of a pointer variable. Thus, the structure of type tag will contain a member 
that points to another structure of type tag. Such structures are known as self-referentialstructures. 

EXAMPLE 11.29 A C program contains the following structure declaration. 

s t r u c t  l i s t -e lement  { 

char i tem[rlO]; 
s t r u c t  l ist -element *next;  

1; 

This is a structure of type l ist -e lement.  The structure contains two members: a 40-element character array, called 
i tem, and a pointer to a structure of the same type (i.e., a pointer to a structure of type l ist-element),  called next .  
Therefore this is a self-referential structure. 

Self-referential structures are very useful in applications that involve linked data structures, such as lists 
and trees. We will see a comprehensive example illustrating the processing of a linked list in Example 1 1.32. 
First, however, we present a brief summary of linked data structures. 

The basic idea of a linked data structure is that each component within the structure includes a pointer 
indicating where the next component can be found. Therefore, the relative order of the components can easily 
be changed simply by altering the pointers. In addition, individual components can easily be added or deleted, 
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again by altering the pointers. As a result, a linked data structure is not confined to some maximum number of 
components. Rather, the data structure can expand or contract in size as required. 

EXAMPLE 11.30 Figure 11.3(a) illustrates a linked list containing three components. Each component consists of two 
data items: a string, and a pointer that references the next component within the list. Thus, the first component contains 
the string red, the second contains green and the third contains blue. The beginning of the list is indicated by a separate 
pointer, which is labeled s t a r t .  Also, the end of the list is indicated by a special pointer, called NULL. 

Now let us add another component, whose value is white,  between red and green. To do so we merely change the 
pointers, as illustrated in Fig. 11.3(b). Similarly, if we choose to delete the component whose value is green, we simply 
change the pointer associated with the second component, as shown in Fig. I 1.3(c). 

S t a r t  -b green . blue  NULL1

I 

w h i t e  

w h i t e  4 

Fig. 11.3 

There are several different kinds of linked data structures, including linear linked lists, in which the 
components are all linked together sequentially; linked lists with multiple pointers, which permit forward and 
backward traversal within the list; circular linked lists, which have no beginning and no ending; and trees, in 
which the components are arranged in a hierarchical structure. We have already seen an illustration of a linear 
linked list in Example 1 1.30. Other kinds of linked lists are illustrated in the next example. 

EXAMPLE 11.31 Figure 11.4 shows a linear linked list that is similar to that shown in Fig. 11.3(a). Now, however, we 
see that there are two pointers associated with each component: a forward pointer, and a backward pointer. This double 
set of pointers allows us to traverse the list in either direction, i.e., from beginning to end, or from end to beginning. 

Beginning EndI '  

red  NULL a---+ 

I I 1 I 

Fig. 11.4 
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Now consider the list shown in Fig. 11.5. This list is similar to that shown in Fig. 11.3(a), except that the last data 
item (blue) points to the first data item (red). Hence, this list has no beginning and no ending. Such lists are referred to 
as circular lists. 

* red  *-- green b l u e  

Fig. 11.5 

Finally, in Fig. 11.6(a) we see an example of a tree. Trees consist of nodes and branches, arranged in some 
hierarchical manner which indicates a corresponding hierarchical structure within the data. (A binary tree is a tree in 
which every node has no more than two branches.) 

In Fig. 11.6(a) the root node has the value screen, and the associated branches lead to the nodes whose values are 
foreground and background, respectively. Similarly, the branches associated with foreground lead to the nodes 
whose values are white,  green and amber, and the branches associated with background lead to the nodes whose 
values are black,  b lue  and white.  

Figure 1 1.6(6) illustrates the manner in which pointers are used to construct the tree. 

screen 

foreground background 

whi te  green amber black b lue whi te  
c 


screen * *  

(b)  

Fig. 11.6 
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Self-referential structures are ideally suited for applications involving linked data structures. Each 
structure will represent a single component (i.e., one node) within the linked data structure. The self- 
referential pointer will indicate the location of the next component. 

EXAMPLE 11.32 Processing a Linked List We now present an interactive C program that allows us to create a linear 
linked list, add a new component to the linked list, or delete an existing component from the linked list. Each component 
will consist of a string, and a pointer to the next component. The program will be menu-driven to facilitate its use by 
nonprogrammers. We will include a provision to display the list after the selection of any menu item (i.e., after any 
change has been made to the list). 

This program is somewhat more complex than the preceding example programs. It utilizes both recursion (see Sec. 
7.6) and dynamic memory allocation (see Sec. 10.5, and Examples 10.15, 10.22, 10.24 and 10.26). 

The entire program is shown below. Following the program listing, the individual functions are discussed in detail. 

/ *  menu-driven program t o  process a l i n k e d  l i s t  o f  s t r i ngs  * /  

# include <stdio.h> 
#include <s td l ib .h>  
#include <s t r ing .h> 

#def ine NULL 0 

s t r u c t  l is t -e lement { 

char i tem[40] ;  / *  data i t e m  f o r  t h i s  node * /  
s t r u c t  l is t -e lement *next; / *  po in te r  t o  the next node * /  

1 ;  

typedef s t r u c t  l is t -e lement node; / *  s t ruc tu re  type dec la ra t ion  * /  

i n t  menu(void); / *  func t i on  prototype * /  
vo id  create(node * p t ) ;  / *  func t i on  prototype * /  
node * insert(node * p t ) ;  / *  func t i on  prototype * /  
node *remove(node * p t ) ;  / *  func t i on  prototype * /  
vo id  display(node * p t ) ;  / *  func t i on  prototype * /  

main ( ) 

{ 
node * s t a r t ;  / *  po in te r  t o  beginning o f  l i s t * /  
i n t  choice; / *  l o c a l  var iab le  dec la ra t ion  * /  

do { 
choice = menu(); 
switch (choice) { 

case 1: / *  create the l i n k e d  l i s t  * /  
s t a r t  = (node * )  mal loc(sizeof(node)) ;  / *  a l l oca te  space, 1s t  node * /  
create ( s t a r t )  ; 
p r i n t f ( " \ n " ) ;  
d i s p l a y ( s t a r t ) ;  
continue ; 

case 2: / *  add one component * /  
s t a r t  = i n s e r t ( s t a r t ) ;  
p r i n t f  ( " \ n " ) ;  
d isp lay  ( s t a r t  ) ; 
continue; 
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case 3: / *  delete one component * /  
start = remove(start); 
printf("\n"); 

display(start); 

continue; 


default: / *  terminate computation * /  
printf("End of computation\n"); 


} 
} while (choice != 4); 

int menu (void) / *  generate the main menu * /  

{ 
int choice; 


do { 
printf ( I' \nMain menu: \n" ) ; 
printf(" 1 - CREATE the linked list\n"); 

( I 'printf 2 - ADD a component\n"); 
( ' Iprintf 3 - DELETE a component\n") ; 

printf(" 4 - END\n"); 
printf("P1ease enter your choice ( 1 ,  2, 3 or 4) -> " ) ;  

scanf("%d", &choice); 

if (choice < 1 1 1  choice > 4) 

printf ("\nERROR - Please try again\n") ; 
} while (choice < 1 1 1  choice > 4); 
printf ( '\n ,, ) ; 
return(choice); 


void create(node *record) / *  create a linked list * /  

/ *  argument points to the current node * /  

{ 
printf("Data item (type \'END\' when finished): " ) ;  

scanf ( %[ *\n]' I ,  record->item); 

if (strcmp(record-Bitem, "END") == 0) 
record->next = NULL; 

else { 

/ *  allocate space for next node * /  
record->next = (node * )  malloc(sizeof(node)); 

/ *  create the next node * /  
create(record->next); 


1 
return; 


void display(node *record) / *  display the linked list * /  

/ *  argument points to the current node * /  
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{ 
i f  (record->next I =  NULL) { 

p r i n t f  ( "'%s\n"', record->i tem) ; / *  d i sp lay  t h i s  data i t em * /  
d i sp lay ( reco rd ->nex t ) ;  / *  ge t  t he  next data i t em * /  

1 
re tu rn ;  

1 

node * inser t (node * f i r s t )  / *  add one component t o  the l i n k e d  l i s t  
r e t u r n  a p o i n t e r  t o  beginning o f  t he  mod i f ied  l i s t  * /  

/ *  argument p o i n t s  t o  the  f i r s t  node * /  

{ 
node *locate(node*, c h a r [ ] ) ;  / *  f u n c t i o n  dec la ra t i on  * /  
node *newrecord; / *  p o i n t e r  t o  new node * /  
node *tag; / *  p o i n t e r  t o  node BEFORE t a r g e t  node * /  
char newitem[40]; / *  new data i t em * /  
char t a r g e t [ 4 0 ] ;  / *  data i t em f o l l o w i n g  the  new e n t r y  * /  

p r i n t f  ("New data i tem: " ) ;  

scanf ( " %[ - \ n ]  " I ,  newitem) ; 
p r i n t f  ( "P lace  before ( type  \ 'END\ ' i f  l a s t )  : " I ); 
scanf( ' "  % [ " \ n ] ' " ,  t a r g e t ) ;  

i f  ( s t r c m p ( f i r s t - > i t e m ,  t a r g e t )  == 0) { 

/ *  new node i s  f i r s t  i n  l i s t  * /  

/ *  a l l o c a t e  space f o r  the  new node * /  
newrecord = (node * )  ma l loc (s izeo f (node) ) ;  

/ *  assign the  new data i t em t o  newrecord->item * /  
strcpy(newrecord->item, newitem); 

/ *  assign the  cu r ren t  po in te r  t o  newrecord->next * /  
newrecord->next = f i r s t ;  

/ *  new p o i n t e r  becomes the  beginning o f  t he  l i s t  * /  
f i r s t  = newrecord; 

e l se  { 

/ *  i n s e r t  new node a f t e r  an e x i s t i n g  node * /  

/ *  l o c a t e  the  node PRECEDING the  t a r g e t  node * /  
t a g  = l o c a t e ( f i r s t ,  t a r g e t ) ;  

i f  ( t a g  == NULL) 
p r i n t f ( " \ n M a t c h  no t  found - Please t r y  aga in \n " ) ;  

e l se  { 

/ *  a l l o c a t e  space f o r  t he  new node * /  
newrecord = (node * )  ma l loc (s izeo f (node) ) ;  

/ *  assign the  new data i t em t o  newrecord->item * /  
strcpy(newrecord->item, newitem); 

/ *  assign the  next p o i n t e r  t o  newrecord->next * /  
newrecord->next = tag->next;  
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I *  assign the new pointer  t o  tag->next * /  
tag->next = newrecord; 

1 
1 
r e t u r n ( f i r s t ) ;  

node *locate(node *record, char t a r g e t [ ] )  / *  locate a node * /  

/ *  r e t u r n  a po in te r  t o  the node BEFORE the target  node 
The f i r s t  argument po in ts  t o  the current node 

The second argument i s  the target  s t r i n g  * /  

{ 
i f  (strcmp(record->next->i tem, t a rge t )  == 0) / *  found a match * /  

re turn(record) ;  
e lse 

i f  (record->next->next == NULL) I *  end o f  l i s t  * /  
return(NULL); 

e lse 
locate(record->next,  t a rge t ) ;  / *  t r y  next node * /  

1 

node *remove(node * f i r s t )  / *  remove (delete) one component from the l i n k e d  l i s t  
re tu rn  a po inter  t o  beginning o f  the modif ied l i s t  * /  

/ *  argument po in ts  t o  the f i r s t  node * /  

{ 
node *locate(node*, c h a r [ ] ) ;  / *  funct ion dec larat ion * /  
node *tag; / *  po inter  t o  node BEFORE ta rge t  node * /  
node *temp; / *  temporary po inter  * /  
char ta rge t [40 ] ;  / *  data i tem t o  be deleted * /  

p r i n t f ( " D a t a  i tem t o  be deleted: " ) ;  
scanf( "  % [ ^ \ n ] " ,  t a rge t ) ;  

i f  ( s t r cmp( f i r s t -> i t em,  ta rge t )  == 0) 
/ *  delete the f i r s t  node * /  

/ *  mark the node fo l l ow ing  the target  node * /  
temp = f i r s t - > n e x t ;  

/ *  f r e e  space f o r  the ta rge t  node * /  
f ree  ( f i r s t )  ; 

/ *  ad just  the pointer  t o  the f i r s t  node * /  
f i r s t  = temp; 

1 

else { 
/ *  de lete a data i tem other than the f i r s t  * /  

/ *  locate the node PRECEDING the target  node * /  
tag = l o c a t e ( f i r s t ,  t a rge t ) ;  

i f  ( tag  == NULL) 
p r i n t f ( " \ nMatch  not found - Please t r y  again\n") ;  
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e l s e  { 
/ *  mark the  node fo l lowing  the  t a r g e t  node * /  
temp = tag ->next ->next ;  

/ *  f r e e  space f o r  the  t a r g e t  node * /  
f r e e ( t a g - > n e x t ) ;  

/ *  ad just  the  l i n k  t o  the  next  node * /  
tag ->next  = temp; 

1 
1 
r e t u r n ( f i r s t ) ;  

The program begins with the usual #include statements and a definition of the symbolic constant NULL to represent 
the value 0. Following these statements is a declaration for the self-referential structure l ist -e lement.  This structure 
declaration is the same as that shown in Example 11.29. Thus, l ist -e lement identifies a structure consisting of two 
members: a 40-element character array (item), and a pointer (next) to another structure of the same type. The character 
array will represent a string, and the pointer will identify the location of the next component in the linked list. 

The data type node is then defined, identifLing structures having composition l ist -e lement.  This definition is 
followed by the function prototypes. Within the function prototypes, notice that s t a r t  is a pointer to a structure of type 
node. This pointer will indicate the beginning of the linked list. The remaining function prototypes identify several 
additional functions that are called from main. Note that these declarations and function prototypes are external. They 
will therefore be recognized throughout the program. 

The main function consists of a do - whi le  loop that permits repetitious execution of the entire process. This loop 
calls the function menu, which generates the main menu, and returns a value for choice, indicating the user’s menu 
selection. A switch statement then calls the appropriate functions, in accordance with the user’s selection. Notice that 
the program will stop executing if choice is assigned a value of 4. 

If choice is assigned a value of 1, indicating that a new linked list will be created, a block of memory must be 
allocated for the first data item before calling the function create.  This is accomplished using the library function 
malloc, as discussed in Sec. 10.5. Thus, memory allocation statement 

s t a r t  = (node * )  mal loc (s izeof (node) ) ;  

reserves a block of memory whose size (in bytes) is sufficient for one node. The statement returns a pointer to a structure 
of type node. This pointer indicates the beginning of the linked list. Thus, it is passed to c r e a t e  as an argument. 

Note that the type cast (node * )  is required as a part of the memory allocation statement. Without it, the malloc 
function would return a pointer to a char rather than a pointer to a structure of type node. 

Now consider the function menu, which is used to generate the main menu. This function accepts a value for choice 
after the menu has been generated. The only permissible values for choice are 1, 2, 3 or 4. An error trap, in the form of 
a do - w h i l e  statement, causes an error message to be displayed and a new menu to be generated if a value other than 1, 2, 
3 or 4 is entered in response to the menu. 

The linked list is created by the function create.  This is a recursive function that accepts a pointer to the current 
node (i.e., the node that is being created) as an argument. The pointer variable is called record. 

The c r e a t e  function begins by prompting for the current data item; i.e., the string that is to reside in the current 
node. If the user enters the string END (in either upper- or lowercase), then NULL is assigned to the pointer that indicates 
the location of the next node and the recursion stops. If the user enters any string other than END, however, memory is 
allocated for the next node via the malloc function and the function calls itself recursively. Thus, the recursion will 
continue until the user has entered END for one of the data items. 

Once the linked list has been created, it is displayed via the function disp lay .  This function is called from main, 
after the call to create .  Notice that d i s p l a y  accepts a pointer to the current node as an argument. The function then 
executes recursively, until it receives a pointer whose value is NULL. The recursion therefore causes the entire linked list 
to be displayed. 



3 78 STRUCTURES AND UNIONS [CHAP. I 1  

Now consider the function i n s e r t ,  which is used to add a new component (i.e., a new node) to the linked list. This 
function asks the user where the insertion is to occur. Note that the function accepts a pointer to the beginning of the list 
as an argument, and then returns a pointer to the beginning of the list, after the insertion has been made. These two 
pointers will be the same, unless the insertion is made at the beginning of the list. 

The i n s e r t  function does not execute recursively. It first prompts for the new data item (newitem), followed by a 
prompt for the existing data item that will follow the new data item (the existing data item is called ta rget ) .  If the 
insertion is to be made at the beginning of the list, then memory is allocated for the new node, newitem is assigned to the 
first member, and the pointer originally indicating the beginning of the linked list ( f i r s t )  is assigned to the second 
member. The pointer returned by malloc, which indicates the beginning of the new node, is then assigned to f i r s t .  
Hence, the beginning of the new node becomes the beginning of the entire list. 

If the insertion is to be made after an existing node, then function l o c a t e  is called to determine the location of the 
insertion. This function returns a pointer to the node preceding the target node. The value returned is assigned to the 
pointer tag.  Hence, t a g  points to the node that will precede the new node. If l o c a t e  cannot find a match between the 
value entered for t a r g e t  and an existing data item, it will return NULL. 

If a match is found by loca te ,  then the insertion is made in the following manner: memory is allocated for the new 
node, newitem is assigned to the first member of newrecord (i.e., tonewrecord->item), and the pointer to the target 
node (i.e., tag->next)  is assigned to the second member of newrecord (i.e., newrecord->next). The pointer returned 
by malloc, which indicates the beginning of the new node, is then assigned to tag->next .  Hence, the pointer in the 
preceding node will point to the new node, and the pointer in the new node will point to the target node. 

Now consider the function loca te .  this is a simple recursive function that accepts a pointer to the current node and 
the target string as arguments, and returns a pointer to the node that precedes the current node. Therefore, if the data item 
in the node following the current node matches the target string, the function will return the pointer to the current node. 
Otherwise, one of two possible actions will be taken. If the pointer in the node following the current node is NULL, 
indicating the end of the linked list, a match has not been found. Therefore, the function will return NULL. But, if the 
pointer in the node following the current node is something other than NULL, the function will call itself recursively, thus 
testing the next node for a match. 

Finally, consider the function remove, which is used to delete an existing component (i.e., an existing node) from the 
linked list. This function is similar to i n s e r t ,  though somewhat simpler. It accepts a pointer to the beginning of the 
linked list as an argument, and returns a pointer to the beginning of the linked list after the deletion has been made. 

The remove function begins by prompting for the data item to be deleted ( target) .  If this is the first data item, then 
the pointers are adjusted as follows: The pointer indicating the location of the second node is temporarily assigned to the 
pointer variable temp; the memory utilized by the first node is freed, using the library function f r e e ;  and the location of 
the second node (which is now the first node, because of the deletion) is assigned to f i r s t .  Hence, the beginning of the 
(former) second node becomes the beginning of the entire list. 

If the data item to be deleted is not the first data item in the list, then l o c a t e  is called to determine the location of the 
deletion. This function will return a pointer to the node preceding the target node. The value returned is assigned to the 
pointer variable tag.  If this value is NULL, a match cannot be found. An error message is then generated, requesting that 
the user try again. 

If l o c a t e  returns a value other than NULL, the target node is deleted in the following manner: The pointer to the 
node following the target node is temporarily assigned to the pointer variable temp; the memory utilized by the target 
node is then freed, using the library function f r e e ;  and the value of temp is then assigned to tag ->next .  Hence, the 
pointer in the preceding node will point to the node following the target node. 

Let us now utilize this program to create a linked list containing the following cities: Boston, Chicago, Denver, New 
York, Pittsburgh, San Francisco. We will then add several cities and delete several cities, thus illustrating all of the 
program’s features. We will maintain the list of cities in alphabetical order throughout the exercise. (We could, of course, 
have the computer do the sorting for us, though this would further complicate an already complex program.) 

The entire interactive session is shown below. As usual, the user’s responses have been underlined. 

Main menu: 
1 - CREATE t h e  l i n k e d  l i s t  
2 - ADD a component 
3 - DELETE a component 
4 - END 
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P l e a s e  e n t e r  y o u r  c h o i c e  (1, 2, 3 o r  4)  -> 1 

D a t a  i t e m  ( t y p e  'END' when f i n i s h e d ) :  BOSTON 
D a t a  i t e m  ( t y p e  'END' when f i n i s h e d ) :  CHICAGO 
D a t a  i t e m  ( t y p e  'END' when f i n i s h e d ) :  PENVER 
D a t a  i t e m  ( t y p e  'END' when f i n i s h e d ) :  NEW YORK 
D a t a  i t e m  ( t y p e  'END' when f i n i s h e d ) :  PITTSBURGH 
D a t a  i t e m  ( t y p e  'END' when f i n i s h e d ) :  SAN FRANCISCO 

D a t a  i t e m  ( t y p e  'END' when f i n i s h e d ) :  END 

BOSTON 
CHICAGO 
DENVER 

NEW YORK 
PITTSBURGH 
SAN FRANC ISCO 

M a i n  menu: 
1 - CREATE t h e  l i n k e d  l i s t  

2 - ADD a component 

3 - DELETE a component 
4 - END 

P l e a s e  e n t e r  y o u r  c h o i c e  (1, 2, 3 o r  4 )  -> 2 

New data i t e m :  ATLANTA 
P l a c e  b e f o r e  ( t y p e  'END' i f  l a s t ) :  BOSTON 

ATLANTA 
BOSTON 

CHICAGO 
DENVER 

NEW YORK 
PITTSBURGH 
SAN FRANCISCO 

M a i n  menu: 
1 - CREATE t h e  l i n k e d  l i s t  
2 - ADD a component 
3 - DELETE a component 
4 - END 

P l e a s e  e n t e r  y o u r  c h o i c e  (1, 2, 3 o r  4 )  - >  2. 

New d a t a  i t e m :  SEATTLE 
P l a c e  b e f o r e  ( t y p e  'END' i f  l a s t ) :  END 

ATLANTA 
BOSTON 
CHICAGO 
DENVER 
NEW YORK 
PITTSBURGH 
SAN FRANCISCO 

SEATTLE 
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Main menu: 
1 - CREATE t h e  l i n k e d  l i s t  
2 - ADD a component 
3 - DELETE a component 
4 - END 

Please e n t e r  your choice (1, 2, 3 o r  4 )  ->  3. 

Data i t e m  t o  be de le ted :  NEW YORK 

ATLANTA 
BOSTON 
CHICAGO 
DENVER 
PITTSBURGH 
SAN FRANCISCO 
SEATTLE 

Main menu: 
1 - CREATE t h e  l i n k e d  l i s t  
2 - ADD a component 
3 - DELETE a component 
4 - END 

Please e n t e r  your choice (1, 2, 3 o r  4) - >  2 

New data  i tem:  WASHINGTON 
Place be fore  ( t y p e  'END'  i f  l a s t ) :  WILLIAMSBURG 

Match n o t  found - Please t r y  aga in  

ATLANTA 
BOSTON 
CHICAGO 
DENVER 
PITTSBURGH 
SAN FRANCISCO 
SEATTLE 

Main menu: 
1 - CREATE t h e  l i n k e d  l i s t  
2 - ADD a component 
3 - DELETE a component 
4 - END 

Please e n t e r  your choice (1, 2, 3 o r  4 )  - >  2 

New d a t a  i tem:  WASHINGTON 
Place be fore  ( type  'END'  i f  l a s t ) :  END 

ATLANTA 
BOSTON 
CHICAGO 
DENVER 
PITTSBURGH 
SAN FRANCISCO 
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SEATTLE 
WASHINGTON 

Main menu: 
1 - CREATE t h e  l i n k e d  l i s t  
2 - ADD a component 
3 - DELETE a component 
4 - END 

Please e n t e r  your choice (1, 2, 3 o r  4) -> 9 

Data i t e m  t o  be de le ted :  ATLANTA 

BOSTON 
CHICAGO 
DENVER 

PITTSBURGH 
SAN FRANCISCO 

SEATTLE 
WASHINGTON 

Main menu: 
1 - CREATE t h e  l i n k e d  l i s t  
2 - ADD a component 
3 - DELETE a component 
4 - END 

Please e n t e r  your choice (1, 2, 3 o r  4) - >  2 

New data  i tem:  DALLAS 
Place be fore  ( type  'END' i f  l a s t ) :  DENVER 

BOSTON 
CHICAGO 
DALLAS 
DENVER 
PITTSBURGH 

SAN FRANCISCO 
SEATTLE 
WASHINGTON 

Main menu: 
1 - CREATE t h e  l i n k e d  l i s t  
2 - ADD a component 
3 - DELETE a component 
4 - END 

Please e n t e r  your choice (1, 2, 3 o r  4) -> 9 

Data i t e m  t o  be de le ted :  MIAMI 

Match n o t  found - Please t r y  again 

BOSTON 
CHICAGO 
DALLAS 
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DENVER 
PITTSBURGH 
SAN FRANC ISCO 
SEATTLE 

WASHINGTON 

Main menu: 

1 - CREATE t h e  l i n k e d  l i s t  
2 - ADD a component 
3 - DELETE a component 

4 - END 
Please e n t e r  your  cho ice  (1, 2, 3 o r  4) -> 9 

Data i t e m  t o  be d e l e t e d :  WASHINGTON 

BOSTON 
CHICAGO 
DALLAS 
DENVER 
PITTSBURGH 
SAN FRANCISCO 

SEATTLE 

Main menu: 

1 - CREATE t h e  l i n k e d  l i s t  

2 - ADD a component 
3 - DELETE a component 

4 - END 
Please e n t e r  your  cho ice  (1, 2, 3 o r  4) - >  2 

ERROR - Please t r y  a g a i n  

Main menu: 
1 - CREATE t h e  l i n k e d  l i s t  

2 - ADD a component 
3 - DELETE a component 
4 - END 

Please e n t e r  your  c h o i c e  ( 1 ,  2, 3 o r  4 )  - >  4 

End o f  compu ta t i on  

11.7 UNIONS 

Unions, like structures, contain members whose individual data types may differ from one another. However, 
the members within a union all share the same storage area within the computer’s memory, whereas each 
member within a structure is assigned its own unique storage area. Thus, unions are used to conserve 
memory. They are useful for applications involving multiple members, where values need not be assigned to 
all of the members at any one time. 

Within a union, the bookkeeping required to store members whose data types are different (having 
different memory requirements) is handled automatically by the compiler. However, the user must keep track 
of what type of information is stored at any given time. An attempt to access the wrong type of information 
will produce meaningless results. 
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In general terms, the composition of a union may be defined as 

union tag { 
member I ;  
member 2; 
. . . . .  
member m; 

1; 

where union is a required keyword and the other terms have the same meaning as in a structure definition 
(see Sec. 1 1.1). Individual union variables can then be declared as 

storage-class union tag variable I ,  variable 2, . . . , variable n; 

where storage-class is an optional storage class specifier, union is a required keyword, tag is the name 
that appeared in the union definition, and variable I ,  variable 2, . . ., variable n are union 
variables of type tag. 

The two declarations may be combined, just as we did with structures. Thus, we can write 

storage-class union tag { 
member I ;  
member 2; 
. . . . .  
member m; 

variable I ,  variable 2, . . ., variable n; 

The tag is optional in this type of declaration. 

EXAMPLE 11.33 A C program contains the following union declaration. 

un ion  i d  { 

char  c o l o r [ l 2 ] ;  
i n t  s ize ;  

} s h i r t ,  blouse; 

Here we have two union variables, s h i r t  and blouse, of type i d .  Each variable can represent either a 12-character 
string (co lo r )  or an integer quantity (size) at any one time. 

The 12-character string will require more storage area within the computer’s memory than the integer quantity. 
Therefore, a block of memory large enough for the 12-character string will be allocated to each union variable. The 
compiler will automatically distinguish between the 12-character array and the integer quantity within the given block of 
memory, as required. 

A union may be a member of a structure, and a structure may be a member of a union. Moreover, 
structures and unions may be freely mixed with arrays. 

EXAMPLE 11.34 A C program contains the following declarations. 

un ion  i d  { 

char  c o l o r [  121 ; 
i n t  s i z e  ; 

1; 
s t r u c t  c l o t h e s  { 

char  manufacturer [20] ;  
f l o a t  cos t ;  
un ion  i d  d e s c r i p t i o n ;  

} s h i r t ,  blouse; 
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Now shirt and blouse are structure variables of type clothes. Each variable will contain the following members: a 
string (manufacturer), a floating-point quantity (cost), and a union (description). The union may represent either a 
string (color)or an integer quantity (size). 

Another way to declare the structure variables shirt and blouse is to combine the preceding two declarations, as 
follows. 

struct clothes { 
char manufacturer[20]; 

float cost; 

union { 

char color[l2]; 

int size; 


} description; 
} shirt, blouse; 

This declaration is more concise, though perhaps less straightforward, than the original declarations. 

An individual union member can be accessed in the same manner as an individual structure member, 
using the operators . and - > . Thus, if variable is a union variable, then variable. member refers to a 
member of the union. Similarly, if ptvar is a pointer variable that points to a union, then ptvar-member 
refers to a member of that union. 

EXAMPLE 11.35 Consider the simple C program shown below. 

#include <stdio.h> 


main ( ) 

.[ 
union id { 

char color; 

int size; 


1; 

struct { 
char manufacturer(2Ol; 

float cost; 

union id description; 


} shirt, blouse; 

printf ( '%d\n', sizeof (union id)) ; 

/ *  assign a value to color * I  
shirt.description.color = ' w ' ;  
printf("%c %d\n", shirt.description.color, shirt.description.size); 


/ *  assign a value to size * I  
shirt.description.size = 12; 
printf("%c %d\n", shirt.description.color, shirt.description.size); 


This program contains declarations similar to those shown in Example 11.34. Notice, however, that the first member of 
the union is now a single character rather than the 12-character array shown in the previous example. This change is made 
to simplify the assignment of appropriate values to the union members. 

Following the declarations and the initial printf statement, we see that the character ' w I is assigned to the union 
member shirt. description. color. Note that the other union member, shirt. description. size, will not have a 
meaningful value. The values of both union members are then displayed. 

1 
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We then assign the value 12 to shirt. description. size, thus overwriting the single character previously 
assigned to shirt. description. color. The values of both union members are then displayed once more. 

Execution of the program results in the following output. 

2 

w -24713 

@ 12 

The first line indicates that the union is allocated two bytes of memory, to accommodate an integer quantity. In line 2, the 
first data item (w)is meaningful, but the second (-24713)is not. In line 3, the first data item (@)is meaningless, but the 
second data item (12)has meaning. Thus, each line of output contains one meaningful value, in accordance with the 
assignment statement preceding each prin tf statement. 

A union variable can be initialized provided its storage class is either external or static. Remember, 
however, that only one member of a union can be assigned a value at any one time. Most compilers will 
accept an initial value for only one union member, and they will assign this value to the first member within 
the union. 

EXAMPLE 11.36 Shown below is a simple C program that includes the assignment of initial values to a structure 
variable. 

#include <stdio.h> 


main ( ) 

{ 
union id { 

char color[l2]; 

int size; 


}; 

struct clothes { 

char manufacturer[20]; 

float cost; 

union id description; 


1 ;  

static struct clothes shirt = {"American", 25.00, "white"}); 

printf("%d\n", sizeof(union id)); 

printf(""%s %5.2f shirt.manufacturer, shirt.cost); 
I " ,  

printf(""%s %d\n"", shirt.description.color, shirt.description.size); 


shirt.description.size = 12; 
printf("%s %5.2f " ,  shirt.manufacturer, shirt.cost); 
printf("%s %d\n", shirt.description.color, shirt.description.size); 


1 

Notice that shirt is a static structure variable of type clothes. One of its members is description,which is a union 
of type id. This union consists of two members: a 12-character array and an integer quantity. 

The structure variable declaration includes the assignment of the following initial values: "American"I is assigned to 
the array member shirt.manufacturer; 25.00 is assigned to the integer member shirt.cost, and "white" is 
assigned to the union member shirt. description. color. Notice that the second union member within the structure, 
i.e., shirt. description. size, remains unspecified. 

The program first displays the size of the memory block allocated to the union, and the value of each member of 
shirt. Then 12 is assigned to shirt. description. size, and the value of each member of shirt is again displayed. 
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When the program is executed, the following output is generated. 

12 
American 25.00 whi te  26743 
American 25 .00  - 12 

The first line indicates that 12 bytes of memory are allocated to the union, in order to accommodate the 12-character array. 
The second line shows the values initially assigned to s h i r t .  manuf ac turer ,  s h i r t .  cost  and 
s h i r t .  d e s c r i p t i o n .  co lor .  The value shown for s h i r t .  descr ip t ion .  s i z e  is meaningless. In the third line we see 
that s h i r t  .manufacturer and s h i r t  . cost  are unchanged. Now, however, the reassignment of the union members 
causes s h i r t .  d e s c r i p t i o n .  c o l o r  to have a meaningless value, but s h i r t .  d e s c r i p t i o n .  s i z e  shows the newly 
assigned value of 12. 

In all other respects, unions are processed in the same manner, and with the same restrictions, as 
structures. Thus, individual union members can be processed as though they were ordinary variables of the 
same data type, and pointers to unions can be passed to or fi-om functions (by reference). Moreover, most C 
compilers permit an entire union to be assigned to another, provided both unions have the same composition. 
These compilers also permit entire unions to be passed to or fi-om hnctions (by value), in accordance with the 
ANSI standard. 

EXAMPLE 11.37 Raising a Number to a Power This example is a bit contrived, though it does illustrate how a 
union can be used to pass information to a function. The problem is to raise a number to a power. Thus, we wish to 
evaluate the formulay =x", where x and y are floating-point values, and n can be either integer or floating point. 

If n is an integer, then y can be evaluated by multiplying x by itself an appropriate number of times. For example, the 
quantity A? could be expressed in terms of the product (x)(x)(x). On the other hand, if n is a floating-point value, we can 
write log y = n log x, or y = e(" log *I. In the latter case x must be a positive quantity, since we cannot take the log of zero 
or a negative quantity. 

Now let us introduce the following declarations: 

typedef  union { 
f l o a t  fexp;  / *  f l o a t i n g - p o i n t  exponent * /  
i n t  nexp; / * i n t e g e r  exponent * / 

} nva ls ;  

typedef  s t r u c t  { 

f l o a t  x ;  / *  value t o  be r a i s e d  t o  a power * /  
char f l a g ;  / *  I f '  i f  exponent i s  f l o a t i n g - p o i n t ,  

'i'i f  exponent i s  i n t e g e r  * /  
nva ls  exp; / *  union containing exponent * /  

} values;  

values a ;  

Thus, nva ls  is a user-defined union type, consisting of the floating-point member fexp  and the integer member nexp. 
These two members represent the two possible types of exponents in the expression y =9. Similarly, values is a user- 
defined structure type, consisting of a floating-point member x, a character member f l a g  and a union of type nva ls  
called exp. Note that f l a g  indicates the type of exponent currently represented by the union. If f l a g  represents ' i' , the 
union will represent an integer exponent (nexp will currently be assigned a value); and if f l a g  represents ' f I ,  the union 
will represent a floating-point exponent ( fexp will currently be assigned a value). Finally, we see that a is a structure 
variable of type values. 

With these declarations, it is easy to write a function that will evaluate the formulay =x", as follows. 
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f l o a t  power(va1ues a) / *  car ry  out the exponent iat ion * /  

{ 
i n t  i; 
f l o a t  y = a.x; 

i f  (a . f l ag  == ' i ' )  { / *  in teger  exponent * /  
i f  (a.exp.nexp == 0) 

y = 1.0; / *  zero exponent * /  
e lse  { 

f o r  ( i  = 1; ic abs(a.exp.nexp); ++i) 
y *= a.x; 

i f  (a.exp.nexp c 0) 
y = l * / y ;  / *  negative in teger  exponent * /  

1 
1 
e lse  / *  f l o a t i n g - p o i n t  exponent * /  

y = exp(a.exp.fexp * l og (a .x ) ) ;  

re tu rn (y ) ;  

1 

This function accepts a structure variable (a) of type values as an argument. The method used to carry out the 
calculations depends on the value assigned to a. f l ag .  If a. f l a g  is assigned the character I i then the exponentiation is I ,  

carried out by multiplying a. x by itself an appropriate number of times. Otherwise, the exponentiation is carried out 
using the formula y = e(n log x). Notice that the function contains corrections to accommodate a zero exponent (y = 1.O), 
and for a negative integer exponent. 

Let us add a main function which prompts for the values of x and n, determines whether or not n is an integer (by 
comparing n with its truncated value), assigns appropriate values to a. f l a g  and a. exp, calls power, and then writes out 
the result. We also include a provision for generating an error message if n is a floating-point exponent and the value of x 

is less than or equal to zero. 
Here is the entire program. 

/ *  program t o  r a i s e  a number t o  a power * /  

#include <stdio.h> 
#include cmath.h> 

typedef union { 

f l o a t  fexp; / *  f l o a t i n g - p o i n t  exponent * /  
i n t  nexp; / *  in teger  exponent * /  

} nvals;  

typedef s t r u c t  { 

f l o a t  x; / *  value t o  be ra ised t o  a power * /  
char f l a g ;  / *  ' f '  i f  exponent i s  f l o a t i n g - p o i n t ,  

' i '  i f  exponent i s  in teger  * /  
nvals exp; / *  union containing exponent * /  

} values; 

f l o a t  power(va1ues a ) ;  / *  func t i on  prototype * /  
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main( ) 

{ 
va lues  a; / *  s t r u c t u r e  c o n t a i n i n g  x, f l a g  and fexp lnexp * /  
i n t  i; 
f l o a t  n, y; 

/ *  e n t e r  i n p u t  da ta  * /  
p r i n t f ( ' y  = x"n\n\nEnter  a va lue f o r  x: ' I ) ;  

scanf ( "%f" , &a. x ) ; 
p r i n t f ( " E n t e r  a va lue f o r  n: " ) ;  

scanf ( '%f  I t ,  an) ; 

/ *  determine type  o f  exponent * /  
i= ( i n t )  n; 
a . f l a g  = ( i  == n)  7 'i' : I f t ;  
i f  ( a . f l a g  == ' i ' )  

a.exp.nexp = i; 
e l s e  

a.exp. fexp = n; 

/ *  r a i s e  x t o  t h e  appropr ia te  power and d i s p l a y  t h e  r e s u l t  * /  
i f  ( a . f l a g  == I f '  && a.x <= 0.0) { 

pr in t f ( " \nERROR - Cannot r a i s e  a n o n - p o s i t i v e  number t o  a " ) ;  

p r i n t f ( " f 1 o a t i n g - p o i n t  power'); 

1 
e l s e  { 

y = power(a); 
p r i n t f ( ' \ n y  = % . 4 f " ,  y ) ;  

1 

f l o a t  power (va lues  a) / *  c a r r y  o u t  t h e  exponent ia t ion  * /  

E 

i n t  i; 
f l o a t  y = a.x; 

i f  ( a . f l a g  == ' i ' )  { / *  i n t e g e r  exponent * /  
i f  (a.exp.nexp == 0) 

y = 1.0; / *  zero exponent * /  
e l s e  { 

f o r  ( i  = 1; i < abs(a.exp.nexp); + + i )  
y *= a.x; 

i f  (a.exp.nexp < 0) 
y = l . / y ;  / *  negat ive i n t e g e r  exponent * /  

1 
e l s e  / *  f l o a t i n g - p o i n t  exponent * /  

y = exp(a.exp.fexp * l o g ( a . x ) ) ;  

r e t u r n ( y ) ;  

Notice that the union and structure declarations are external to the program functions, but the structure variable a is 
defined locally within each function. 

1 
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The program does not execute repetitiously. Several typical dialogs, each representing a separate program execution, 
are shown below. As usual, the user’s responses are underlined. 

Enter  a va lue f o r  x :  2 
Enter  a va lue f o r  n: a 

y = 8.0000 

Enter  a va lue f o r  x :  -2 
Enter  a va lue f o r  n: 3 

Enter  a va lue f o r  x :  2.2 
Enter  a va lue f o r  n: 3.3 

y = 13.4895 

Enter  a va lue f o r  x:  -2.2 
Enter  a va lue f o r  n: 3.3 

ERROR - cannot r a i s e  a n o n - p o s i t i v e  number t o  a f l o a t i n g - p o i n t  power 

It should be pointed out that most C compilers include the library function POW, which is used to raise a number to a 
power. We have used POW in several earlier programming examples (see Examples 5.2, 5.4, 6.21 ,  8.13 and 10.30). The 
present program is not meant to replace POW; it is presented only to illustrate the use of a union in a representative 
programming situation. 

Review Questions 

11.1 What is a structure? How does a structure differ from an array? 

11.2 What is a structure member? What is the relationship between a structure member and a structure? 

11.3 Describe the syntax for defining the composition of a structure. Can individual members be initialized within a 
structure type declaration? 

11.4 How can structure variables be declared? How do structure variable declarations differ from structure type 
declarations? 

11.5 What is a tag? Must a tag be included in a structure type definition? Must a tag be included in a structure variable 
declaration? Explain fully. 

11.6 Can a structure variable be defined as a member of another structure? Can an array be included as a member of a 
structure? Can an array have structures as elements? 

11.7 How are the members of a structure variable assigned initial values? What restrictions apply to the structure’s 
storage class when initial values are assigned? 

11.8 How is an array of structures initialized? 

11.9 What is the scope of a member name? What does this imply with respect to the naming of members within 
different structures? 

11.10 How is a structure member accessed? How can a structure member be processed? 

11.11 What is the precedence of the period (.) operator? What is its associativity? 

11.12 Can the period operator be used with an array of structures? Explain. 

11.13 What is the only operation that can be applied to an entire structure in some older versions of C? How is this rule 
modified in newer versions that conform to the current ANSI standard? 
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11.14 How can the size of a structure be determined? In what units is the size reported? 


11.15 What is the purpose of the typedef feature? How is this feature used in conjuction with structures? 


11.16 How is a structure-type pointer variable declared? To what does this type of variable point? 


11.17 How can an individual structure member be accessed in terms of its corresponding pointer variable? 


11.18 What is the precedence of the -> operator? What is its associativity? Compare with the answers to question 

11.11. 


11.19 Suppose a pointer variable points to a structure that contains another structure as a member. How can a member of 

the embedded structure be accessed? 

11.20 Suppose a pointer variable points to a structure that contains an array as a member. How can an element of the 

embedded array be accessed? 

11.21 Suppose a member of a structure is a pointer variable. How can the object of the pointer be accessed, in terms of 

the structure variable name and the member name? 

11.22 What happens when a pointer to a structure is incremented? What danger is associated with this type of 

operation? 

11.23 How can an entire structure be passed to a function? Describe fully, both for older and newer versions of C. 


11.24 How can an entire structure be returned from a function? Describe fully, both for older and newer versions of C .  


11.25 What is a self-referential structure? For what kinds of applications are self-referential structures useful? 


11.26 What is the basic idea behind a linked data structure? What advantages are there in the use of linked data 

structures? 

11.27 Summarize several types of commonly used linked data structures. 


11.28 What is a union? How does a union differ from a structure? 


11.29 For what kinds of applications are unions useful? 


11.30 In what sense can unions, structures and arrays be intermixed? 


11.31 How is a union member accessed? How can a union member be processed? Compare with your answers to 

question 1 1.10. 

11.32 How is a member of a union variable assigned an initial value? In what way does the initialization of a union 

variable differ from the initialization of a structure variable? 

11.33 Summarize the rules that apply to processing unions. Compare with the rules that apply to processing structures. 


Problems 

11.34 Define a structure consisting of two floating-point members, called r e a l  and imaginary. Include the tag 

complex within the definition. 

11.35 Declare the variables x l  ,x2 and x3 to be structures of type complex, as described in the preceding problem. 


11.36 Combine the structure definition and the variable declarations described in Probs. 11.34 and 11.35 into one 

declaration. 

11.37 Declare a variable x to be a structure variable of type complex, as described in Prob. 11.34. Assign the initial 

values 1.3 and -2.2 to the members x .r e a l  and x .imaginary, respectively. 

11.38 Declare a pointer variable, px, which points to a structure of type complex, as described in Prob. 11.34. Write 

expressions for the structure members in terms of the pointer variable. 

11.39 Declare a one-dimensional, 100-element array called cx whose elements are structures of type complex, as 

described in Prob. 1 1.34. 

11.40 Combine the structure definition and the array declaration described in Probs. 11.34 and 11.39 into one 

declaration. 

11.41 Suppose that cx is a one-dimensional, 100-element array of structures, as described in Prob. 11.39. Write 

expressions for the members of the 18th array element (i.e., element number 17). 
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11.42 Define a structure that contains the following three members: 

(a) an integer quantity called won 

(b) an integer quantity called l o s t  

(c) a floating-point quantity called percentage 

Include the user-defined data type record  within the definition. 

11.43 Define a structure that contains the following two members: 

(a) a 40-element character array called name 

a structure named s ta ts ,  of type record, as defined in Prob. 11.42 (6) 
Include the user-defined data type team within the definition. 

11.44 Declare a variable t to be a structure variable of type team, as described in Prob. 11.43. Write an expression for 
each member and submember o f t .  

11.45 Declare a variable t to be a structure variable of type team, as in the previous problem. Now, however, initialize 
t as follows. 

name :Chicago Bears 
won : 14 

l o s t :  2 

percentage : 87.5 

11.46 Write a statement that will display the size of the memory block associated with the variable t which was 
described in Prob. 1 1.44. 

11.47 Declare a pointer variable pt ,  which points to a structure of type team, as described in Prob. 11.43. Write an 
expression for each member and submember within the structure. 

11.48 Declare a one-dimensional, 48-element array called league whose elements are structures of type team, as 
described in Prob. 11.43. Write expressions for the name and percentage of the 5th team in the league (i.e., team 
number 4). 

11.49 Define a self-referential structure containing the following three members: 

(a) a 40-element character array called name 

(b) a structure named s t a t s ,  of type record, as defined in Prob. 11.42 

(c) a pointer to another structure of this same type, called next  

Include the tag team within the structure definition. Compare your solution with that of Prob. 11.43. 

11.50 Declare p t  to be a pointer to a structure whose composition is described in the previous problem. Then write a 
statement that will allocate an appropriate block of memory, with p t  pointing to the beginning of the memory 
block. 

11.51 Define a structure of type hms containing three integer members, called hour, minute and second, respectively. 
Then define a union containing two members, each a structure of type hms. Call the union members l o c a l  and 
home, respectively. Declare a pointer variable called t ime that points to this union. 

11.52 Define a union of type ans which contains the following three members: 

(a) an integer quantity called i a n s  

(b) a floating-point quantity called fans  

(c) a double-precision quantity called dans 

Then define a structure which contains the following four members: 

(a) a union of type ans, called answer 

(6) a single character called f l a g  

(c) integer quantities called a and b 

Finally, declare two structure variables, called x and y, whose composition is as described above. 

11.53 Declare a structure variable called v whose composition is as described in Prob. 11.52. Assign the following 
initial values within the declaration: 



392 STRUCTURES AND UNIONS [CHAP. 11  

answer : 14 

f l a g  : " i '  
a : -2  

b : 5  

11.54 ModifL the structure definition described in Prob. 11.52 so that it contains an additional member, called next, 
which is a pointer to another structure of the same type. (Note that the structure will now be self-referential.) Add 
a declaration of two variables, called x and px, where x is a structure variable and px is a pointer to a structure 
variable. Assign the starting address of x to px within the declaration. 

11.55 Describe the output generated by each of the following programs. Explain any differences between the programs. 

(a) # inc lude <s td io .  h> 

typedef s t r u c t  { 

char *a; 
char *b; 
char *c ; 

} co lo rs ;  

v o i d  func t (co1ors  sample); 

main ( ) 

t 
s t a t i c  c o l o r s  sample = { " r e d " ,  "green", " b l u e " } ;  

p r i n t f  (""%s%s %s\n" ,  sample.a, sample.b, samp1e.c); 
funct(samp1e); 
p r i n t f ( " % s  %s %s\n" ,  sample.a, sample.b, samp1e.c); 

vo id  f u n c t  c o l o r s  sample) 

{ 
sample a = "cyan'; 
sample b = "magenta"; 
sample c = " ye l l ow" ;  
p r i n t f ( " % s  %s %s\n" ,  sample.a, sample.b, samp1e.c); 
r e t u r n; 

1 

# inc lude <stdio.h> 

typedef s t r u c t  { 

char *a; 
char *b; 
char *c ; 

} co lo rs ;  

vo id  func t (co1ors  * p t ) ;  

main ( ) 

{ 
S t a t i c  C O l O r S  sample = { " r e d " ,  "green",  

p r i n t f ( " % s  %s %s\n" ,  sample.a, sample.b, samp1e.c); 
funct(bsamp1e); 
p r i n t f ( " % s  %s %s\n" ,  sample.a, sample.b, samp1e.c); 

} 
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vo id  funct(co1ors *p t )  

{ 
p t ->a  = *cyan"; 
p t ->b  = "magenta""; 
p t - x  = " ye l l ow" ;  
p r i n t f ( " % s  %s %s\nn,  pt->a, pt->b, p t ->c ) ;  
re tu rn ;  

1 

(c )  #include <s td io .  h> 

typedef s t r u c t  { 

char *a; 
char *b; 
char *c; 

1 co lo rs ;  

co lo rs  funct(co1ors sample); 

main ( ) 

{ 
s t a t i c  co lo rs  sample = { * r e d * ,  *green", "b lue " } ;  

p r i n t f ( * % s  %s %s\n" ,  sample.a, sample.b, samp1e.c); 
sample = funct(samp1e); 
p r i n t f ( " % s  %s %s\n* ,  sample.a, sample.b, samp1e.c); 

1 

co lo rs  funct(co1ors sample) 

{ 
sample .a = "cyan" ; 
samp1e.b = "magenta"; 
sample. c = yel low" ; 
p r i n t f ( " % s  %s %s\n* ,  sample.a, sample.b, samp1e.c); 
return(samp1e); 

1 

11.56 Describe the output generated by the following program. Distinguish between meaninful and meaningless output. 

#include <stdio.h> 

main ( ) 

union { 

i n t  i; 
f l o a t  f ; 
double d; 

1 U; 

p r i n t f  ( "%d\nn, s izeof U); 
u . i  = 100; 
p r i n t f ( " % d %f% f \ n * ,  u . i ,  u . f ,  u.d); 
u . f  = 0.5; 
p r i n t f ( * % d %f% f \ n " ,  u . i ,  u . f ,  u.d);  
u.d = 0.0166667; 
p r i n t f ( " % d  %f% f \ n " ,  u . i ,  u . f ,  u.d);  

1 
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11.57 Describe the output generated by the following programs. Explain any differences between them. 

( a )  #include <stdio.h> 

typedef union { 

int i; 
float f ; 

} udef; 

void funct(udef U); 

main ( ) 

udef U; 

u.i = 100; 
u.f = 0.5; 
funct ( u) ; 
printf("%d %f\n", u.i, u.f); 

1 

void funct(udef U) 

{ 
u.i = 200; 
printf("%d %f\n", u.1, u.f); 
return ; 

1 

(b)  #include <stdio. h> 

typedef union { 

int i; 
float f; 

} udef; 

void funct(udef U); 

main ( ) 

i 
udef U; 

u.i = 100; 
u.f = 0.5; 
funct (U) ; 
printf("%d %f\n", u.i, u.f); 

1 

void funct(udef U) 

u.f = -0.3; 
printf("%d %f\n", u.1, u.f); 
return; 

1 
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(c) #include cstd io .  h> 

typedef union { 

i n t  i; 
f l o a t  f ;  

} udef; 

udef funct(udef U) ;  

main( ) 

udef U; 

u . i  = 100; 

u . f  = 0.5; 

U = func t (u ) ;  
p r i n t f ( ' % d  % f \ n " ,  u.1, u . f ) ;  

udef funct(udef U )  

u . f  = -0.3; 
p r i n t f  ('%d % f \ n " ,  u.1, u . f ) ;  
re tu rn (u ) ;  

1 

Programming Problems 

11.58 Answer the following questions as they pertain to your particular C compiler or interpreter. 

(a) Can an entire structure variable (or union variable) be assigned to another structure (union) variable, 
provided both variables have the same composition? 

(b)  Can an entire structure variable (or union variable) be passed to a function as an argument? 

(c) Can an entire structure variable (or union variable) be returned from a function to its calling routine? 

(6) Can a pointer to a structure (or a union) be passed to a function as an argument? 

(e )  Can a pointer to a structure (or a union) be returned from a function to its calling routine? 

11.59 Modify the program given in Example 11.26 (locating customer records) so that the function search returns a 
complete structure rather than a pointer to a structure. (Do not attempt this problem if your version of C does not 
support the return of entire structures fiom a function.) 

11.60 Modify the billing program shown in Example 11.28 so that any of the following reports can be displayed: 

(a) Status of all customers (now generated by the program) 

(b) Status of overdue and delinquent customers only 

(c) Status of delinquent customers only 

Include a provision for generating a menu when the program is executed, from which the user may choose which 
report will be generated. Have the program return to the menu after printing each report, thus allowing for the 
possibility of generating several different reports. 

11.61 Modify the billing program shown in Example 11.28 so that the structure of type record now includes a union 
containing the members o f f  ice-address and home-address. Each union member should itself be a structure 
consisting of two 80-character arrays, called s t ree t  and c i t y ,  respectively. Add another member to the primary 
structure (of type record), which is a single character called f lag.  This member should be assigned a character 
(e.g., I o ' or I h I )  to indicate which type of address is currently stored in the union. 

Modify the remainder of the program so that the user is asked which type of address will be supplied for 
each customer. Then display the appropriate address, with a corresponding label, along with the rest of the output. 
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11.62 Mod@ the program given in Example 11.37 so that a number raised to a floating-point power can be executed in 
either single precision or double precision, as specified by the user in response to a prompt. The union type n v a l s  
should now contain a third member, which should be a double-precision quantity called dexp. 

11.63 Rewrite each of the following C programs so that it makes use of structure variables. 

(a) The depreciation program presented in Example 7.20. 
(b) The program given in Example 10.28for displaying the day of the year 
(c) The program for determining the future value of monthly deposits, given in Example 10.31 

11.64 Modify the piglatin generator presented in Example 9.14 so that it will accept multiple lines of text. Represent 
each line of text with a separate structure. Include the following three members within each structure: 

(a) The original line of text 

(b) The number of words within the line 

(c) The modified line of text (i.e., the piglatin equivalent of the original text) 

Include the enhancements described in Prob. 9.36 (i.e., provisions for punctuation marks, uppercase letters and 
double-letter sounds). 

11.65 Write a C program that reads several different names and addresses into the computer, rearranges the names into 
alphabetical order, and then writes out the alphabetized list. (See Examples 9.20 and 10.26.) Make use of 
structure variables within the program. 

11.66 For each of the following programming problems described in earlier chapters, write a complete C program that 
makes use of structure variables. 

(a)  The student exam score averaging problem described in Prob. 9.40. 

(b)  The more comprehensive version of the student exam score averaging problem described in Prob. 9.42. 

(c )  The problem that matches the names of countries with their corresponding capitals, described in Prob. 9.46. 

(6) The text encoding-decoding problem as described in Prob. 9.49, but extended to accommodate multiple 
lines of text. 

11.67 Write a C program that will accept the following information for each team in a baseball or a football league. 

1 .  Team name, including the city (e.g., Pittsburgh Steelers) 
2. Number of wins 
3. Number of losses 

For a baseball team, add the following information: 

4. Number of hits 
5 .  Number of runs 
6. Number of errors 
7. Number of extra-inning games 

Similarly, add the following information for a football team: 

4. Number of ties 
5 .  Number of touchdowns 
6. Number of field goals 
7. Number of turnovers 
8. Total yards gained (season total) 
9. Total yards given up to opponents 

Enter this information for all of the teams in the league. Then reorder and print the list of teams according to 
their win-lose records, using the reordering techniques described in Examples 9.13 and 10.16 (see also Examples 
9.21 and 10.26). Store the information in an array of structures, where each array element (i.e., each structure) 
contains the information for a single team. Make use of a union to represent the variable information (either 
baseball or football) that is included as a part of the structure. This union should itself contain two structures, one 
for baseball-related statistics and the other for football-related statistics. 

Test the program using a current set of league statistics. (Ideally, the program should be tested using both 
baseball and football statistics.) 
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11.68 Modify the program given in Example 11.32 so that it makes use of each of the following linked structures. 

(a) A linear linked list with two sets of pointers: one set pointing in the forward direction, the other pointing 
backwards. 

(b) A circular linked list. Be sure to include a pointer to identify the beginning of the circular list. 

11.69 Modify the program given in Example 11.32 so that each node contains the following information: 

(a) Name 
(b) Street address 
(c) City/State/ZIP code 
(d) Account number 

(e) Account status (a single character indicating current, overdue or delinquent status) 

11.70 Write a complete C program that will allow you to enter and maintain a computerized version of your family tree. 
Begin by specifying the number of generations (i.e., the number of levels within the tree). Then enter the names 
and nationalities in a hierarchical fashion, beginning with your own name and nationality. Include capabilities for 
modifying the tree and for adding new names (new nodes) to the tree. Also, include a provision for displaying the 
entire tree automatically after each update. 

Test the program, including at least three generations if possible (you, your parents and your grandparents). 
Obviously, the tree becomes more interesting as the number of generations increases. 

11.71 An RPN calculator utilizes a scheme whereby each new numerical value is followed by the operation that is to be 
performed between the new value and its predecessor. (RPN stands for “reverse Polish notation.”) Thus, adding 
two numbers, say 3.3 and 4.8, would require the following keystrokes: 

3.3 <enter> 
4 . 8  + 

The sum, 8.1, would then be displayed in the calculator’s single visible register. 
RPN calculators make use of a stack typically containing four registers (four components), as illustrated in 

Fig. 1 1.7. Each new number is entered into the Xregister, causing all previously entered values to be pushed up in 
the stack. If the top register (i.e., the T register) was previously occupied, then the old number will be lost (it will 
be overwritten by the value that is pushed up from the Z register). 

NULL (T register) 

t 
1 

(Z register)i 
(Y register) 

1 

(X register)L 

Fig. 11.7 

Arithmetic operations are always carried out between the numbers in the X and Y registers. The result of 
such an operation will always be displayed in the X register, causing everything in the upper registers to drop 
down one level (thus “popping” the stack). This procedure is illustrated in Fig. 11.8(a) to (c) for the addition of 
the values 3.3 and 4.8, as described above. 
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(T register)m 
(Z register) 

(Y register) 

L 
(X register) 

Owrations ODerations Operations 

3.3 <enter> 13.31
El 
Fig. 11.8 

Write an interactive C program that will simulate an RPN calculator. Display the contents of the stack after 
each operation, as in Fig. 1 1.8(a)to (c) .  Include a provision for carrying out each of the following operations. 

ODeratron Kevstrokes 
enter new data (value) <enter> 
addition (value) + 
subtraction (value) -
multiplication (value) * 
division (value) / 

Test the program using any numerical data of your choice. 



Chapter 12 


Data Files 

Many applications require that information be written to or read from an auxiliary memory device. Such 
information is stored on the memory device in the form of a datafile. Thus, data files allow us to store 
information permanently, and to access and alter that information whenever necessary. 

In C, an extensive set of library functions is available for creating and processing data files. Unlike other 
programming languages, C does not distinguish between sequential and direct access (random access) data 
files. However, there are two different types of data files, called stream-oriented (or standard) data files, and 
system-oriented (or low-ZeveZ)data files. Stream-oriented data files are generally easier to work with and are 
therefore more commonly used. 

Stream-oriented data files can be subdivided into two categories. In the first category are text files, 
consisting of consecutive characters. These characters can be interpreted as individual data items, or as 
components of strings or numbers. The manner in which these characters are interpreted is determined either 
by the particular library functions used to transfer the information, or by format specifications within the 
library functions, as in the scanf and p r i n t f  functions discussed in Chap. 4. 

The second category of stream-oriented data files, often referred to as unformatted data files, organizes 
data into blocks containing contiguous bytes of information. These blocks represent more complex data 
structures, such as arrays and structures. A separate set of library functions is available for processing stream- 
oriented data files of this type. These library functions provide single instructions that can transfer entire 
arrays or structures to or from data files. 

System-oriented data files are more closely related to the computer’s operating system than stream-
oriented data files. They are somewhat more complicated to work with, though their use may be more 
efficient for certain kinds of applications. A separate set of procedures, with accompanying library hnctions, 
is required to process system-oriented data files. 

This chapter is concerned only with stream-oriented data files. The overall approach is relatively 
standardized, though the details may vary from one version of C to another. Thus, the examples presented in 
this chapter may not apply to all versions of the language in exactly the manner shown. Nevertheless, readers 
should have little difficulty in relating this material to their particular version of C. 

12.1 OPENING AND CLOSING A DATA FILE 

When working with a stream-oriented data file, the first step is to establish a bufler area, where information is 
temporarily stored while being transferred between the computer’s memory and the data file. This buffer area 
allows information to be read from or written to the data file more rapidly than would otherwise be possible. 
The buffer area is established by writing 

FILE *ptvar; 

where FILE (uppercase letters required) is a special structure type that establishes the buffer area, and ptvar 
is a pointer variable that indicates the beginning of the buffer area. The structure type F I L E  is defmed within 
a system i n c l u d e  file, typically s t d i o .  h. The pointer ptvar is often referred to as a stream pointer, or 
simply a stream. 

A data file must be opened before it can be created or processed. This associates the file name with the 
buffer area (i.e., with the stream). It also specifies how the data file will be utilized, i.e., as a read-only file, a 
write-only file, or a readwrite file, in which both operations are permitted. 

399 
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The library function f open is used to open a file. This function is typically written as 

ptvar = fopen(  file-name, file-type); 

where file-nameand file- type are strings that represent the name of the data file and the manner in 
which the data file will be utilized. The name chosen for the file -name must be consistent with the rules for 
naming files, as determined by the computer's operating system. The file- type must be one of the strings 
shown in Table 12-1. 

Table 12-1 File-Type Specifications 

File-Type Meaning 

* r r  Open an existing file for reading only. 

I1w Open a new file for writing only. If a file with the specified file-namecurrently exists, it will be 
destroyed and a new file created in its place. 

'I a I' Open an existing file for appending (i.e., for adding new information at the end of the file). A new file 
will be created if the file with the specified file-namedoes not exist. 

r+" Open an existing file for both reading and writing. 

" W +  Open a new file for both reading and writing. If a file with the specified file-namecurrently exists, 
it will be destroyed and a new file created in its place. 

I'I' a+ Open an existing file for both reading and appending. A new file will be created if the file with the 
specified file-namedoes not exist. 

The fopen function returns a pointer to the beginning of the buffer area associated with the file. A NULL 
value is returned if the file cannot be opened as, for example, when an existing data file cannot be found. 

Finally, a data file must be closed at the end of the program. This can be accomplished with the library 
function f close.  The syntax is simply 

f c l o s e (p tvar ); 

It is good programming practice to close a data file explicitly using the f c l o s e  function, though most C 
compilers will automatically close a data file at the end of program execution if a call to f c l o s e  is not 
present. 

EXAMPLE 12.1 A C program contains the following statements. 

#include <s td io .h>  

F I L E  * f p t ;  

f p t  = fopen("sample.dat" ,  " w " ) ;  

. . . . .  
f c l o s e ( f p t ) ;  

The first statement causes the header file s t d i o  .h to be included in the program. The second statement defines a pointer 
called f p t  which will point to a structure of type FILE,  indicating the beginning of the data-file buffer area. Note that 
F I L E  is defined in s t d i o .  h. 

The third statement opens a new data file called sample. da t  as a write-only file. Moreover, the fopen function 
returns a pointer to the beginning of the buffer area and assigns it to the pointer variable f p t .  Thus, f p t  points to the 
buffer area associated with the data file sample. dat .  All subsequent file processing statements (which are not shown 
explicitly in this example) will access the data file via the pointer variable f p t  rather than by the file name. 

Finally, the last statement closes the data file. Note that the argument is the pointer variable f p t ,  not the file name 
sample. dat .  
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The value returned by the fopen function can be used to generate an error message if a data file cannot 
be opened, as illustrated in the next example. 

EXAMPLE 12.2 A C program contains the following statements. 

# inc lude  <s td io .h>  
#def ine  NULL 0 

main ( ) 

i 
FILE * f p t ;  

f p t  = fopen("sample .da t" ,  " r + " ) ;  

i f  ( f p t  == NULL) 
printf("\nERROR - Cannot open the  designated f i l e \ n " ) ;  

e l s e  { 

f c l o s e  ( f p t ) ;  

1 
1 

This program attempts to open an existing data file called sample. da t  for both reading and writing. An error message 
will be generated if this data file cannot be found. Otherwise the data file will be opened and processed, as indicated. 

The fopen and the i f  statments are often combined, as follows. 

if( ( f p t  = fopen(14sample.datn,"r+"))== NULL) 
pr intf (" \nERROR - Cannot open the  designated f i l e \ n " ) ;  

Either method is acceptable. 

12.2 CREATING A DATA FILE 

A data file must be created before it can be processed. A stream-oriented data file can be created in two ways. 
One is to create the file directly, using a text editor or a word processor. The other is to write a program that 
enters information into the computer and then writes it out to the data file. Unformatted data files can only be 
created with such specially written programs. 

When creating a new data file with a specially written program, the usual approach is to enter the 
information from the keyboard and then write it out to the data file. If the data file consists of individual 
characters, the library functions getchar  and putc  can be used to enter the data from the keyboard and to 
write it out to the data file. We have already discussed the use of getchar  in Sec. 4.2. The putc  hnction is 
new, though its use is analogous to putchar,  which we discussed in Sec. 4.3. 

EXAMPLE 12.3 Creating a Data File (Lowercase to Uppercase Text Conversion) Here is a variation of several 
earlier programs, which read a line of lowercase text into the computer and write it out in uppercase (see Examples 4.4, 
6.9, 6.12, 6.16 and 9.2). In this example we will read the text into the computer on a character-by-character basis using 
the getchar function, and then write it out to a data file using putc. The lowercase to uppercase conversion will be 
carried out by the library function toupper, as before. 

The program begins by defining the stream pointer f pt ,  indicating the beginning of the data-file buffer area. A new 
data file, called sample. dat ,  is then opened for writing only. Next, a do - whi le  loop reads a series of characters from 
the keyboard and writes their uppercase equivalents to the data file. The putc function is used to write each character to 
the data file. Notice that putc requires specification of the stream pointer f p t  as an argument. 
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The loop continues as long as a newline character ( I \ n  I )  is not entered from the keyboard. Once a newline character 
is detected, the loop ceases and the data file is closed. 

/ *  read a l i n e  o f  lowercase t e x t  and s t o r e  i n  uppercase w i t h i n  a da ta  f i l e  * /  

# i n c l u d e  <s td io .h> 
# inc lude <ctype.h> 

main( ) 

FILE * f p t ;  / *  d e f i n e  a p o i n t e r  t o  p redef ined s t r u c t u r e  type  FILE * /  

char  c ;  

/ *  open a new data  f i l e  f o r  w r i t i n g  o n l y  * /  
f p t  = fopen("sample.dat" ,  " w " ) ;  

/ *  read each charac ter  and w r i t e  i t s  uppercase equ iva len t  t o  t h e  da ta  f i l e  * /  
do 

pu tc ( toupper (c  = g e t c h a r ( ) ) ,  f p t ) ;  
w h i l e  ( c  I =  ' \ n o ) ;  

/ *  c l o s e  t h e  data f i l e  * /  
f c l o s e  ( f  p t  ) ; 

1 

After the program has been executed, the data file sample. d a t  will contain an uppercase equivalent of the line of 
text entered into the computer from the keyboard. For example, if the original line of text had been 

We, t h e  people o f  t h e  U n i t e d  Sta tes  

the data file would contain the text 

WE, THE PEOPLE OF THE UNITED STATES 

A data file that has been created in this manner can be viewed in several different ways. For example, the 
data file can be viewed directly, using an operating system command such as p r i n t  or type.  The data file 
can also be examined using a text editor or a word processor. 

Another approach is to write a program that will read the data file and display its contents. Such a 
program will, in a sense, be a mirror image of the one described above; i.e., the library h c t i o n  g e t c  will read 
the individual characters fkom the data file, and putchar  will display them on the screen. This is a more 
complicated way to display a data file but it offers a great deal of flexibility, since the individual data items 
can be processed as they are read. 

EXAMPLE 12.4 Reading a Data File The following program will read a line of text from a data file on a character- 
by-character basis, and display the text on the screen. The program makes use of the library functions getc  and putchar  
(see Sec. 4.3) to read and display the data. It complements the program presented in Example 12.3. 

The logic is directly analogous to that of the program shown in Example 12.3. However, this program opens the data 
file sample. d a t  as a read-only file, whereas the previous program opened sample. d a t  as a write-only file. An error 
message is generated if sample. d a t  cannot be opened. Also, notice that getc  requires the stream pointer f p t  to be 
specified as an argument. 

/ *  read a l i n e  o f  t e x t  f rom a da ta  f i l e  and d i s p l a y  i t  on t h e  screen * /  

# i n c l u d e  <s td io .h> 

#def ine  NULL 0 
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main ( ) 

{ 
FILE * f p t ;  / *  d e f i n e  a p o i n t e r  t o  predef ined s t r u c t u r e  type FILE * /  

char c ;  

i f  ( ( f p t  = fopen("sample.dat" ,  " r " ) )  == NULL) 
/ *  open t h e  da ta  f i l e  f o r  reading on ly  * /  
printf("\nERROR - Cannot open the  designated f i l e \ n " ) ;  

e l s e  / *  read and d isp lay  each character  from the  data f i l e  * /  
do 

putchar(c = g e t c ( f p t ) ) ;  
w h i l e  ( c  I =  ' \ n I ) ;  

/ *  c lose  t h e  da ta  f i l e  * /  
f c l o s e ( f p t ) ;  

} 

Data files consisting entirely of strings can often be created and read more easily with programs that 
utilize special string-oriented library functions. Some commonly used functions of this type are gets ,  puts,  
f g e ts and fputs. The functions gets  and puts  read or write strings to or from the standard output devices, 
whereas f g e t s  and f p u t s  exchange strings with data files. Since the use of these functions is 
straightforward, we will not pursue this topic further. You may wish to experiment with these functions, 
however, by reprogramming some of the character-oriented readwrite programs presented earlier. 

Many data files consist of complex data structures, such as structures that contain various combinations of 
numeric and character information. Such data files can be processed using the library functions f s c a n f  and 
f p r i n t f ,  which are analogous to the functions scanf and p r i n t f  discussed in Chap. 4 (see Secs. 4.4 and 
4.6). Thus, the f scanf function permits formatted data to be read from a data file associated with a particular 
stream, and f p r i n t f  permits formatted data to be written to the data file. The actual format specifications are 
the same as those used with the scanf and p r i n t f  functions. 

EXAMPLE 12.5 Creating a File Containing Customer Records The last chapter presented three programs that 
supposedly were used to create and update customer records (see Examples 11.14 and 11.28). When describing the 
programs we remarked that the examples were unrealistic, because data files should be used for applications of this type. 
We now turn our attention to a program that creates such a data file for a series of customer records whose composition is 
as follows. 

typedef  s t r u c t  { 

i n t  month; 
i n t  day; 
i n t  year;  

} date ;  

typedef  s t r u c t  { 
char name[80]; 
char s t r e e t [ 8 0 ] ;  
char c i t y [ 8 0 ] ;  
i n t  acct-no; 
char acct-type; 
f l o a t  oldbalance; 
f l o a t  newbalance ; 
f l o a t  payment; 
s t r u c t  date lastpayment; 

} record;  
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The overall strategy will be to provide the current date, and then enter a loop that will process a series of customer 
records. For each customer, the customer's name, street, city, account number (acct-no) and initial balance 
(oldbalance) will be read into the computer. An initial value of 0 will then be assigned to the structure members 
newbalance and payment, the character 'C"will be assigned to acct-type (indicating a current status), and the current 
date assigned to lastpayment. Each customer record will then be written to a write-only data file called records.  dat. 

The procedure will continue until a customer name is encountered whose first three characters are END (in either 
upper- or lowercase). When END is encountered, it will be written to the data file, indicating an end-of-file condition. 

Here is the complete C program. 

/ *  c rea te  a data f i l e  con ta in ing  customer records * /  

# inc lude <s td io .  h> 
# inc lude <s t r i ng .h>  

#def ine  TRUE 1 

typedef s t r u c t  { 

i n t  month; 
i n t  day; 
i n t  year; 

1 date;  

typedef s t r u c t  { 

char name[80]; 
char s t r e e t [ 8 0 ] ;  
char c i t y [  801 ; 
i n t  acct-no; / *  ( p o s i t i v e  i n t e g e r )  * /  
char acct-type; / *  C ( cu r ren t ) ,  0 (overdue), o r  D (de l inquent )  * /  
f l o a t  oldbalance; / *  (nonnegative q u a n t i t y )  * /  
f l o a t  newbalance; / *  (nonnegative q u a n t i t y )  * /  
f l o a t  payment; / *  (nonnegative q u a n t i t y )  * /  
date lastpayment; 

} record;  

record  readscreen(recot-d customer); / *  f u n c t i o n  pro to type * /  
v o i d  w r i t e f i l e ( r e c o r d  customer); / *  f u n c t i o n  pro to type * /  

FILE * f p t ;  / *  po in te r  t o  predef ined s t r u c t u r e  FILE * /  

main ( ) 

{ 
i n t  f l a g  = TRUE; / *  va r iab le  dec la ra t i on  * /  
record  customer; / *  s t r u c t u r e  va r iab le  dec la ra t i on  * /  

/ *  open a new data f i l e  f o r  w r i t i n g  on ly  * /  
f p t  = fopen( " records .da t " ,  " " w " ) ;  

/ *  en te r  date and assign i n i t i a l  values * /  
printf("CUST0MER BILLING SYSTEM - INITIALIZATION\n\n"); 
p r i n t f ( "P1ease  en ter  t o d a y \ ' s  date (mm/dd/yyyy): " ) ;  

scanf("%d/%d/%d",&customer.lastpayment.month, 
&customer.lastpayment.day, 

&customer.lastpayment.year); 


customer.newbalance = 0; 

customer. payment = 0; 

customer.acct-type = " C l ;  
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/ *  main l oop  * /  
w h i l e  ( f l a g )  { 

/ *  en ter  customer's name and w r i t e  t o  data f i l e  * /  
p r in t f ( " \nName (en ter  \ 'END\' when f i n i s h e d ) :  " ) ;  

scanf ( ' %[ A \ n ]  ' , customer. name) ; 
f p r i n t f ( f p t ,  " \ n%s \n* ,  customer.name); 

/ *  t e s t  f o r  stopping cond i t i on  * I  
i f  (strcmp(customer.name, 'END") == 0) 

break; 

customer = readscreen(customer); 
w r i t e f i l e (cus tomer ) ;  

k 


f c l o s e ( f p t ) ;  

record  readscreen(record customer) / *  read remaining data * I  

1 
p r i n t f  ( " S t r e e t :  " I ) ;  

scanf ( '  % [A \n ] ' l ,  customer.street) ;  
p r i n t f ( " C i t y :  " ) ;  

scanf ( " I  % [ " \ n ] " ,  customer.c i ty) ;  
p r i n t f  ( "Account number: ' ) ; 
scanf ( "%d" ,  &customer.acct-no); 
p r i n t f  ( "Cur ren t  balance: " ) ; 
s c a n f ( " % f " ,  &customer.oldbalance); 
return(customer);  

1 

vo id  w r i t e f i l e ( r e c 0 r d  customer) / *  w r i t e  remaining data t o  a data f i l e  * /  

{ 
f p r i n t f  ( f p t ,  "%s\n" ,  customer.street) ;  
f p r i n t f ( f p t ,  "%s\n" ,  customer . c i t y )  ; 
f p r i n t f ( f p t ,  "%d\n",  customer.acct-no); 
f p r i n t f ( f p t ,  "%c\n" ,  customer.acct-type); 
f p r i n t f  ( f  p t  , "%.2 f \n " ,  customer.oldbalance); 
f p r i n t f  ( f  p t  , '%%.2f\,I", customer. newbalance) ; 
f p r i n t f ( f p t ,  "%.2 f \n ' ,  customer.payment); 
f p r i n t f ( f p t ,  "%d/%d/%d\n",customer.lastpayment.month, 

customer.lastpayment.day, 

customer.lastpayment.year); 


r e t u r n ;  

1 

The program begins by defining the composition of each customer record and the stream pointer f p t .  Within main, 
a new data file, called records.  dat, is then opened for writing only. Next, the program prompts for the current date, and 
initial values are assigned to the structure members newbalance, payment and acct-type. 

The program then enters a wh i le  loop, which prompts for a customer name and writes the name to the data file. 
Next, the program tests to see if the name that has been entered is END (upper- or lowercase). If so, the program breaks out 
of the loop, the data file is closed, and the computation terminates. Otherwise, the remaining information for the current 
customer is entered via function readscreen, and then written to the data file via function w r i t e f  i l e .  
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Within main and readscreen we see that the various data items are entered interactively, using the familiar 
formatted p r i n t f  and scanf functions. On the other hand, within main and w r i t e f  i l e  the data are written to the data 
file via the f p r i n t f  function. The syntax governing the use of this function is the same as the syntax used with p r i n t f ,  
except that a stream pointer must be included as an additional argument. Notice that the control string makes use of the 
same character groups (i.e., the same formatting features) as the p r i n t f  function described in Chap. 4. 

When the program is executed, the information for each customer record is entered interactively, as shown below for 
four fictitious customers. As usual, the user's responses are underlined. 

CUSTOMER BILLING SYSTEM - INITIALIZATION 

Please enter  today 's  date (mm/dd/yyyy): 5/74/1998 

Name (enter 'END' when f i n i shed) :  Steve Johnson 

Street :  Mountainview Dr ive 
C i t y :  Denver, 
Account number: 4206 
Current Balance: 247.88 

Name (enter 'END' when f i n i shed) :  Susan Richards 

Street :  4389 A l l i a a t o r  Blvd 
C i t y :  Fo r t  Lauderdale, fi 
Account number: 2219 
Current Balance: 135.00 

Name (enter  'END' when f i n i shed) :  Mar t in  Peterson 
Street :  1787 P a c i f i c  Parkwav 
C i t y :  San Dieao. CA 
Account number: a 
Current Balance: 387.42 

Name (enter 'END' when f i n i shed) :  P h v l l i s  Smith 

St reet :  1000 Great W h i t e  Way 
C i t y :  New York, 

Account number: 711 
Current Balance: 260.0Q 

Name (enter 'END' when f i n i shed) :  END 

After the program has been executed, the data file records. dat will have been created, containing the following 
information. 

Steve Johnson 
123 Mountainview Dr ive 
Denver, CO 
4208 
C 

247.88 
0.00 

0.00 

5 I24I1998 
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Susan Richards 
4383 A l l i g a t o r  Blvd 
Beechview, OH 

221 9 
C 
135.00 
0.00 
0.00 

5 1241 1998 

Mart in  Peterson 
1787 P a c i f i c  Parkway 
San Diego, CA 

8452 
C 

387.42 
0.00 

0.00 
512411 998 

P h y l l i s  Smith 
1000 Great White Way 
New York, NY 
711 

C 

260.00 
0.00 

0.00 

51 241 1998 

END 

In the next section we will see a program that updates the information contained in this file. 

12.3 PROCESSING A DATA FILE 

Most data file applications require that a data file be altered as it is being processed. For example, in an 
application involving the processing of customer records, it may be desirable to add new records to the file 
(either at the end of the file or interspersed among the existing records), to delete existing records, to modify 
the contents of existing records, or to rearrange the records. These requirements in turn suggest several 
different computational strategies. 

Consider, for example, the problem of updating the records within a data file. There are several 
approaches to this problem. Perhaps the most obvious approach is to read each record fiom a data file, update 
the record as required, and then write the updated record to the same data file. However, there are some 
problems with this strategy. In particular, it is difficult to read and write formatted data to the same data file 
without disrupting the arrangement of the data items within the file. Moreover, the original set of records may 
become inaccessible if something goes wrong during the program execution. 

Another approach is to work with two different data files -an old file (a source) and a new file. Each 
record is read from the old file, updated as necessary, and then written to the new file. When all of the records 
have been updated, the old file is deleted or placed into archival storage and the new file renamed. Hence, the 
new file will become the source for the next round of updates. 

Historically, the origin of this method goes back to the early days of computing, when data files were 
maintained on magnetic tapes. The method is still used, however, because it provides a series of old source 
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files that can be used to generate a customer history. The most recent source file can also be used to recreate 
the current file if the current file is damaged or destroyed. 

EXAMPLE 12.6 Updating a File Containing Customer Records Example 12.5 presents a program to create a data 
file called records. dat that contains customer records. We now present a program to update the records within this data 
file. The program will make use of the two-file update procedure described above. Hence, we will assume that the 
previously created data file records. dat has been renamed records. old. This will be the source file. 

Our overall strategy will be similar to that described in Example 12.5. That is, we will first provide the current date, 
and then enter a loop that will read a series of customer records from records. old, and write the corresponding updated 
records to a new data file called records.new. Each pass through the loop will read one record, update it if necessary, 
and then write the record to records.new. By following this procedure, all of the records will be written to 
records. new, whether updated or not. 

The procedure will continue until the customer name END has been read from the source file (in either upper- or 
lowercase). Once this happens, END will be written to the new data file, indicating an end-of-file condition. 

The complete program is given below. The program begins by defining the composition of each customer record, 
using the same definitions presented in Example 12.5. These definitions are followed by definitions of the stream pointers 
p t o l d  and ptnew. 

Within the main function, records. o l d  is opened as an existing read-only file, and records. new is opened as a 
new write-only file. An error message is generated if records. o l d  cannot be opened. Otherwise, the program enters a 
whi le  loop that reads successive customer records from records. o l d  (actually, from stream ptold), updates each 
record as required, and writes each record to records. new (to stream ptnew). 

/ *  update a data f i l e  con ta in ing  customer records * /  

# inc lude <stdio.h> 
#include <s t r ing .h> 

#def ine  NULL 0 
#def ine  TRUE 1 

typedef s t r u c t  { 

i n t  month; 
i n t  day; 
i n t  year; 

1 date; 

typedef s t r u c t  { 

char name[80]; 
char s t ree t [80 ] ;  
char c i t y [ 8 0 ] ;  
i n t  acct-no; / *  (pos i t i ve  i n tege r )  * /  
char acct-type; / *  C (cur ren t ) ,  0 (overdue), o r  D (del inquent)  * /  
f l o a t  oldbalance; / *  (nonnegative quan t i t y )  * /  
f l o a t  newbalance; / *  (nonnegative quan t i t y )  * /  
f l o a t  payment; / *  (nonnegative quan t i t y )  * /  
date lastpayment; 

} record; 

record r e a d f i l e ( r e c o r d  customer); / *  f unc t i on  prototype * /  
record update ( record  customer) ; / *  func t i on  prototype * /  
vo id  w r i t e f i l e ( r e c o r d  customer); / *  f unc t i on  prototype * /  

F I L E  *p to ld ,  *ptnew; / *  po in te rs  t o  predefined s t ruc tu re  F I L E  * /  
i n t  month, day, year; / *  g loba l  var iab le  dec la ra t ions  * /  
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main( ) 

{ 
i n t  f l a g  = TRUE; I *  l o c a l  v a r i a b l e  dec la ra t i on  * /  

record  customer; / *  s t r u c t u r e  va r iab le  dec la ra t i on  * /  

/ *  open data f i l e s  * /  
i f  ( ( p t o l d  = f open ( records. o l d "  , 'I r ) ) == NULL) 

printf("\nERROR - Cannot open the  designated read f i l e \ n " ) ;  
e l s e  { 

ptnew = fopen( "records.new", "w" ) ;  

/ *  en te r  cu r ren t  date * /  
printf('CUST0MER BILLING SYSTEM - UPDATE\n\n"); 
p r i n t f ( "P1ease  en ter  t o d a y \ ' s  date (mm/dd/yyyy): " ) ;  

scanf ('I%d/%d/%d", &month, &day, &year) ; 

/ *  main loop * /  
wh i l e  ( f l a g )  { 

/ *  read a name from o l d  data f i l e  and w r i t e  t o  new data f i l e  * /  
f s c a n f ( p t o l d ,  ' % [ ^ \ n ] * ,  customer.name); 
f p r i n t f ( p t n e w ,  " \n%s\n" ,  customer.name); 

/ *  t e s t  f o r  stopping cond i t i on  * /  
i f  (strcmp(customer.name, I'END") == 0) 

break; 

/ *  read remaining data from o l d  data f i l e  * /  
customer = readf i le (cus tomer) ;  

/ *  prompt f o r  updated i n fo rma t ion  * /  
customer = update(customer); 

/ *  w r i t e  updated in fo rmat ion  t o  new data f i l e  * /  
w r i t e f i l e ( c u s t o m e r ) ;  

1 
f c l ose (p to1d) ;  
f c lose(p tnew) ;  

} / *  end e l se  * /  

1 

record  r e a d f i l e ( r e c o r d  customer) / *  read remaining data from the  o l d  da ta  f i l e  * /  

f s c a n f ( p t o l d ,  " % [ ^ \ n ] " ,  customer.street) ;  
f scan f (p to ld ,  % [ ^ \ n ] " ,  customer.c i ty) ;  I' 

f scanf (p to ld ,  ' %do', &customer. acct-no) ; 
f scanf (p to ld ,  " %cat, &customer. acct-type) ; 
fscan f (p to ld ,  " %f',&customer.oldbalance); 
f scanf (p to ld ,  %fI ,  &customer. newbalance) ; 
f s c a n f ( p t o l d ,  " %f',&customer.payment); 
f s c a n f ( p t o l d ,  %d/%d/%d", &customer.lastpayment.month,'I 

&customer.lastpayment.day, 

&customer.lastpayment.year);  

return(customer);  

1 
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record update(record customer) / *  prompt f o r  new informat ion,  update records and 
d isp lay summary data * /  

{ 
pr int f (" \n\nName: % s " ,  customer.name); 
p r i n t f  ( " Account number: %d \nHJ  customer.acct-no); 
p r i n t f ( ' \ n O l d  balance: %7.2fH, customernoldbalance); 
p r i n t f ( H  Current payment: " ) ;  

s c a n f ( " % f " ,  8customer.payment); 

i f  (customer.payment > 0) { 
customer.lastpayment.month = month; 
customer.1astpayment.day = day; 
customer.lastpayment.year = year; 
customer.acct-type = (customer.payment < 0.1 * customer.oldbalance) ? '0' : ' C ' ;  

1 
else 

customer.acct-type = (customer.oldbalance > 0) ? I D '  : 'C'; 

customer.newbalance = customer.oldbalance - customer.payment; 
p r i n t f ( "New balance: %7.2fn,  customer.newbalance); 

p r i n t f ( "  Account status:  ' ) ;  
swi tch (customer.acct-type) { 

case ' C '  : 
p r i n t f  ("ClJRRENT\n") ; 
break; 

case '0': 
p r i n t f  ('OVERDUE\n' ) ; 
break; 

case I D ' :  
printf("DELINQUENT\n"); 
break; 

de fau l t  : 
p r i n t f  ("ERROR\n") ; 

1 

return(customer); 

vo id  w r i t e f i l e ( r e c o r d  customer) / *  w r i t e  updated informat ion t o  the new data f i l e  * /  

f p r i n t f (p tnew,  "%s\n",  customer.street);  
f p r i n t f (p tnew,  "%s\n", customer.city) ; 
fp r i n t t (p tnew,  *%d\nnJ customer.acct-no); 
f p r i n t f (p tnew,  "%c\n",  customer.acct-type); 
f p r i n t f (p tnew,  "%.2f\n",  customer.oldba1ance); 
f p r i n t f  (ptnew , '%.2f \n" ,  customer.newbalance); 
f p r i n t f (p tnew,  "%.2f \ nu  , customer.payment); 
f p r i n t f  (ptnew , "%d/%d/%d\n",customer.lastpayment.month, 

customer.lastpayment.day, 
customer.lastpayment.year);  

re turn;  



CHAP.121 DATA FILES 41 1 

Each customer name is read from the source file and then written to the new file within main. The remaining 
information for each record is then read from the source file, updated, and written to the new file within the functions 
readf  i l e ,  update, and w r i t e f  i l e ,  respectively. This process continues until a record is encountered containing the 
customer name END, as discussed above. Both data files are then closed, and the computation terminates. 

The function readf  i l e  reads additional information for each customer record from the source file. The various data 
items are represented as members of the structure variable customer. This structure variable is passed to the function as 
an argument. The library function f scanf is used to read each data item, using a syntax that is essentially identical to that 
used with the scanf function, as described in Chap. 4. With fscanf ,  however, the stream pointer p t o l d  must be 
included as an additional argument within each function call. Once all of the information has been read from the source 
file, the customer record is returned to main. 

The function update is similar, though it requires that a value for customer.payment be entered from the 
keyboard. Additional information is then assigned to customer. lastpayment, customer. acct-type and 
customer. newbalance. The values assigned depend on the value provided for customer. payment. The updated 
record is then returned to main. 

The remaining function, w r i t e f i l e ,  simply accepts each customer record as an argument and writes it to the new 
data file. Within w r i t e f  i l e ,  the library function f p r i n t f  is used to transfer the information to the new data file, using 
the same procedures shown in Example 12.5. 

When the program is executed, the name, account number and old balance are displayed for each customer. The user 
is then prompted for a value for the current payment. Once this value has been entered, the customer’s new balance and 
current account status are shown. 

A typical interactive session, based upon the data file created in Example 12.5, is shown below. The user’s responses 
are underlined, as usual. 

CUSTOMER BILLING SYSTEM - UPDATE 

Please e n t e r  t o d a y ’ s  date (mm/dd/yyyy): 12/29/1998 

Name: Steve Johnson Account number: 4208 

Old balance: 247.88 Current payment: 25.00 
New balance: 222.88 Account status:  CURRENT 

Name: Susan Richards Account number: 2219 

Old balance: 135.00 Current  payment: 135.04 
New balance: 0.00 Account s ta tus :  CURRENT 

Name: M a r t i n  Peterson Account number: 8452 

Old balance: 387.42 Current  payment: 35.00 
New balance: 352.42 Account s ta tus :  OVERDUE 

Name: P h y l l i s  Smith Account number: 711 

Old balance: 260.00 Current  payment: Q 

New balance: 260.00 Account s ta tus :  DELINQUENT 

After all of the customer records have been processed the new data file records.new will have been created, 
containing the following information. 
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Steve Johnson 
123 Mountainview Dr ive  
Denver, CO 

4208 

C 
247.88 
222.88 
25.00 

121291 1998 

Susan Richards 
4383 A l l i g a t o r  Blvd 
F o r t  Lauderdale,  FL 
221 9 

C 
135.00 
0.00 

135.00 
121291 1998 

M a r t i n  Peterson 
1787 P a c i f i c  Parkway 
San Diego, CA 
8452 

0 
387.42 
352.42 
35.00 
12 129 1 1998 

P h y l l i s  Smith 
1000 Great  White Way 
New York, NY 
711 
D 

260.00 

260.00 
0.00 

5/24 I1998 

END 

Note that the old data file, records.old,  is still available in its original form; hence, it can be stored for archival 
purposes. Before this program can be run again, however, the new data file will have to be renamed records.  old.  
(Usually, this is done at the operating system level, before entering the update program.) 

12.4 UNFORMATTED DATA FILES 

Some applications involve the use of data files to store blocks of data, where each block consists of a fixed 
number of contiguous bytes. Each block will generally represent a complex data structure, such as a structure 
or an array. For example, a data file may consist of multiple structures having the same composition, or it 
may contain multiple arrays of the same type and size. For such applications it may be desirable to read the 
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entire block from the data file, or write the entire block to the data file, rather than reading or writing the 
individual components (i.e., structure members or array elements) within each block separately. 

The library functions f r e a d  and f w r i t e  are intended to be used in situations of this type. These 
functions are often referred to as unformatted read and write functions. Similarly, data files of this type are 
often referred to as unformatted data files. 

Each of these functions requires four arguments: a pointer to the data block, the size of the data block, the 
number of data blocks being transferred, and the stream pointer. Thus, a typical f w r i t e  function might be 
written as 

fw r i t e (&cus tomer ,  s i z e o f ( r e c o r d ) ,  1, f p t ) ;  

where customer is a structure variable of type record,  and f p t  is the stream pointer associated with a data 
file that has been opened for output. 

EXAMPLE 12.7 Creating an Unformatted Data File Containing Customer Records Consider a variation of the 
program presented in Example 12.5, for creating a data file containing customer records. Now, however, we will write 
each customer record to the data file data. b i n  as a single, unformatted block of information. This is in contrast to the 
earlier program, where we wrote the items within each record (i.e., the individual structure members) as separate, 
formatted data items. 

Here is the complete program. 

/ *  c rea te  an unformatted data f i l e  conta in ing  customer records * /  

# inc lude <stdio.h> 
# inc lude <s t r ing .h> 

#def ine  TRUE 1 

typedef s t r u c t  { 

i n t  month; 
i n t  day; 
i n t  year; 

} date; 

typedef s t r u c t  { 

char name[80]; 
char s t r e e t [ 8 0 ] ;  
char c i t y [ 8 0 ] ;  
i n t  acct-no; / *  ( p o s i t i v e  i n tege r )  * /  
char acct-type; / *  C ( cu r ren t ) ,  0 (overdue), o r  D (de l inquent )  * /  
f l o a t  oldbalance; / *  (nonnegative quan t i t y )  * /  
f l o a t  newbalance; / *  (nonnegative quan t i t y )  * /  
f l o a t  payment; / *  (nonnegative quan t i t y )  * /  
date lastpayment; 

} record;  

record  readscreen(record customer); / *  f u n c t i o n  pro to type * /  

FILE * f p t ;  / *  p o i n t e r  t o  predef ined s t r u c t u r e  FILE * /  

main( ) 

{ 
i n t  f l a g  = TRUE; / *  va r iab le  dec la ra t i on  * /  
record  customer; / *  s t ruc tu re  va r iab le  dec la ra t i on  * /  
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/ *  open a new data f i l e  f o r  w r i t i n g  only * /  
f p t  = fopen('data.bin' ,  ' w ' ) ) ;  

/ *  enter  date and assign i n i t i a l  values * /  
printf('CUST0MER BILLING SYSTEM - INITIALIZATION\n\n"); 
pr int f ( 'P1ease enter t oday \ ' s  date (mm/dd/yyyy): " ) ;  

scanf('%d/%d/%d', &customer.lastpayment.month, 
&customer.lastpayment.day, 

&customer.lastpayment.year);  

customer.newbalance = 0; 

customer.payment = 0; 

customer.acct-type = ' C ' ;  

/ *  main loop * /  
whi le  ( f l a g )  1 

/ *  enter customer's name * /  
pr int f (" \nName (enter \'END\' when f i n i shed) :  ' ) ;  

scanf ( U %[ A \n ]  " , customer. name) ; 

/ *  t e s t  f o r  stopping condi t ion * /  
i f  (strcmp(customer.name, 'END') == 0) 

break; 

/ *  enter remaining data and w r i t e  t o  data f i l e  * /  
customer = readscreen(cust0mer); 
fwri te(&customer, s izeof ( record) ,  1, f p t ) ;  

/ *  erase s t r i n g s  * /  
strset(customer.name, ' I ) ;  

strset(customer.street,  I I ) ;  

st rset (customer.c i ty ,  ' I ) ;  

1 

f c l o s e ( f p t ) ;  

1 

record readscreen(record customer) / *  read remaining data * /  

1 
p r i n t f ( " S t r e e t :  " ) ;  

scanf( "  % [ ^ \ n ] " ,  customer.street); 
p r i n t f ( " C i t y :  " ) ;  

scanf(U % [ " \ n ] " ,  customer.city); 
pr in t f ( 'Account  number: ' ) ;  
scanf(*%d*,  &customer.acct-no); 
p r i n t f  ( "Current balance: " ) ; 
scanf ( "%f', &customer. oldbalance) ; 
return(customer); 

} 
Comparing this program with that shown in Example 12.5, we see that the two programs are very similar. Within 

main, the present program reads each customer name and tests for a stopping condition (END), but does not write the 
customer name to the data file, as in the earlier program. Rather, if a stopping condition is not indicated, the present 
program reads the remainder of the customer record interactively, and then writes the entire customer record to the data 
file with the single f w r i t e  statement 

fwri te(&customer, s izeof ( record) ,  1, f p t ) ;  
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Note that the data file created by this program is called data .  bin,  as indicated by the first argument within the call to the 
f open function. 

The programmer-defined w r i t e f i l e  function shown in Example 12.5 is not required in this program, since the 
f w r i t e  library function takes its place. On the other hand, both programs make use of the same programmer-defined 
function readscreen, which causes the information for a given customer record to be entered into the computer 
interactively. 

After each record has been written to the data file, the string members customer. name, customer. s t r e e t  and 
customer. c i t y  are cleared (i.e., replaced with blanks), so that none of the previous information will be included in each 
new record. The library function s t r s e t  is used for this purpose. Thus, the statement 

strset(customer.name, I ) ;  

causes the contents of customer. name to be replaced with repeated blank characters, as indicated by Note that the I .  

header file s t r i n g .  h is included in this program, in support of the s t r s e t  function. 
Execution of this program produces the same interactive dialog as that shown in Example 12.5. Thus, during 

program execution the user cannot tell whether the data file being created is formatted or unformatted. Once the new data 
file data .  b i n  has been created, however, its contents will not be legible unless the file is read by a specially written 
program. Such a program will be presented in the next example. 

Once an unformatted data file has been created, the question arises as to how to detect an end-of-file 
condition. The library function f e o f  is available for this purpose. (Actually, f e o f  will indicate an end-of- 
file condition for any stream-oriented data file, not just an unformatted data file.) This function returns a non- 
zero value (TRUE) if an end-of-file condition has been detected, and a value of zero (FALSE) if an end of file is 
not detected. Hence, a program that reads an unformatted data file can utilize a loop that continues to read 
successive records, as long as the value returned by f eof  is not TRUE. 

EXAMPLE 12.8 Updating an Unformatted Data File Containing Customer Records We now consider a program 
for reading and updating the unformatted data file created in Example 12.7. We will again make use of a two-file update 
procedure, as in Example 12.6. Now, however, the files will be called data .o ld  and data.new. Therefore, the file 
created in the previous example, called data .  bin,  will have to be renamed data .  o l d  before the present program can be 
run. 

The overall program logic is similar to that presented in Example 12.6. That is, a record is read from data .o ld ,  
updated interactively, and then written to data .  new. This procedure continues until an end-of-file condition has been 
detected during the most recent f r e a d  operation. Note the manner in which the end-of-file test is built into the 
specification of the w h i l e  loop, i.e., whi le  ( !f e o f  ( p t o l d )  ) .  

This program, however, will make use of the library functions f read  and f w r i t e  to read unformatted customer 
records from data .  old,  and to write the updated records to data .  new. Therefore the present program will not make use 
of programmer-defined functions readf  i l e  and w r i t e f  i l e ,  as in Example 12.6. 

The updating of each record is carried out interactively, via the user-defined function update. This function is 
identical to that shown in Example 12.6. 

The entire C program is shown below. 

/ *  update an unformatted data f i l e  containing customer records * /  

#include <s td io .h>  

#def ine  NULL 0 

typedef s t r u c t  { 

i n t  month; 
i n t  day; 
i n t  year;  

} date ;  
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typedef s t r u c t  { 

char name[80]; 
char s t ree t (801;  
char c i t y [  801 ; 
i n t  acct-no; / *  ( p o s i t i v e  i n t e g e r )  * /  
char acct-type; / *  C ( cu r ren t ) ,  0 (overdue), o r  D (de l inquent )  * /  
f l o a t  oldbalance; / *  (nonnegative q u a n t i t y )  * /  
f l o a t  newbalance; / *  (nonnegative q u a n t i t y )  * /  
f l o a t  payment; / *  (nonnegative q u a n t i t y )  * /  
date lastpayment; 

} record;  

record  update(record customer); / *  f u n c t i o n  pro to type * /  

FILE *p to ld ,  *ptnew; . . . . . . . / *  po in te rs  t o  pre-def ined s t r u c t u r e  FILE * /  

i n t  month, day, year; . . . . . . . /*  g l o b a l  va r iab le  dec la ra t i ons  * /  


main ( ) 

t 
record  customer; / *  s t ruc tu re  va r iab le  dec la ra t i on  * /  

/ *  open da ta  f i l e s  * /  
i f  ( ( p t o l d  = fopen( "da ta .o ld" ,  " r " ) )  == NULL) 

printf("\nERROR - Cannot open the  designated read f i l e \ n " ) ;  
e l se  { 

ptnew = fopen("data.new', " w " ) ;  

/ *  en te r  cu r ren t  date * /  
printf("CUST0MER BILLING SYSTEM - UPDATE\n\n"); 
p r i n t f ( "P1ease  en te r  t o d a y \ ' s  date (mm/dd/yyyy): " ) ;  

scanf ( "%d/%d/%d", &month, &day, &year) ; 

/ *  read the  f i r s t  record  from o l d  data f i l e  * /  
fread(&customer, s i zeo f ( reco rd ) ,  1, p t o l d ) ;  

/ *  main l oop  (cont inue u n t i l  e n d - o f - f i l e  i s  detected) * /  
w h i l e  ( I f e o f ( p t o 1 d ) )  { 

/ *  prompt f o r  updated i n fo rma t ion  * /  
customer = update(customer); 

/ *  w r i t e  updated i n fo rma t ion  t o  new data f i l e  * /  
fwr i te(&customer,  s i zeo f ( reco rd ) ,  1, ptnew); 

/ *  read next record  from o l d  data f i l e  * /  
fread(&customer, s i zeo f ( reco rd ) ,  1, p t o l d ) ;  

1 

f c l ose (p to1d) ;  
f c lose(p tnew) ;  

} / *  end e l se  * /  

1 
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record  update(record customer) / *  prompt f o r  new in fo rmat ion ,  update records and 
d i s p l a y  summary data * /  

{ 
p r i n t f  ("\n\nName: %s" customer.name); 

I'p r i n t f  ( Account number: %d\n',  customer.acct-no); 
p r i n t f ( " \ n O l d  balance: %7.2 f " ,  customer.oldbalance); 

'Ip r i n t f  ( Current payment : " ) ; 
scanf ( '%f' , &customer. payment) ; 

i f  (customer.payment > 0) { 

customer.1astpayment.month = month; 
customer.1astpayment.day = day; 
customer.lastpayment.year = year; 
customer.acct-type = (customer.payment < 0.1 * customer.oldbalance) ? '0' : 'C'; 

1 
e lse  

customer.acct-type = (customer.oldbalance > 0) ? 'D'  : ' C ' ;  

customer.newbalance = customer.oldbalance - customer.payment; 
p r i n t f ( " N e w  balance: %7.2 fU,  customer.newbalance); 

p r i n t f  ( " Account s ta tus :  ' ) ; 
swi tch  (customer.acct-type) { 

case ' C ' :  

p r i n t f  ( "CURRENT\n') ; 
break; 

case '0': 
p r i n t f  ( "OVERDUE\n' ) ; 
break; 

case 'DO: 
p r i n t f  ( "DELINQUENT\n") ; 
break; 

d e f a u l t  : 
p r i n t f  ('ERROR\n'); 

1 

return(customer);  

1 

Execution of the program results in the same interactive dialog as that shown in Example 12.6. 

We will not pursue the use of data files further within this book. Remember, however, that most versions 
of C contain many different library functions for carrying out various file-oriented operations. Some of these 
functions are intended to be used with standard inpuiloutput devices (i.e., reading from the keyboard and 
writing to the screen), some are intended for stream-oriented data files, and others are available for use with 
system-oriented data files. Thus, we have only scratched the surface of this important topic within the present 
chapter. You should find out what file-related functions are available for your particular version of the 
language. 

Review Questions 

12.1 What is the primary advantage to using a data file? 

12.2 Describe the different ways in which data files can be categorized in C. 

12.3 What is the purpose of a buffer area when working with a stream-oriented data file? How is a buffer area defined? 
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12.4 When defining a buffer area for use with a stream-oriented data file, what does the symbol F I L E  represent? 
Where is FILE defined? 

12.5 What is a stream pointer? What is the relationship between a stream pointer and a buffer area? 

12.6 What is meant by opening a data file? How is this accomplished? 

12.7 Summarize the rules governing the use of the fopen function. Describe the information that is returned by this 
function. 

12.8 Summarize the different file types that can be specified by the f open function. 

12.9 What is the purpose of the f c lose  function? Must a call to this function appear within a program that utilizes a 
data file? 

12.10 Describe a commonly used programming construct in which a provision for an error message accompanies a call 
to the f open function. 

12.11 Describe two different methods for creating a stream-oriented data file. Can both methods be used with 
unformatted data files? 

12.12 Describe the general procedure for creating a stream-oriented data file using a specially written C program. What 
file-oriented library functions might be used within the program? 

12.13 How can a stream-oriented data file be viewed once it has been created? Does your answer apply to unformatted 
data files? 

12.14 Describe the general procedure for reading a stream-oriented data file using a specially written C program. What 
file-oriented library functions might be used within the program? Compare your answer with the answer to Prob. 
12.12. 

12.15 Describe two different approaches to updating a data file. Which approach is better, and why? 

12.16 Contrast the use of the f scanf and f p r i n t f  functions with the use of the scanf and p r i n t f  functions described 
in Chap. 4. How do the grammatical rules differ? 

12.17 For what kinds of applications are unformatted data files well suited? 

12.18 Contrast the use of the f read and f w r i t e  functions with the use of the f scanf and f p r i n t f  functions. How do 
the grammatical rules differ? For what kinds of applications is each group of functions well suited? 

12.19 What is the purpose of the library function s t r s e t ?  Why might s t r s e t  be included in a program that creates an 
unformatted data file? 

12.20 What is the purpose of the library function f eof? How might the f eof function be utilized within a program that 
updates an unformatted data file? 

Problems 

12.21 Associate the stream pointer p o i n t r  with a new stream-oriented data file called students.  dat .  Open the data 
file for writing only. 

12.22 Associate the stream pointer p o i n tr with an existing stream-oriented data file called students.  dat. Open the 
data file so that new information can be appended to the end of the file. 

12.23 Associate the stream pointer p o i n tr with a new stream-oriented data file called sample. dat. Open the data file 
so that information can either be read from or written to the file. Show how the data file can be closed at the end 
of the program. 

12.24 Associate the stream pointer p o i n t r  with an existing stream-oriented data file called sample. dat.  Open the data 
file so that information can either be read from or written to the file. Show how the data file can be closed at the 
end of the program. 

12.25 Repeat Prob. 12.24, adding a provision for generating an error message in the event that the data file cannot be 
opened (if, for example, the data file is not present). 
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12.26 The skeletal outline of a C program is shown below. 

#include <stdio.h> 


main ( ) 
t 

FILE *fpt; 


int a; 

float b; 
char c; 


fpt = fopen('sample.dat', " w " ) ;  

. . . . .  
fclose(fpt); 


1 

Enter values for a, b and c from the keyboard, in response to prompts generated by the program. Then write the 
values to the data file. Format the floating-point value so that not more than two decimals are written to the data 
file. 

12.27 The skeletal outline of a C program is shown below. 

#include <stdio.h> 


main ( ) 

t 
FILE *fpt; 


int a; 

float b;  
char c; 


fpt = fopen('sample.datn, "r""); 

, . . . .  
fclose(fpt); 


1 

Read the values of a, b and c from the data file and display them on the screen. 

12.28 The skeletal outline of a C program is shown below. 

#include <stdio.h> 


main ( ) 

t 
FILE *ptl, *pt2; 


int a; 

float b;  
char c; 


ptl = fopen("sample.old", 'r'); 
pt2 = fopen(*sample.newll," w ' ) ;  

. . . . .  
fclose (ptl ) ; 
fclose(pt2); 


1 
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(a) Read the values of a, b and c from the data file sample. o ld.  

(b) Display each value on the screen and enter an updated value. 

(c) Write the new values to the data file sample. new. Format the floating-point value so that not more than two 
decimals are written to sample. new. 

12.29 The skeletal outline of a C program is shown below. 

# inc lude <s td io .h> 

main ( ) 

FILE * p t l ,  *pt2;  

char name[20]; 

p t l  = fopen(l lsample.old*, * r r " ) ;  
p t 2  = f open ( sample. new*, * w "  ) ; 

, . . . .  
f c l o s e ( p t 1 ) ;  
f c l o s e ( p t 2 ) ;  

1 

(a) Read the string represented by name from the data file sample. o ld.  

(b) Display it on the screen. 

(c) Enter an updated string. 

(6) Write the new string to the data file sample. new. 

12.30 The skeletal outline of a C program is shown below. 

# inc lude <stdio.h> 

main ( ) 

{ 
s t r u c t  { 

i n t  a; 
f l o a t  b; 
char c; 
char name[20]; 

} values; 

p t l  = fopen( 'data.old ' ,  ' r + " ) ;  
p t 2  = fopen("data.new", 'w+*); 

. . . . .  
f c l o s e ( p t 1 ) ;  
f c l o s e ( p t 2 ) ;  

1 

(a) Read the value of values. name from the formatted data file data. o l d  and display it on the screen. 

(b) Enter values for values.a, va1ues.b and va1ues.c from the keyboard, in response to programmed 
prompts. 

(c) Write the values of values.name, values.a, va1ues.b and va1ues.c to the formatted data file 
data.  new. 

12.31 Repeat Prob. 12.30, treating the two data files as unformatted data files. (Read an entire record from data.  o ld,  
and write an entire updated record to data. new.) 
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Programming Problems 

12.32 Modify the program given in Example 12.3 (read in a line of lowercase text and write uppercase equivalent to data 
file) so that each character entered from the keyboard is tested to determine its case, and is then written to the data 
file in the opposite case. (Hence, lowercase is converted to uppercase, and uppercase is converted to lowercase.) 
Use the library function isupper or islower to test case of each incoming character, and use the functions 
toupper and tolower to carry out the conversions. 

12.33 Modify the programs given in Examples 12.3 and 12.4 so that multiple lines of text can be processed. As a 
stopping condition, check for END (either upper- or lowercase) in the first three characters within each line. 

12.34 Modify the program given in Example 12.6 (updating a file containing customer records) so that it uses only one 
file; i.e., each updated customer record replaces the original record. Use the library function f tell to determine 
the current file position, and the function f seek to change the file position, as needed. Be sure to open a data file 
of the proper type. 

12.35 Expand the program given in Example 12.6 so that new customer records can be added, old records can be 
deleted, and existing records can be modified. Be sure to maintain the records in alphabetical order. Allow the 
user to choose which option will be executed before each record is processed. 

12.36 Modify the program given in Example 12.8 (updating an unformatted data file containing customer records) so 
that it uses only one file; i.e., each updated customer record replaces the original record. Use the library function 
f tell to determine the current file position, and the function f seek to change the file position, as needed. Be 
sure to open a data file of the proper type. 

12.37 Write a program that will read successive records from the new data file created in Example 12.8 and display each 
record on the screen in an appropriately formatted form. 

12.38 Expand the program described in Prob. 12.36 so that new customer records can be added, old records can be 
deleted, and existing records can be modified. Be sure to maintain the records in alphabetical order. Allow the 
user to choose which option will be executed before each record is processed. 

12.39 Write an interactive C program that will encode and decode multiple lines of text, using the encodingldecoding 
procedure described in Prob. 9.49. Store the encoded text within a data file, so that it can be retrieved and 
decoded at any time. The program should include the following features: 

(a) Enter text from the keyboard, encode the text and store the encoded text in a data file. 
(6)  Retrieve the encoded text and display it in its encoded form. 
(c) Retrieve the encoded text, decode it and then display the decoded text. 
(d) End the computation. 

Test the program using several lines of text of your choice. 

12.40 Extend the program described in Prob. 12.39 so that multiple random integers can be generated, where each 
successive integer is used to encode each consecutive line. Thus, the first random integer will be used to encode 
the first line of text, the second random integer will be used to encode the second line of text, and so on. Include a 
provision for reproducing the sequence of random integers, so that the same random integers can be used to 
decode the text. Test the program using several lines of text of your choice. 

12.41 Modify the craps game simulator given in Example 7.11 so that it simulates a specified number of games and 
saves the outcome of each game in a data file. At the end of the simulation, read the data file to determine the 
percentage of wins and losses that the player has experienced. 

Test the program by simulating 500 consecutive games. Based upon these results, estimate the odds of 
winning when playing craps. 

12.42 Modify the piglatin generator presented in Example 9.14 so that multiple lines of text can be entered from the 
keyboard. Save the entire English text in a data file, and save the corresponding piglatin in another data file. 

Include within the program a provision for generating a menu that will allow the user to select any one of the 
following features: 
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(a) Enter new text, convert to piglatin and save. (Save both the original text and the piglatin, as described above.) 
(b) Read previously entered text from a data file and display. 
(c) Read the piglatin equivalent of previously entered text and display. 
(d) End the computation. 

Test the program using several arbitrary lines of text. 

12.43 Write a complete C program that will generate a data file containing the student exam data presented in Prob. 
6.69(k). Let each file component be a structure containing the name and exam scores for a single student. Run the 
program, creating a data file for use in the next problem. 

12.44 Write a file-oriented C program that will process the student exam scores given in Prob. 6.69(k). Read the data 
from the data file created in the previous problem. Then create a report containing the name, exam scores and 
average grade for each student. 

12.45 Extend the program written for Prob. 12.44 so that an overall class average is determined, followed by the 
deviation of each student’s average about the class average. Write the output onto a new data file. Then display 
the output in the form of a well-labeled report. 

12.46 Write an interactive, file-oriented C program that will maintain a list of names, addresses and telephone numbers 
in alphabetical order (by last names). Process the information associated with each name as a separate record. 
Represent each record as a structure. 

Include a menu that will allow the user to select any of the following features: 

(a) Add a new record. 
(b) Delete a record. 
(c) Modify an existing record. 
(d) Retrieve and display an entire record for a given name. 
(e) Generate a complete list of all names, addresses and telephone numbers. 
v) End the computation. 

Be sure to rearrange the records whenever a new record is added or a record is deleted, so that the records are 
always maintained in alphabetical order. Utilize a linear linked list, as described in Example 1 1.32. 

12.47 Write a program that will generate a data file containing the list of countries and their corresponding capitals given 
in Prob. 9.46. Place the name of each country and its corresponding capital in a separate structure. Treat each 
structure as a separate record. Run the program, creating a data file for use in the next problem. 

12.48 Write an interactive, menu-driven C program that will access the data file generated in the preceding problem and 
then allow one of the following operations to be executed: 

(a) Determine the capital of a specified country. 
(b) Determine the country whose capital is specified. 
(c) Terminate the computation. 

12.49 Extend the program written for Prob. 12.48 to include the following additional features: 

(a) Add a new record (i.e., a new country and its corresponding capital). 
(b) Delete a record. 
(c) Generate a listing of all of the countries and their corresponding capitals. 

12.50 Write a complete C program that can be used as a simple line-oriented text editor. This program must have the 
following capabilities: 

(a) Enter several lines of text and store in a data file. 
(b) List the data file. 
(c) Retrieve and display a particular line, determined by line number. 
(6) Insert n lines. 
(e) Delete n lines. 
U> Save the newly edited text and end the computation. 
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Carry out each of these tasks in response to a one-letter command, preceded by a dollar sign ($). The find 
(retrieve) command should be followed by an unsigned integer to indicate which line should be retrieved. Also, 
the insert and delete commands can be followed by an optional unsigned integer if several consecutive lines are to 
be inserted or deleted. 

Each command should appear on a line by itself, thus providing a means of distinguishing commands from 
lines of text. (A command line will begin with a dollar sign, followed by a single-letter command, an optional 
unsigned integer, and a newline designation.) 

The following commands are recommended: 

$E -enter new text. 

$L -list the entire block of text. 

$Fk -find (retrieve) line number k. 
$In -insert n lines after line number k. 
$Dn- delete n lines after line number k. 
$S -save the edited block of text and end the computation. 

12.51 Extend the program described in Prob. 11.67 so that the team information is maintained in a data file rather than 
an array. Each file component should be a structure containing the data for one team. Include provisions for each 
of the following operations: 

(a) Entering new records (adding new teams) 
(b) Updating existing records 
(c )  Deleting records (removing teams) 
(6) Generating a summary report for all of the teams in the league 



Chapter 13 


Low-Level Programming 

From the material presented in the first 12 chapters of this book, it should be clear that C is a full-fledged, 
high-level programming language. However, C also possesses certain “low-level” features that allow the 
programmer to cany out operations normally available only in assembly language or machine language. For 
example, it is possible to store the values of certain variables within the central processing unit’s registers. 
This will usually speed up any computation associated with these values. 

C also permits the manipulation of individual bits within a word. Thus, bits can be shifted to the left or 
the right, inverted (1s and OS reversed), or masked (extracted selectively). Applications requiring these 
operations are familiar to assembly language programmers. Furthermore, C allows the bits within a word of 
memory to be organized into individual groups. This permits multiple data items to be packed within a single 
word. 

This chapter shows how to carry out low-level operations in C. Readers who lack background in this area 
may wish to skip some of this material, particularly Sec. 13.2. 

13.1 REGISTER VARIABLES 

In Chap. 8 we mentioned that there are four different storage class specifications in C, and we examined three 
of them -automatic, external and static -in detail. We now turn our attention to the last of these, which is 
the register storage class. 

Registers are special storage areas within the computer’s central processing unit. The actual arithmetic 
and logical operations that comprise a program are carried out within these registers. Normally, these 
operations are carried out by transferring information from the computer’s memory to these registers, carrying 
out the indicated operations, and then transferring the results back to the computer’s memory. This general 
procedure is repeated many times during the course of a program’s execution. 

For some programs, the execution time can be reduced considerably if certain values can be stored within 
these registers rather than in the computer’s memory. Such programs may also be somewhat smaller in size 
(i.e., they may require fewer instructions), since fewer data transfers will be required. Usually, however, the 
size reduction will not be dramatic and will be less significant than the savings in execution time. 

In C, the values of register variables are stored within the registers of the central processing unit. A 
variable can be assigned this storage class simply by preceding the type declaration with the keyword 
r e g i s t e r .  There can, however, be only a few register variables (typically, two or three) within any one 
function. The exact number depends upon the particular computer, and the specific C compiler. Usually, only 
integer variables are assigned the r e g i s t e r  storage class (more about this later in this section). 

The r e g i s t e r  and au tomat i c storage classes are closely related. In particular, their visibility (i.e., their 
scope) is the same. Thus, r e g i s t e r  variables, like automat ic  variables, are local to the function in which 
they are declared. Furthermore, the rules governing the use of r e g i s t e r  variables are the same as those for 
au tomat i c  variables (see Sec. 8.2), except that the address operator (a) cannot be applied to register 
variables. 

The similarities between r e g i s t e r  and automat ic  variables is not coincidental, because the r e g i s t e r  
storage class can be assigned only to variables that would otherwise have the storage class automat ic .  
Moreover, declaring certain variables to be r e g i s t e r  variables does not guarantee that they will be actually 
be treated as r e g i s t e r  variables. The declaration will be valid only if the requested register space is 
available. If a r e g i s t e r  declaration is not honored, the variables will be treated as having the storage class 
automat ic .  

424 
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EXAMPLE 13.1 A C program contains the variable declaration 

r e g i s t e r  i n t  a, b, c; 

This declaration specifies that the variables a, b and c will be integer variables with storage class reg i s te r .  Hence, the 
values of a, b and c will be stored within the registers of the computer’s central processing unit rather than in memory, 
provided the register space is available. 

If the register space is not available, then the variables will be treated as integer variables with storage class 
automatic. This is equivalent to the declaration 

auto i n t  a, b, c; 

or simply 

i n t  a, b, c;  

as explained in Sec. 8.2. 

Unfortunately, there is no way to determine whether a r e g i s t e r  declaration will be honored, other than 
to run a program with and without the declaration and compare the results. A program that makes use of 
r e g i s t e r  variables should run faster than the corresponding program without r e g i s t e r  variables. It may 
also be somewhat smaller in size. 

EXAMPLE 13.2 Generating Fibonacci Numbers The program presented below is a variation of that shown in 
Example 8.7, for generating a series of Fibonacci numbers. 

/ *  ca l cu la te  the f i r s t  23 Fibonacci numbers 10,000,000 times, 
t o  i l l u s t r a t e  the use o f  reg i s te r  var iab les  * /  

# include <stdio.h> 
#include <time.h> 

main( ) 

{ 
time-t s t a r t ,  f i n i s h ;  / *  s t a r t  and f i n i s h  t imes * /  
i n t  count, n = 23; 
long  i n t  loop, loopmax = 10000000; 
r e g i s t e r  i n t  f ,  f l ,  f 2 ;  

/ *  tag  the s t a r t i n g  t i m e  * /  
t ime(&s ta r t )  ; 

/ *  do m u l t i p l e  loops * I  
f o r  ( loop  = 1; loop <= loopmax; ++loop) { 

f l  = 1; 
f 2  = 1; 

/ *  generate the f i r s t  n Fibonacci numbers * /  
f o r  (count = 1; count <= n; ++count) { 

f = (count < 3) ? 1 : f l  + f 2 ;  
f 2  = f l ;  
f l  = f ;  

1 
1 
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/ *  a d j u s t  the  counter and t a g  the  completion t ime * /  
- -count;  
t i m e ( & f i n i s h ) ;  

/ *  d i s p l a y  the  output  * /  
p r i n t f ( " i  = %d F = %d\n",  count,  f ) ;  
p r i n t f ( " e 1 a p s e d  t ime: % . O l f  seconds", d i f f t i m e ( f i n i s h ,  s t a r t ) ) ;  

1 

This program includes three integer variables that have the r e g i s t e r  storage class. Only 23 Fibonacci numbers will 
be calculated, since the Fibonacci numbers are represented as ordinary integer variables (higher Fibonacci numbers would 
generate an integer overflow). 

The calculation of the Fibonacci numbers is repeated 10,000,000 times, in order to obtain a reasonably accurate 
assessment of the time required to execute the program. The only output generated is the value of the 23rd Fibonacci 
number, calculated at the end of the last loop. Thus the program is computationally intensive (minimal inputloutput), in 
order to emphasize the advantage in using the r e g i s t e r  storage class. 

Note that the program includes its own timing mechanism. In particular, the program makes use of the library 
function time, which assigns the current time (in seconds) to the variables s t a r t  and f i n i s h .  These variables are of 
type t ime-t, as defined in the header file t ime .h. The program also makes use of the library function d i ff t ime, which 
returns the time difference defined by the variables f i n i s h  and s t a r t .  

When executed on a Pentium-class desktop computer, the following results were obtained: 

i = 23 F = 28657 
elapsed t ime:  37 seconds 

If the program is rerun without the r e g i s t e r  declaration (i.e., if the variables f, f 1 and f 2 are declared as ordinary 
integer variables), the output is essentially the same. Hence, use of the r e g i s t e r  class did not provide any noticeable 
advantage. When run with an older desktop computer, however, the use of the register class resulted in a 36 percent 
reduction in computer time. However, the sizes of the compiled object programs, with and without r e g i s t e r  variables, 
are not significantly different with either computer. 

Though the r e g i s t e r  storage class is usually associated with integer variables, some compilers allow the 
r e g i s t e r  storage class to be associated with other types of variables having the same word size (e.g., shor t  
or unsigned integers). Moreover, pointers to such variables may also be permitted. 

The r e g i s t e r  storage class specification can be included as a part of a formal argument declaration 
within a function, or as a part of an argument type specification within a function prototype. (Note that 
r e g i s t e r  is the only storage class specifer that can be used in this manner.) 

EXAMPLE 13.3 The skeletal outline of a C program is shown below. 

void f u n c t ( r e g 1 s t e r  unsigned U ,  r e g i s t e r  i n t  * p t ) ;  / *  f u n c t i o n  prototype * /  

main ( ) 

.i 
r e g i s t e r  unsigned U; / *  v a r i a b l e  d e c l a r a t i o n  * /  
r e g i s t e r  i n t  * p t ;  / *  p o i n t e r  d e c l a r a t i o n  * /  

U = 5; / *  assign an i n t e g e r  q u a n t i t y  * /  
* p t  = 12; / *  assign an i n t e g e r  q u a n t i t y  * /  

f u n c t ( u ,  p t ) ;  
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vo id  f u n c t ( r e g i s t e r  unsigned U,  r e g i s t e r  i n t  * p t )  / *  f u n c t i o n  d e f i n i t i o n  * /  

t 
. . . . .  
r e t u r n ;  

The function prototype indicates that the first argument transferred to funct  is an unsigned integer having the 
r e g i s t e r  storage class, and the second argument is a pointer to an integer having this same storage class. Notice that the 
function prototype is consistent with the argument specifications shown in the function definition. 

Within main, we see that U is an unsigned integer, and p t  is a pointer to an integer. Both of these variables are 
assigned the r e g i s t e r  storage class. Thus, U will represent an unsigned integer that is stored within one register of the 
computer’s central processing unit, and p t  will point to the contents of another such register. In both cases, the use of the 
computer’s registers will be contingent upon their availability. 

Following the declarations, a value of 5 is assigned to U, and a value of 12 is assigned to the location to which p t  
points. These values will be stored in the computer’s registers, provided the registers are available. The variables U and 
p t  are then passed to f unct, where they are processed in some unspecified manner. 

13.2 BITWISE OPERATIONS 

Some applications require the manipulation of individual bits within a word of memory. Assembly language 
or machine language is normally required for operations of this type. However, C contains several special 
operators that allow such bitwise operations to be carried out easily and efficiently. These bitwise operators 
can be divided into three general categories: the one’s complement operator, the logical bitwise operators, and 
the shift operators. C also contains several operators that combine bitwise operations with ordinary 
assignment. Each category is discussed separately below. 

The One’s Complement Operator 

The one’s complement operator (-) is a unary operator that causes the bits of its operand to be inverted (i.e., 
reversed), so that 1s become OS and OS become 1s. This operator always precedes its operand. The operand 
must be an integer-type quantity (including i n t e g e r ,  long, short ,  unsigned, char, etc.). Generally, the 
operand will be an unsigned octal or an unsigned hexadecimal quantity, though this is not a firm requirement. 

EXAMPLE 13.4 Consider the hexadecimal number 0 7 ff.  The corresponding bit pattern, expressed in terms of a 16-bit 
word, is 0000 01 11 11 11 11 11 (see Appendix A). The one’s complement of this bit pattern is 11 11 1000 0000 

0000, which corresponds to the hexadecimal number f8OO. Thus, we see that the value of the expression - 0 x 7 f f  is 
Oxf800. (Note that the bit patterns in this example have been arranged into groups of 4 for convenience only.) 

Several other expressions which make use of the one’s complement operator, and their corresponding values, are 
shown below. All results are expressed in terms of a 16-bit word. 

&=mQB Value 
-0XC5 Oxff 3a (hexadecimal constants) 
-ox1 11 1 Oxeeee (hexadecimal constants) 
-0xf  f ff 0 (hexadecimal constants) 
-052 01 77725 (octal constants) 
-01 77777 0 (octal constants) 

In the last two expressions, the leftmost octal digit is equivalent to only one bit (otherwise, the total bit pattern would 
exceed 16 bits). 

You are encouraged to show the validity of these expressions by writing out the equivalent bit patterns, as shown 
above. 
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The one's complement operator is sometimes referred to as the complementution operator. It is a member 
of the same precedence group as the other unary operators. Thus, its associativity is right to left. 

EXAMPLE 13.5 Consider the simple C program shown below. 

#include <stdio.h> 


main ( ) 
1 

unsigned i = Ox5b3c; 

printf("hexadecima1values: i = %x -i = %x\n", i, -i); 
printf("decima1 equivalents: i = %U -i = %U", 1, -1); 

1 

Executing this program on a computer with a 16-bit word size results in the following output. 

hexadecimal values: i = 5b3c -i = a4c3 
decimal equivalents: i = 23356 -1 = 42179 

To understand these results, first consider the bit patterns corresponding to the values for i and -i. 

i = 0101 1011 0011 1100 
-i = 1010 0100 1100 0011 

The decimal equivalent of the first bit pattern can be determined by writing 

i= 0x215 + 1x214 + 0x213 + 1x212 + 1x211 + 0x210 + 1x29 + 1x28 + 
0x27 + 0x26 + 1x25 + 1x24 + 1x23 + 1x22 + 0x21 + 0x20 = 

16384 + 4096 + 2048 + 512 + 256 + 32 + 16 + 8 + 4 = 23356 

Thus, the decimal equivalent of Ox5b3c is 23356. 
Similarly, the decimal equivalent of the second bit pattern can be determined by writing 

32768 + 8192 + 1024 + 128 + 64 + 2 + 1 = 42179 

Thus, we see that the decimal equivalent of Oxa4c3 is 421 79. 

The Logical Bitwise Operators 

There are three logical bitwise operators: bitwise and (a),bitwise exclusive or (A), and bitwise or ( I ). Each of 
these operators requires two integer-type operands. The operations are carried out independently on each pair 
of corresponding bits within the operands. Thus, the least significant bits (i.e., the rightmost bits) within the 
two operands will be compared, then the next least significant bits, and so on, until all of the bits have been 
compared. The results of these comparisons are: 

A bitwise and expression will return a 1 if both bits have a value of 1 (i.e., if both bits are true). 
Otherwise, it will return a value of 0. 

A bitwise exclusive or expression will return a 1 if one of the bits has a value of 1 and the other has a 
value of 0 (one bit is true, the other false). Otherwise, it will return a value of 0. 
A bitwise or expression will return a 1 if one or more of the bits have a value of 1 (one or both bits are 
true). Otherwise, it will return a value of 0. 

These results are summarized in Table 13-1. In this table, 67 and b2represent the corresponding bits within 
the first and second operands, respectively. 
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Table 13-1 Logical Bitwise Operations 

I b l  62 I b l  & 62 I 61 b2 I 61 I 62 

1 1 0 1 

1 

O1 I OO I 1l I 1 

0 0 0 0 

EXAMPLE 13.6 Suppose a and b are unsigned integer variables whose values are Ox6db7 and Oxa726, respectively. 
The results of several bitwise operations on these variables are shown below. 

-a = 0x9248 

-b = 0X58d9 

a & b = 0x2526 

Aa b = Oxca91 

a I b = Oxefb7 

The validity of these expressions can be verified by expanding each of the bit patterns. Thus, 

a = 0110 1101 1011 0111 

-a = 1001 0010 0100 1000 

= 0x9248 

b = 1010 0111 0010 0110 
~~ 

-b = 0101 1000 1101 1001 

= Ox58d9 

a = 0110 1101 1011 0111 

b = 1010 0111 0010 0110 

a & b = 0010 0101 0010 0110 

= 0x2526 

a = 0110 1101 1011 0111 

b = 1010 0111 0010 0110 

Aa b = 1100 1010 1001 0001 

= Oxca91 

a = 0110 1101 1011 0111 
b = 1010 0111 0010 0110 

a I b = 1110 1111 1011 0111 

= Oxefb7 

Each of the logical bitwise operators has its own precedence. The bitwise and (a)operator has the highest 
precedence, followed by bitwise exclusive or ( A ) ,  then bitwise or (I). Bitwise and follows the equality 
operators (== and !=). Bitwise or is followed by logical and (a&).The associativity for each bitwise operator 
is left to right. (See Appendix C for a summary of all C operators, showing their precedences and 
associativities.) 
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Masking 

Masking is a process in which a given bit pattern is transformed into another bit pattern by means of a logical 
bitwise operation. The original bit pattern is one of the operands in the bitwise operation. The second 
operand, called the mask, is a specially selected bit pattern that brings about the desired transformation. 

There are several different kinds of masking operations. For example, a portion of a given bit pattern can 
be copied to a new word, while the remainder of the new word is filled with OS. Thus, part of the original bit 
pattern will be “masked off’ from the fmal result. The bitwise and operator (a) is used for this type of 
masking operation, as illustrated below. 

EXAMPLE 13.7 Suppose a is an unsigned integer variable whose value is Ox6db7. Extract the rightmost 6 bits of this 
value and assign them to the unsigned integer variable b. Assign OS to the 10 leftmost bits of b. 

To carry out this operation, we write the bitwise expression 

b = a & Ox3f; 

The second operand (the hexadecimal constant Ox3f) will serve as a mask. Thus, the resulting value of b will be 0x37. 

The validity of this result can be established by examining the corresponding bit patterns. 

a = 0110 1101 1011 0111 

mask = 0000 0000 0011 1111 

b = 0000 0000 0011 0111 
= 0x37. 

The mask prevents the leftmost 10 bits from being copied from a to b. 

The mask in the last example contained Is in the rightmost bit positions (i.e., the least significant bit 
positions) and OS in the leftmost bit positions (the most significant bit positions). Such masks are independent 
of the word length, since OS are used to fill the remainder of the word after the required 1s have been placed in 
the low-order bit positions. If 1s were required in the leftmost bit positions, the mask would be related to the 
length of the word. (Remember that the rightmost bit position always represents 2O, whereas the leftmost bit 
position represents 2”-’, where n is the number of bits in the word.) Such dependence can often be removed, 
however, by writing the mask in terms of its one’s complement. 

EXAMPLE 13.8 Suppose once again that a is an unsigned integer variable whose value is Ox6db7. Now extract the 
leftmost 6 bits of this value and assign them to the unsigned integer variable b. Assign OS to the 10 rightmost bits of b. 

To carry out this operation, we can write the bitwise expression 

b = a & Oxfc00; 

Thus, the hexadecimal constant Oxf COO will serve as a mask. The resulting value of b will be 0 x 6 ~ 0 0 .  
The validity of this result can be established by again examining the corresponding bit patterns. 

a = 0110 1101 1011 0111 

mask = 1111 1100 0000 0000 

b = 0110 1100 0000 0000 
= 0 x 6 ~ 0 0 .  

The mask now blocks the rightmost 10 bits in a. 
The mask is dependent on the 16-bit word size in this situation, since the 1s appear in the leftmost bit positions. If 

the mask is written in terms of its one’s complement, however, the 1s appear in the rightmost bit positions, and the 
remaining bit positions are filled with OS. The mask therefore becomes independent of the word size. 
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The one’s complement of the original mask is the hexadecimal constant Ox3ff.  We can therefore express this 
masking operation as 

b = a & -0x3ff;  

The resulting value of b will be 0x6~00,as before. 
The validity of this result can be seen by examining the corresponding bit patterns shown below. 

Ox3ff = 0000 0011 1111 1111 

-0x3ff = 111 1  1100 0000 0000 = OxfcOO (the original mask) 

a = 0110 1101 1011 0111 
-0x3ff = 1111 1100 0000 0000 

b = 0110 1100 0000 0000 
= 0x6~00.  

Another type of masking operation allows a portion of a given bit pattern to be copied to a new word, 
while the remainder of the new word is filled with 1s. The bitwise or operator is used for this purpose. (Note 
the distinction between this and the previous masking operation, which allowed a portion of a bit pattern to be 
copied to a new word, while the remainder of the new word was filled with OS.) 

EXAMPLE 13.9 Suppose that a is an unsigned integer variable whose value is Ox6db7, as before. Transform the 
corresponding bit pattern into another bit pattern in which the rightmost 8 bits are all Is, and the leftmost 8 bits retain their 
original value. Assign this new bit pattern to the unsigned integer variable b. 

This operation is carried out with the bitwise expression 

b = a I O x f f ;  

The hexadecimal constant O x ff is the mask. The resulting value of b will be Ox6dff .  
Now let us examine the corresponding bit patterns, in order to verifL the accuracy of this result. 

a = 0110 1101 1011 0111 

mask = 0000 0000 1111 1111 

b = 0110 1101 1111 1111 
= Ox6dff 

Remember that the bitwise operation is now bitwise or, not bitwise and, as in the previous examples. Thus, when 
each of the rightmost 8 bits in a is compared with the corresponding 1 in the mask, the result is always 1. When each of 
the leftmost 8 bits in a is compared with the corresponding 0 in the mask, however, the result will be the same as the 
original bit in a. 

Now suppose we wish to transform the bit pattern of a into another bit pattern in which the leftmost 8 bits are all Is, 
and the rightmost 8 bits retain their original value. This can be accomplished by either of the following two expressions. 

b = a I Oxff00; 

or 

b = a I -0xf f ;  

In either case, the resulting value of b will be O x ff b7. The second expression is preferable because it is independent of 
the word size. 

You should verifL the accuracy of these results by expanding the corresponding bit patterns and carrying out the 
indicated bitwise operations. 
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A portion of a given bit pattern can be copied to a new word, while the remainder of the original bit 
pattern is inverted within the new word. This type of masking operation makes use of bitwise exclusive or. 
The details are illustrated in the following example. 

EXAMPLE 13.10 Suppose that a is an unsigned integer variable whose value is Ox6db7, as in the last several 
examples. Now let us reverse the rightmost 8 bits, and preserve the leftmost 8 bits. This new bit pattern will be assigned 
to the unsigned integer variable b. 

To do this, we make use of the bitwise exclusive or operation. 

b = a O x f f ;A 

The hexadecimal constant Oxf f is the mask. This expression will result in the value Ox6d48 being assigned to b. 

Here are the corresponding bit patterns. 

a = 0110 1101 1011 0111 
mask = 0000 0000 1111 1111 

b = 0110 1101 0100 1000 

= Ox6d48 

Remember that the bitwise operation is now bitwise exclusive or rather than bitwise and or bitwise or. Therefore, 
when each of the rightmost 8 bits in a is compared with the corresponding 1 in the mask, the resulting bit will be the 
opposite of the bit originally in a. On the other hand, when each of the leftmost 8 bits in a is compared with the 
corresponding 0 in the mask, the resulting bit will be the same as the bit originally in a. 

If we wanted to invert the leftmost 8 bits in a while preserving the original rightmost 8 bits, we could write either 

b = a Oxff00;A 

or the more desirable expression (because it is independent of the word size) 

b = a - 0 x f f ;A 

The resulting value of each expression is Ox92b7. 

The exclusive or operation can be used repeatedly as a toggle, to change the value of a particular bit 
within a word. in other words, if a particular bit has a value of 1, the exclusive or operation will change its 
value to 0, and vice versa. Such operations are particularly common in programs that interact closely with the 
computer’s hardware. 

EXAMPLE 13.11 Suppose that a is an unsigned integer variable whose value is Ox6db7, as in the previous examples. 
The expression 

a 0x4A 

will invert the value of bit number 2 (the third bit from the right) within a. If this operation is carried out repeatedly, the 
value of a will alternate between Ox6db7 and Ox6db3. Thus, the repeated use of this operation will toggle the third bit 
from the right on and off. 

The corresponding bit patterns are shown below. 

Ox6db7 = 0110 1101 1011 0111 
mask = 0000 0000 0000 0100 

Ox6db3 = 0110 1101 1011 0011 
mask = 0000 0000 0000 0100 

Ox6db7 = 0110 1101 1011 0111 
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The Shift Operators 

The two bitwise shift operators are shift left (<<) and shift right (>>). Each operator requires two operands. 
The fust is an integer-type operand that represents the bit pattern to be shifted. The second is an unsigned 
integer that indicates the number of displacements (i.e., whether the bits in the first operand will be shifted by 
1 bit position, 2 bit positions, 3 bit positions, etc.). This value cannot exceed the number of bits associated 
with the word size of the first operand. 

The left shift operator causes all of the bits in the first operand to be shifted to the left by the number of 
positions indicated by the second operand. The leftmost bits (i.e., the overflow bits) in the original bit pattern 
will be lost. The rightmost bit positions that become vacant will be filled with OS. 

EXAMPLE 13.12 Suppose a is an unsigned integer variable whose value is Ox6db7. The expression 

b = a << 6 ;  

will shift all bits of a six places to the left and assign the resulting bit pattern to the unsigned integer variable b. The 
resulting value of b will be Ox6dcO. 

To see how the final result was obtained, let us write out the corresponding bit patterns. 

I lost bits1 
a = 0110 1107 1077 0117 

shift left//// 
All of the bits originally assigned to a are shifted to the left 6 places, as indicated by the italicized digits. The leftmost 6 
bits (originally 01 10 1 1) are lost. The rightmost 6 bit positions are filled with 00 0000. 

The right shift operator causes all of the bits in the first operand to be shifted to the right by the number of 
positions indicated by the second operand. The rightmost bits (i.e., the underflow bits) in the original bit 
pattern will be lost. If the bit pattern being shifted represents an unsigned integer, then the leftmost bit 
positions that become vacant will be filled with OS. Hence, the behavior of the right shift operator is similar to 
that of the left shift operator when the first operand is an unsigned integer. 

EXAMPLE 13.13 Suppose a is an unsigned integer variable whose value is Ox6db7. The expression 

will shift all bits of a 6 places to the right and assign the resulting bit pattern to the unsigned integer variable b. The 
resulting value of b will be 0x1 b6. 

To see how the final result was obtained, let us once again write out the corresponding bit patterns. 

I lost bits I 
a = 0710 1101 I M I  0111 

a >> 6 = 0000 0007 7011 0710 = 0xlb6 

I 0s I 
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We see that all of the bits originally assigned to a are shifted to the right 6 places, as indicated by the italicized bits. The 
rightmost 6 bits (originally 11 01 11) are lost. The leftmost 6 bit positions are filled with 00 0000. 

If the bit pattern representing a signed integer is shifted to the right, the outcome of the shift operation 
may depend on the value of the leftmost bit (the sign bit). Most compilers will fill the vacant bit positions 
with the contents of this bit. (Negative integers have a 1 in this position, whereas positive integers have a 0 
here.) However, some compilers will fill the vacant bit positions with OS,regardless of the sign of the original 
integer quantity. You should determine how your particular compiler will handle this situation. 

EXAMPLE 13.14 Here is a simple C program that illustrates the use of the right-shift operator 

# inc lude  <s td io .h>  

main ( ) 

unsigned a = Oxf05a; 

i n t  b = a; 

p r i n t f  ( "%U %d\n", a ,  b)  ; 
p r i n t f  ( " % x \ n " ,  a >> 6 ) ;  

p r i n t f ( * % x \ n " ,  b >> 6 ) ;  

} 

Notice that a represents an unsigned integer quantity, whereas b represents an ordinary (signed) integer. Both variables 
are initially assigned the (hexadecimal) value OxfO5a. Since the IeAmost bit position will contain a 1, the signed integer 
(b) will interpret this value as a negative number. 

The program displays the decimal values represented by the bit patterns assigned to a and b. We therefore see the 
result of a 6-bit right-shift operation for each quantity. Thus, if the program is run with a compiler that copies the contents 
of the sign bit into the vacated bit positions, the following output will be obtained. 

61530 -4006 

3c 1 

f f c l  

The first line shows that the hexadecimal quantity O x f 05a is equivalent to the unsigned decimal quantity 61 530, and 
the signed decimal quantity -4006. When the unsigned integer is shifted 6 places to the right, the vacated bit positions are 
filled with zeros. Hence, the hexadecimal equivalent of the resulting bit pattern is 0 x 3 ~ 1 .When the signed integer is 
shifted 6 places to the right, however, the vacated bit positions are filled with 1s (the value of the sign bit). Therefore, the 
hexadecimal equivalent of the resulting bit pattern in this case is f f c l .  

The actual bit patterns, before and after the right-shift operations, are shown below. 

a = 1111 0000 0101 1010 

b = 1111 0000 0101 1010 

The Bitwise Assignment Operators 

C also contains the following bitwise assignment operators. 

&= A -- ] =  <<= >>= 
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These operators combine the preceding bitwise operations with ordinary assignment. The left operand must 
be an assignable integer-type identifier (e.g., an integer variable), and the right operand must be a bitwise 
expression. The left operand is interpreted as the first operand in the bitwise expression. The value of the 
bitwise expression is then assigned to the left operand. For example, the expression a &= Ox7f is equivalent 
to a = a & Ox7f. 

The bitwise assignment operators are members of the same precedence group as the other assignment 
operators in C. Their associativity is right to left (see Appendix C). 

EXAMPLE 13.15 Several bitwise assignment expressions are shown below. In each expression, assume that a is an 
unsigned integer variable whose initial value is Ox6db7. - Final Value 

a &= Ox7f a = a & Ox7f 0x37 

a *= Ox7f a = a * Ox7f Ox6dc8 

a I=  Ox7f a = a I Ox7f Ox6dff 

Oxb6eO 

Ox36d 

Many applications involve the use of multiple bitwise operations. In fact, two or more bitwise operations 
may be combined in the same expression. 

EXAMPLE 13.16 Displaying Bit Patterns Most versions of C do not include a library function to convert a decimal 
integer into a binary bit pattern. A complete C program to carry out this conversion is shown below. The program will 
display the bit pattern corresponding to either a positive or a negative integer quantity. 

/ *  d i sp lay  the b i t  pa t te rn  corresponding t o  a signed decimal i n tege r  * /  

#include <stdio.h> 

main ( ) 

{ 
i n t  a, b, m, count, nb i t s ;  
unsigned mask; 

/ *  determine the word s ize  i n  b i t s  and set the i n i t i a l  mask * /  
n b i t s  = 8 * s i z e o f ( i n t ) ;  

m = 0x1 << ( n b i t s  - 1 ) ;  / *  place 1 i n  l e f tmos t  p o s i t i o n  * /  

/ *  main loop * /  

do { 
/ *  read a signed in teger  * /  
p r i n t f ( " \ n \ n E n t e r  an i n tege r  value (0 t o  stop):  " ,  a) ;  
scanf ( "%d", &a) ; 

/ *  output the b i t  pa t te rn  * /  
mask = m; 
f o r  (count = 1; count <= nb i t s ;  count++) { 

b = (a & mask) 7 1 : 0; / *  set  d isp lay  b i t  on o r  o f f  * /  
p r i n t f  ( '%x" b) ; / *  p r i n t  d isp lay  b i t  * /  
i f  (count % 4 == 0) 

p r i n t f ( '  / *  blank space a f t e r  every 4 th  d i g i t  * /' I ) ;  

mask >>= 1; / *  s h i f t  mask 1 p o s i t i o n  t o  the r i g h t  * /  
1 

} wh i le  (a  != 0);  

1 



436 LOW-LEVEL PROGRAMMING [CHAP. 13 

The program is written so that it is independent of the integer word size. Therefore it can be used on any computer. 
It begins by determining the word size, in bits. It then assigns an appropriate initial value to the integer variable m. This 
value will be used as a mask in a bitwise and operation. Notice that m contains a 1 in the leftmost bit position, and OS in all 
of the other bit positions. 

The main part of the program is a do - whi le  loop that allows multiple integer quantities to be converted into 
equivalent bit patterns. Each pass through the loop causes one integer quantity to be entered into the computer and 
converted into an equivalent bit pattern, which is then displayed. The computation continues until a value of 0 is entered 
into the computer and converted into a succession of 0 bits. 

Once an integer quantity has been entered into the computer, the mask is assigned the initial value defined at the 
beginning of the program. A f o r  loop is then used to examine the integer quantity on a bit-by-bit basis, beginning with 
the most significant bit (i.e., the leftmost bit). A masking operation, based upon the use of bitwise and, is used to examine 
each bit position. The content of the bit position is then displayed. Finally, the 1 within the mask is shifted one bit 
position to the right, in anticipation of examining the next bit. 

Note that all of the bits are displayed on the same line. A blank space is displayed after every group of 4 bits, to 
enhance the legibility of the display. 

The interactive dialog resulting from a typical program execution is shown below. The user’s responses are 
underlined. 

Enter  an i n t e g e r  value ( 0  t o  s top) :  1 
0000 0000 0000 0001 

Enter  an i n t e g e r  value ( 0  t o  s top) :  3 
1 1 1 1  1111 1 1 1 1  1111 

Enter  an i n t e g e r  value (0  t o  s top) :  
0000 0000 1000 0001 

Enter  an i n t e g e r  value ( 0  t o  s t o p ) :  -129 

1 1 1 1  1 1 1 1  0111 1111 

Enter  an i n t e g e r  value ( 0  t o  s top) :  1024 

0000 0100 0000 0000 

Enter  an i n t e g e r  value ( 0  t o  s top) :  -1024 

1 1 1 1  1100 0000 0000 

Enter  an i n t e g e r  value ( 0  t o  s top) :  7033 

0001 1011 0111 1001 

Enter  an i n t e g e r  value ( 0  t o  stop) :  -7033 

1110 0100 1000 0111 

Enter  an i n t e g e r  value (0  t o  s t o p ) :  32767 
0111 1111 1111 1111 

Enter  an i n t e g e r  value (0  t o  s top) :  -32768 

1000 0000 0000 0000 

Enter  an i n t e g e r  value ( 0  t o  s top) :  Q 
0000 0000 0000 0000 

Notice that each positive number has a 0 in the leftmost bit position, and each negative number has a 1 in this 
position. (Actually, the bit pattern for a negative number is the two ’scomplement of the bit pattern for a positive number. 
To obtain the two’s complement, form the one’s complement and then add 1 to the rightmost bit position.) 



437 CHAP.131 LOW-LEVEL PROGRAMMING 

13.3 BIT FIELDS 

In some applications it may be desirable to work with data items that consist of only a few bits (e.g., a single- 
bit flag to indicate a true/false condition, a 3-bit integer whose values can range from 0 through 7, or a 7-bit 
ASCII character.) Several such data items can be packed into an individual word of memory. To do so, the 
word is subdivided into individual bitfields. These bit fields are defined as members of a structure. Each bit 
field can then be accessed individually, like any other member of a structure. 

In general terms, the decomposition of a word into distinct bit fields can be written as 

s t r u c t  t a g  { 
member 1 ; 
member 2; 
. . . . .  
member m;  

>; 

where the individual elements have the same meaning as in a structure declaration. Each member declaration 
must now include a specification indicating the size of the corresponding bit field. To do so, the member 
name must be followed by a colon and an unsigned integer indicating the field size. 

The interpretation of these bit fields may vary from one C compiler to another. For example, some C 
compilers may order the bit fields from right to left, whereas other C compilers will order them from left to 
right. We will assume right-to-left ordering in the examples shown below. 

EXAMPLE 13.17 A C program contains the following declarations. 

s t r u c t  sample { 

unsigned a : 1;  

unsigned b : 3; 
unsigned c : 2; 

unsigned d : 1 ;  

}; 

s t r u c t  sample v; 

The first declaration defines a structure which is subdivided into four bit fields, called a, b, c and d. These bit fields have 
widths of 1 bit, 3 bits, 2 bits and 1 bit, respectively. Hence, the bit fields occupy a total of 7 bits within a word of 
memory. Any additional bits within the word will remain uncommitted. 

Fig. 13.1 illustrates the layout of the bit fields within the word, assuming a 16-bit word with the fields ordered from 
right to left. 

bitno. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0* 
I uncommitted bits I d I c I b I a I 

Fig. 13.1 Bit fields within a 16-bit word 

The second declaration states that v is a structure variable of type sample. Thus, v .a is a field within v whose width 
is 1 bit. Similarly, v .b is a field whose width is 3 bits; and so on. 

A bit field can only be defined as a portion of an i n t e g e r  or an unsigned word. (Some compilers also 
permit a bit field to be a portion of a char or a long  word.) In all other respects, however, the rules for 
defining bit fields are the same as the rules that govern other kinds of structures. 
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EXAMPLE 13.18 The declarations in Example 13.17 can be combined to read 

s t r u c t  sample { 

unsigned a : 1; 

unsigned b : 3; 
unsigned c : 2; 
unsigned d : 1 ;  

} v; 

The interpretation of the variable v is the same as that given in Example 13.17. Moreover, the tag can be omitted, so that 
the above declaration can be further shortened to 

s t r u c t  { 

unsigned a : 1;  
unsigned b : 3; 

unsigned c : 2; 
unsigned d : 1;  

1 v; 

A field within a structure cannot overlap a word within the computer's memory. This issue does not arise 
if the sum of the field widths does not exceed the size of an unsigned integer quantity. If the sum of the field 
widths does exceed this word size, however, then any overlapping field will automatically be forced to the 
beginning of the next word. 

EXAMPLE 13.19 Consider the simple C program shown below. 

#include <stdio.h> 

main ( ) 

{ 
s t a t i c  s t r u c t  { 

unsigned a : 5;  / *  begin f i r s t  word * /  
unsigned b : 5 ;  
unsigned c : 5 ;  

unsigned d : 5 ;  / *  forced t o  second word * /  

1 v = 11, 2 ,  3, 4);  

p r i n t f ( " v . a  = %d v.b = %d v.c = %d v.d = %d\n" ,  v . a ,  v .b ,  v . c ,  v . d ) ;  
p r i n t f ( " v  requ i res  %d bytes \n" ,  s i z e o f ( v ) ) ;  

The four fields within v require a total of 20 bits. If the computer only allows 16 bits for an unsigned integer quantity, this 
structure declaration will require two words of memory. The first three fields will be stored in the first word. Since the 
last field will straddle the word boundary, it is automatically forced to the beginning of the second word. 

Fig. 13.2 shows the layout of the bit fields within the two 16-bit words. 

word 2 word 1 

bitno. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Fig. 13.2 Four bit fields within two 16-bit words 
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Execution of this program will produce the following output. 

v.a = 1 v.b = 2 v.c = 3 v.d = 4 

v requires 4 bytes 

The second line verifies the need for two words, since each word is equivalent to 2 bytes. (With some compilers, v will 
require only 3 bytes; i.e., 24 bits.) 

Unnamed fields can be used to control the alignment of bit fields within a word of memory. Such fields 
provide padding within the word. The size of the unnamed field determines the extent of the padding. 

EXAMPLE 13.20 Consider the simple C program shown below. 

#include <stdio.h> 

main( ) 

s t a t i c  s t r u c t  { 

unsigned a : 5; 
unsigned b : 5; 

unsigned c : 5; 

} v = ( 1 ,  2, 3); 

p r i n t f ( " v . a  = %d v.b = %d v.c = %d\n", v.a, v.b, v .c) ;  
p r i n t f ( " v  requires %d bytes\nn, s i zeo f ( v ) ) ;  

1 

This program is similar to that shown in the previous example. Now, however, only three fields (15 bits) are defined 
within v. Hence, only one word of memory is required to store this structure. 

Execution of this program results in the following output. 

v.a = 1 v.b = 2 v.c = 3 
v requi res 2 bytes 

The second line of output verifies that all three fields can be stored within a single unsigned word (2 bytes). 
Let us alter this program by adding an unnamed field whose field width is 6 bits; i.e., 

#include <stdio.h> 

main ( ) 

{ 
s t a t i c  s t r u c t  { 

unsigned a : 5; / *  begin f i r s t  word * /  
unsigned b : 5; 

unsigned : 6; / *  f i l l  out f i r s t  word * /  
unsigned c : 5; / *  begin second word * /  

1 v = ( 1 ,  2, 3); 

p r i n t f ( " v . a  = %d v.b = %d v.c = %d\nn, v.8, v.b, v.c) ;  
p r i n t f  ( " v  requires %d bytes\n" , sizeof (v)  ) ; 

1 

Now two words of memory will be required. The first two fields will be stored within the first word, followed by 6 vacant 
bits (for a total of 16 bits, thus filling the first word). The last field will therefore be aligned with the beginning of the 
second word, as illustrated in Fig. 13.3. 
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word 2 word 1 

bitno. 15 14 13 12 1 1  10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

CI l b I a I 

Fig. 13.3 Three bit fields within two 16-bit words 

When this program is executed, the following output is produced. 

v . a  = 1 v . b  = 2 v . c  = 3 

v r e q u i r e s  4 bytes 

From the last line of output, we see that two words (4 bytes) are now required to store the three fields because of the 
additional padding. 

Another way to control the alignment of bit fields is to include an unnamed field whose width is zero. 
This will automatically force the next field to be aligned with the beginning of a new word. 

EXAMPLE 13.21 Consider the simple C program shown below. 

#include <s td io .h>  

main ( ) 

s t a t i c  s t r u c t  { 
unsigned a : 5; / *  begin f i r s t  word * /  
unsigned b : 5;  
unsigned : 0; / *  f o r c e  al ignment w i t h  second word * /  
unsigned c : 5;  / *  begin second word * /  

1 v = (1 ,  2, 3); 

p r i n t f ( " v . a  = %d v . b  = %d v . c  = % d \ n " ,  v . a ,  v .b,  v . c ) ;  
p r i n t f ( " v  requ i res  %d b y t e s \ n u ,  s i z e o f ( v ) ) ;  

1 

This program is similar to the second program shown in the last example. Now, however, the structure declaration 
includes an unnamed bit field whose field width is zero. This will automatically force the last field to the beginning of a 
new word, as illustrated previously in Fig. 13.3. 

When this program is executed, the following output is generated. 

v . a  = 1 v . b  = 2 v .c  = 3 

v r e q u i r e s  4 bytes 

The last line verifies that two words (4 bytes) are required to store the three fields, as defined above. (With some 
compilers, v will require only 3 bytes; i.e., 24 bits.) 

Remember that some compilers order bit fields from right to left (i.e., from low-order bits to high-order 
bits) within a word, whereas other compilers order the fields from left to right (high-order to low-order bits). 
Check your programmer's reference manual to determine how this is done on your particular computer. 
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EXAMPLE 13.22 Consider the first structure declaration presented in Example 13.20; i.e., 

s t a t i c  s t r u c t  { 
unsigned a : 5; 

unsigned b : 5; 

unsigned c : 5; 

1 v = ( 1 ,  2 ,  3);  

With some computers, the first field (v .a) will occupy the rightmost 5 bits (i.e., bits 0 through 4), the second field (v .b) 
will occupy the next 5 bits (bits 5 through 9), and the last field (v. c) will occupy bits 10 through 14. The leftmost bit (Le, 
bit 15, which is the most significant bit) will be unoccupied, as shown in Fig. 13.4(a). 

bitno. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

3 

I v.c I v.b I v.a I 

Fig. 13.4 (a) Bit fields with right-to-left ordering 

With other computers, however, the first field (v. a) will occupy the leftmost 5 bits (bits 11 through 15), the second 
field (v. b) will occupy bits 6 through 10, and the last field (v. c) will occupy bits 1 through 5. The rightmost bit (i.e., bit 
0, which is the least significant bit) will be unoccupied, as shown in Fig. 13.4(6). Thus, a program written for one type of 
computer may produce incorrect results when run on the other type of computer. 

bitno. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I v.a I v.b I v .c  I 
Fig. 13.4 (b) Bit fields with left-to-right ordering 

Bit fields are accessed in the same manner as other structure members, and they may appear within 
arithmetic expressions as unsigned integer quantities. There are, however, several restrictions on their use. In 
particular, arrays of bit fields are not permitted; the address operator (a) cannot be applied to a bit field; a 
pointer cannot access a bit field; and a fbnction cannot return a bit field. 

EXAMPLE 13.23 Data Compression (Storing Names and Birthdates) This example presents a program that stores 
the names and birthdates of several students within an array. The overall strategy will be to first enter each student’s name 
and birthdate. The program will then display the name, birthday (i.e., day of the week that the student was born) and date 
of birth for each student. The birthdays will be determined using the method described in Example 10.28. 

Each birthdate will consist of three integer quantities: the month, day and year of birth. (The year will be stored as a 
3-digit integer, representing the number of years since 1900, as described in Example 10.28. Thus, the year 1999 will be 
entered as 1999 but stored simply as 99. Similarly, the year 2010 will be entered as 2010 and stored as 110.) To conserve 
memory, these three integer quantities will be stored in bit fields within a single 16-bit word, as shown below. 

typedef s t r u c t  { 

unsigned month : 4; 
unsigned day : 5; 

unsigned year : 7; 

} date; 
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The month will be stored as a 4-bit unsigned integer whose values can range from 0 to 15 (note that 24 - 1 = 15). Of 
course, we will be concerned only with the values I through 12. Similarly, the day will be stored as a 5-bit unsigned 
integer. Its values can range from 0 to 3 1 (note that 25 - 1 = 3 1). And the year will be stored as a 7-bit integer, whose 
values can range from 0 to 127 (note that 2' - 1 = 127). Hence, we will be able to accommodate birthdates ranging from 
the year 1900 to the year 2027. 

Here is the entire program. 

/ *  Store students '  names and b i r thdates w i t h i n  an array, using b i t  f i e l d s  
f o r  the b i r thdates.  

When f i n i shed ,  d isp lay each s tudent 's  name and b i r thdate.  
Display each b i r t hda te  as fo l lows:  day-of-week, month, day, year * /  

# include <stdio.h> 
#include <str ing.h> 

i n t  conve r t ( i n t  mm, i n t  dd, i n t  yy) ;  / *  funct ion prototype * /  

main ( ) 

i n t  mm, dd, yy, count = 0; 
i n t  day-of-week; / *  day o f  the week (0 - >  Sunday, 1 ->  Monday, e t c . )  * /  

typedef s t r u c t  { 

unsigned month : 4; 

unsigned day : 5; 
unsigned year : 7; 

} date; 

s t r u c t  { 
char name[30]; 
date b i r thdate;  

} student[40]; 

s t a t i c  char *weekday[] = {"Sunday", "Mondayn, "Tuesday', 'Wednesday', 
"Thursday" "Fr iday" ,  "Saturday"}; 

s t a t i c  char *month[ ] = {"January" "February", "March", " A p r i l "  
"May" 'June", "Ju ly"  "August" "September" 
'October", "November" 'December"}; 

/ *  opening message * /  
p r i n t f ( " D a t a  Entry Routine\nType \ ' E N D \ '  when f i n i s h e d \ n " ) ;  
pr int f (" \nName: " ) ;  

scanf(*  % [ " \ n ] " ,  student[count].name); 

/ *  enter  data f o r  a l l  students * /  
whi le  (strcmp(student[count].name, "END")  I =  0) { 

p r i n t f ( " B i r t h d a t e  (mm dd yyyy): ' ) ;  

scanf ( "%d %d %d' , &mm, &dd, &yy) ; 

/ *  assign in teger  input  data t o  b i t  f i e l d s  * /  
student[count] .bir thdate.month = mm; 
student [count ] .b i r thdate .day  = dd; 
student[count].birthdate.year = yy - 1900; 

p r i n t f  ('\nName: ' I )  ; 
scanf( "  % [ ^ \ n ] " ,  student[++count].name); 

1 
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/ *  convert b i r thdates and display output f o r  a l l  students * /  
count = 0; 

whi le  (strcmp(student[count] .name, "END")  I =  0) { 

day-of-week = conver t (s tudent [count ] .b i r thdate .month ,  
student[count].birthdate.day, 

student[count].birthdate.year); 


p r i n t f ( " \ n % s  ", student[count].name); 
p r i n t f ( " % s %s %d, %d\n", weekday[day-of-week], 

month[student[count] .bir thdate.month-11,  
student[count].birthdate.day, 

student [count ] .b i r thdate .year  + 1900); 
++count; 

i n t  conve r t ( i n t  mm, i n t  dd, i n t  yy) / *  convert date t o  numerical day o f  week * /  

long ndays; / *  number o f  days from s t a r t  o f  1900 * /  
long ncycles; / *  number of  4-year cycles beyond 1900 * /  
i n t  nyears; / *  number o f  years beyond l a s t  4-year cycle * /  
i n t  day; / *  day o f  week (0, 1, . . ., 6) * /  

/ *  numerical conversions * /  
ndays = ( long) (30.42 * (mm - 1 ) )  + dd; / *  approximate day o f  year * /  

i f  (mm == 2) ++ndays; / *  adjust  f o r  February * /  
i f  ( ( m m  > 2) && (mm < 8 ) )  --ndays; / *  adjust  f o r  March - J u l y  * /  
i f  ( ( yy  % 4 == 0) && (mm > 2 ) )  ++ndays; / *  adjust  f o r  leap year * /  

ncycles = yy / 4; / *  4-year cycles beyond 1900 * /  
ndays += ncycles * 1461; / *  add days f o r  4-year cycles * /  

nyears = yy % 4; / *  years beyond l a s t  4-year cycle * /  
i f  (nyears > 0) / *  add days f o r  yrs  beyond l a s t  4 - y r  cycle * /  

ndays += 365 * nyears + 1; 

i f  (ndays > 59) --ndays; / *  adjust  f o r  1900 (NOT a leap year) * /  

day = ndays % 7; 

return(day);  

Within this program, we see that student is a 40-element array of structures. Each array element (i.e., each 
structure) consists of a 30-element character array (name) that represents the student's name, and another structure 
(b i r thdate) that contains the student's date of birth. This last structure is comprised of the three bit fields 
birthdate.month, b i r thdate.day and bir thdate.year as members. 

The program also contains two arrays of strings, whose elements represent the days of the week and the months of the 
year, respectively. These arrays are discussed in Example 10.28. In addition, the program includes the function convert, 
which is used to convert any date between January 1, 1900 and December 3 1,2099 into an equivalent (integer-valued) day 
of the week. This function differs only slightly from the function described in Example 10.28. (Within convert, the 
statement yy -= 1900, which was present in Example 10.28, is now absent.) 

The main function consists essentially of two whi le loops. The first loop is used to enter and store input data for all 
the students. Each pass through the loop will enter and store data for a different student. This process will continue until 
the word "END" has been detected for a student name (in either upper- or lowercase). Notice the manner in which values 
are assigned to the bit fields in this loop. 
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The second loop causes each student’s birthdate to be converted into a day of the week and then displayed, along 
with the student’s name and date of birth. The details governing the birthdate conversion and the display of information 
are given in Example 10.28, and need not be repeated here. Notice the manner in which the bit fields are accessed within 
the function calls. 

The input dialog and the corresponding output resulting from a typical program execution are shown below. As 
usual, the user’s responses are underlined. 

Data Ent ry  Routine 
Type ‘END’ when f i n i s h e d  

Name: Rob Smith 
B i r t h d a t e  (mm dd y y ) :  I 2 p  1972 

Name: Judv ThomDson 
B i r t h d a t e  (mm dd y y ) :  11 27 1983 

Name: Jirn Wil l iams 
B i r t h d a t e  (mm dd y y ) :  2a 1998 

Name: Mort 
B i r t h d a t e  (mm dd y y ) :  6 2010 

Name: END 

Rob Smith Thursday J u l y  20,  1972 

Judy Thompson Sunday November 27, 1983 

Jim Wi l l i ams Tuesday December 29,  1998 

Mort Davis Thursday June 10,  2010 

Before leaving this example, a few additional observations are in order. First, it should be pointed out that the 
memory savings resulting from the use of bit fields has not been dramatic. However, the benefit of this data compression 
technique would be greater if the dimensionality of the student array were to increase. 

Second, some additional data compression could be realized by storing eight 7-bit ASCII characters in seven bytes of 
memory, using the bitwise shift operators. Each byte would then contain one complete character, plus one bit from the 
eighth character. This would result in a 12.5 percent reduction in the memory requirements. The details of this technique 
are beyond the scope of our present discussion, though you may wish to experiment with this technique on your own. 
(See Prob. 13.55 at the end of this chapter.) 

Review Questions 

13.1 What is meant by low-level programming? 

13.2 What are registers? In general terms, what are registers used for? 

13.3 What is the purpose of the r e g i s t e r  storage class? What benefits are obtained from the use of this storage class? 
What types of variables can be assigned this storage class? 

13.4 What is the scope of register variables? 

13.5 Summarize the rules for using register variables. 
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13.6 Why might a r e g i s t e r  declaration not be honored? If a r e g i s t e r  declaration is not honored, how are the 
register variables treated? 

13.7 How can a programmer tell if a r e g i s t e r  declaration is honored within a program? 

13.8 What is meant by bitwise operations? 

13.9 What is the purpose of the one’s complement operator? To what types of operands does it apply? To what 
precedence group does it belong? What is its associativity? 

13.10 Describe the three logical bitwise operators. What is the purpose of each? 

13.11 What types of operands are required by each of the logical bitwise operators? 

13.12 Summarize the values that are returned by each of the logical bitwise operations. Consider all possible operand 
values in your answer. 

13.13 Describe the precedence and the associativity for each of the logical bitwise operators. 

13.14 What is a masking operation? What is the purpose of each operand? Which operand is the mask, and how is it 
chosen? 

13.15 Describe a masking operation in which a portion of a given bit pattern is copied while the remaining bits are all set 
to 0. Which logical bitwise operation is used for this operation? How is the mask selected? 

13.16 Describe a masking operation in which a portion of a given bit pattern is copied while the remaining bits are all set 
to 1. Which logical bitwise operation is used for this operation? How is the mask defined? Compare your answer 
with the answer to the previous question. 

13.17 Describe a masking operation in which a portion of a given bit pattern is copied while the remaining bits are 
inverted. Which logical bitwise operation is used for this operation? How is the mask defined? Compare your 
answer with the answers to the previous two questions. 

13.18 Why is the one’s complement operator sometimes used in a masking operation? Under what conditions is its use 
desirable? 

13.19 How can a particular bit be toggled on and off repeatedly? Which logical bitwise operation is used for this 
purpose? 

13.20 Describe the two bitwise shift operators. What requirement must the operands satisfy? What is the purpose of 
each operand? 

13.21 Describe the precedence and the associativity for the bitwise shift operators. 

13.22 When shifting bits to the left or to the right, what happens to the bits shifted out of the original word position? 

13.23 When shifting bits to the left, what value fills the rightmost bit positions that are vacated by the shifting bits? 

13.24 When shifting bits to the right, what value fills the leftmost bit positions that are vacated by the shifting bits? 
Does the type of operand being shifted affect this value? Explain fully. Compare your answer with the answer to 
the last question. 

13.25 Do all C compilers handle right-shift operations in the same manner? Explain fully. 

13.26 List the bitwise assignment operators and describe their purpose. 

13.27 Describe each of the operands in a bitwise assignment operation. 

13.28 Describe the precedence and the associativity for the bitwise assignment operators. 

13.29 What are bit fields? To what type of data structure do bit fields belong? How are individual bit fields accessed? 

13.30 Summarize the rules for defining bit fields. 

13.31 What data type must be associated with each bit field? 

13.32 What happens if a bit field overlaps a word within the computer’s memory? 

13.33 Within a bit field declaration, what interpretation is given to an unnamed bit field? What interpretation is given to 
a zero-width field? 

13.34 In what order are the bit fields arranged within a word? Is this convention uniform among all compilers? 

13.35 What restrictions apply to the use of bit fields within a program, after they have been properly declared? 
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Problems 

13.36 Declare the variables U and v to be unsigned integer variables with the register storage class. 

13.37 Declare the variables U, v, x and y to be integer variables whose initial values are 1, 2, 3 and 4, respectively. 
Assume that U and v will be automatic variables. Assign the register storage class to x and y. 

13.38 Suppose that funct is a function that accepts a pointer to an unsigned integer register variable as an argument, 
and returns a pointer to an unsigned integer. Write a skeletal outline of the main calling routine and funct, 
illustrating how these features are defined. 

13.39 Suppose that a is an unsigned integer whose value is (hexadecimal) Oxa2c3. Write the corresponding bit pattern 
for this value. Then evaluate each of the following bitwise expressions, first showing the resulting bit pattern and 
then the equivalent hexadecimal value. Utilize the original value of a in each expression. Assume that a is stored 
in a 16-bit word. 

(4 -a ( h )  a >> 3 (0 )  a & -(0X3f06 << 8) 

A(6) a & Ox3f06 ( i )  a << 5 (p) a -0x3f06 << 8 

(c) a Ox3f06 (j) a & -a (4) (a  -0x3f06) << 8A 

A(d) a I Ox3f06 (k) a A -a (r) a -(Ox3f06 << 8) 

(e) a & -0x3f06 (0 a I -8 (s) a I -0x3f06 << 8 

v) a -0x3f06 (m) a & -0x3f06 << 8 ( r )  (a  I -0x3f06) << 8A 

(g) al-Qx3fO6 (n) (a & -0x3f06) << 8 (U) a I -(Ox3f06 << 8) 

13.40 Rewrite each of the following bitwise expressions in the form of a bitwise assignment statement, where the value 
of each expression is assigned to the variable a. 

(a) Prob. 13.39(6) (4 Prob. 13.39(h) (g) Prob. 13.39(0) 

(6) Prob. 13.39(c) (e) Prob. 13.39 ( i )  

(c )  Prob. 13.39 (g) v) Prob. 13.39(k) 

13.41 Define a mask and write the appropriate masking operation for each of the situations described below. 

(a) Copy the odd bits (bits 1,3, 5,  . . . ,15) and place zeros in the even bit locations (bits 0, 2,4, . . . , 14) of a 16- 
bit, unsigned integer quantity represented by the variable v. Assume that bit 0 is the rightmost bit. 

(6) Strip the most significant bit (the lefhost bit) from an 8-bit character represented by the variable c. (Certain 
word processors use this bit to control the formatting of the text within a document. Stripping this bit, i.e., 
setting it to zero, can transform the word processor document into a text file consisting of ordinary ASCII 
characters.) 

(c) Copy the odd bits (bits 1, 3,5, . . . , 15) and place one’s in the even bit locations (bits 0,2,4, . . . , 14) of a 16- 
bit, unsigned integer quantity represented by the variable v. Assume that bit 0 is the rightmost bit. 

(6) Toggle (invert) the values of bits 1 and 6 of a 16-bit, unsigned integer quantity represented by the variable v, 
while preserving all of the remaining bits. Assign the new bit pattern to v. Assume that bit 0 is the rightmost 
bit. 

13.42 (a) Suppose that v is a signed, 16-bit integer quantity whose hexadecimal value is 0x369~.Evaluate each of the 
following shift expressions. (Utilize the original value of v in each expression.) 

( i )  v << 4 

( i i )  v >> 4 

(6) Now suppose the value of v is changed to Oxc369. Evaluate each of the following shift expressions, and 
compare the results with those obtained in part (a). Explain any differences. 

( i )  v << 4 

( i i )  v >> 4 
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13.43 Describe the composition of each of the following structures. Assume a 16-bit integer word. 

(a) s t r u c t  { 
unsigned U : 3; 
unsigned v : 1;  
unsigned w : 7; 

unsigned x : 5; 

1 ;  

(b)  s t a t i c  s t r u c t  { 

unsigned U : 3; 

unsigned v : 1;  
unsigned w : 7; 
unsigned x : 5;  

} a = (2 ,  1 ,  16, 8); 

(c) s t r u c t  { 

unsigned U : 7; 

unsigned v : 7; 
unsigned w : 7; 

1 a;  

(d) s t r u c t  { 

unsigned U : 7; 

unsigned : 9; 
unsigned v : 7; 
unsigned : 2; 

unsigned w : 7; 

1 ;  

(e) s t r u c t  { 

unsigned U : 7; 
unsigned : 0; 
unsigned v : 7; 
unsigned : 0; 
unsigned w : 7; 

1 

13.44 Write a structure declaration for each of the following situations. Assume a 16-bit integer word. 

(a) Define three bit fields, called a, b and c, whose widths are 6 bits, 4 bits and 6 bits, respectively. 

(6)  Declare a structure-type variable v having the composition defined in part (a) above. Assign the initial values 
3,5 and 7, respectively, to the three bit fields. Are the bit fields large enough to accommodate these values? 

(c) What are the largest values that can be assigned to each of the bit fields defined in part (a) above? 

(d) Define three bit fields, called a ,  b and c, whose widths are 8 bits, 6 bits and 5 bits, respectively. How will 
these fields be stored within the computer’s memory? 

(e) Define three bit fields, called a, b and c, whose widths are 8 bits, 6 bits and 5 bits, respectively. Separate a 
and b with 2 vacant bits. 

U> Define three bit fields, called a, b and c, whose widths are 8 bits, 6 bits and 5 bits, respectively. Force b to 
the beginning of a second word of storage. Separate b and c with 2 vacant bits. 

Programming Problems 

13.45 Modify the program presented in Example 13.2 (repeated calculation of a sequence of Fibonacci numbers) so that 
f, f 1 and f 2 are pointers to integer quantities stored within registers. 
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13.46 Problem 6.690 describes a method for calculating prime numbers, and suggests writing a program to calculate the 
first n prime numbers, where n is a specified quantity (e.g., n = 100). Modify this problem statement so that the 
list of n prime numbers is generated 10,000,000 times. Display the list only once, after the last pass through the 
loop. 

Solve the problem with and without the r e g i s t e r  storage class specification. Compare the execution times 
and the sizes of the compiled object programs. 

13.47 Another way to generate a list of prime numbers is to use the famous sieve ofEratosthenes. This method proceeds 
as follows. 

(a) Generate an ordered list of integers ranging from 2 to n. 

(b)  For some particular integer, i ,  within the list, carry out the following operations: 

( i )  Tag the integer as a prime (you may wish to place it in an array, or write it out to a data file). 

( i i )  Then remove all succeeding integers that are multiples of i. 

(c )  Repeat part (6)  for each successive value of i within the list, beginning with i = 2 and ending with the last 
remaining integer. 

Write a C program that uses this method to determine the primes within a list of numbers ranging from 1 to n, 
where n is an input quantity. Repeat the calculation 30,000 times, displaying the list of prime numbers at the end 
of the last pass through the loop. 

Solve the problem with and without the r e g i s t e r  storage class specification. Compare the execution times 
and the sizes of the compiled object programs. 

13.48 Write a C program that will accept a hexadecimal number as input, and then display a menu that will permit any of 
the following operations to be carried out: 

(a) Display the hexadecimal equivalent of the one's complement. 

( b )  C&y out a masking operation and then display the hexadecimal equivalent of the result. 

(c )  Carry out a bit shifting operation and then display the hexadecimal equivalent of the result. 

(6) Exit. 

If the masking operation is selected, prompt the user for the type of operation (bitwise and, bitwise exclusive or, or 
bitwise or), and then a (hexadecimal) value for the mask. If the bit shifting operation is selected, prompt the user 
for the type of shift (left or right), and then the number of bits. 

Test the program with several different (hexadecimal) input values of your own choice. 

13.49 ModifL the program written for Prob. 13.48 above so that binary bit patterns are displayed in addition to 
hexadecimal values. Use a separate function, patterned after the program shown in Example 13.16, to display the 
binary bit patterns. 

13.50 Modify the program written for Prob. 13.49 so that the input quantity can be a decimal, hexadecimal or octal 
constant. Begin by displaying a menu that allows the user to specify the type of number (i.e., the desired number 
system) before entering the actual value. Then display the input value in the other two number systems and in 
terms of its equivalent binary bit pattern. 

After the input quantity has been entered and displayed, generate the main menu prompting for the type of 
operation, as described in Prob. 13.48. If a masking operation is selected, enter the mask as either a hexadecimal 
or an octal constant. Display the result of each operation in decimal, hexadecimal, octal and binary. 

13.51 Write a C program that will illustrate the equivalence between 

(a) Shifting a binary number to the left n bits and multiplying the binary number by 2". 

( b )  Shifting a binary number to the right n bits and dividing the binary number by 2n (or equivalently, 
multiplying the binary number by 2-"). 

Choose the initial binary number carefully, so that bits will not be lost as a result of the shifting operation. (For 
the shift left, choose a relatively small number so that there will be several leading zeros in the leftmost bit 
positions. For the shift right, choose a relatively large number, with zeros in the rightmost bit positions.) 
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13.52 Write a complete C program that will encode and decode the contents of a text file (i.e., a character-oriented data 
file) by replacing each character with its one’s complement. Note that the one’s complement of a one’s 
complement is the original character. Hence, the process of obtaining the one’s complement can be used either to 
encode the original text or to decode the encoded text. 

Include the following features in your program: 

(a) Enter the contents of an ordinary text file from the keyboard. 

(6)  Save the current text file in its present state (either encoded or decoded). 

(c) Retrieve a text file that has been saved (either encoded or decoded). 

(6) Encode or decode the current text file (i.e., reverse its current state by obtaining the one’s complement of each 
of the characters). 

(e )  Display the current text file in its present state (either encoded or decoded). 

Generate a menu that will allow the user to select any of these features, as desired. 

13.53 Alter the program written for Prob. 13.52 so that the encoding and decoding is carried out using a bitwise 
exclusive or masking operation rather than the one’s complement operation. Include a provision which will allow 
the user to specify a key (i.e., a mask, which will be the second operand in the exclusive or operation). Since 
exclusive or provides a toggling operation, it can be used either to encode the original text or to decode the 
encoded text. The same key must be used for both the encoding and the decoding. 

13.54 Modify the data compression program shown in Example 13.23 so that it displays each student’s age (in years), in 
addition to the output that is presently generated. Then add the following capabilities, as separate features: 

(a) Display the age of a student whose name is specified as an input item. 

(b)  Display the names of all students whose age is specified by the user. 

(c) Display the names of all students who are the same age or younger than a certain value specified by the user. 

(d) Display the names of all students who are the same age or older than a certain value specified by the user. 

Generate a menu that will allow the user to select any of these features, as desired. 

13.55 Modify the program presented in Example 10.8 (analyzing a line of text) so that the 80 characters within each line 
of text are stored within a 70-byte character array. (Assume 7-bit ASCII characters.) To do so, use the bitwise 
shift operators in such a manner that a group of eight characters is stored in seven consecutive array elements (i.e., 
seven bytes). Each array element will contain one complete character, plus one bit from another character. 

Include a provision to display the contents of the 70-byte array (using hexadecimal constants) in compressed 
form and in the equivalent uncompressed form. 

Use the program to analyze the following line of text: 

Personal  computers w i t h  memories i n  excess o f  8192 KB have become very  common. 

(Note that this line of text, including punctuation and blank spaces between the words, contains a total of 78 
characters.) Examine the hexadecimal output as well as the results of the analysis to verify that the program 
executes correctly. 



Chapter 14 


Some Additional Features of C 

In this last chapter we consider several new, unrelated features of C, and we present some additional 
information about certain other features that have already been discussed. We begin with a discussion of 
enumeration- data type that defmes a set of integer-type identifiers which can be assigned to corresponding 
enumeration variables. Enumeration variables are useful in programs that require flags to identify various 
internal logical conditions. 

We then consider command line arguments, which allow parameters to be transferred to a program when 
the compiled object program is executed from the operating system. File names, for example, can easily be 
transferred to a program in this manner. 

A discussion of the C library functions is then presented, in which the library fictions provided by most 
commercial C compilers are viewed from a broader perspective. This is followed by a discussion of macros, 
which provide an alternative to the use of library functions. The use of macros may be more desirable than the 
use of library functions in certain situations. The chapter concludes with a discussion of the C preprocessor, 
which is a set of special commands that are carried out at the beginning of the compilation process. 

14.1 ENUMERATIONS 

An enumeration is a data type, similar to a structure or a union. Its members are constants that are written as 
identifiers, though they have signed integer values. These constants represent values that can be assigned to 
corresponding enumeration variables. 

In general terms, an enumeration may be defined as 

enum tag (member I ,  member 2, . . . , member m); 

where enum is a required keyword; tag is a name that identifies enumerations having this composition; and 
member I, member 2, . . . , member mrepresent the individual identifiers that may be assigned to variables 
of this type (see below). The member names must differ from one another, and they must be distinct from 
other identifiers whose scope is the same as that of the enumeration. 

Once the enumeration has been defined, corresponding enumeration variables can declared as 

storage-class enum tag variable I ,  variable 2, . . ., variable n; 

where storage-class is an optional storage class specifier, enum is a required keyword, tag is the name 
that appeared in the enumeration definition, and variable 7, variable 2, . . . , variable n are 
enumeration variables of type tag. 

The enumeration definition can be combined with the variable declarations, as indicated below. 

storage-class enum tag (member I ,  member 2, . . ., member m) 
variable I ,  variable 2, . . . , variable n; 

The tag is optional in this situation. 

450 
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EXAMPLE 14.1 A C program contains the following declarations. 

enum co lo rs  {black, blue, cyan, green, magenta, red, whi te,  yel low); 

co lo rs  foreground, background; 

The first line defines an enumeration named co lo rs  (i.e., the tag is colors). The enumeration consists of eight constants 
whose names are black, blue, cyan, green, magenta, red, whi te and yellow. 

The second line declares the variables foreground and background to be enumeration variables of type colors.  
Thus, each variable can be assigned any one of the constants black, blue, cyan, . . . ,yellow. 

The two declarations can be combined if desired, resulting in 

enum co lo rs  {black, blue, cyan, green, magenta, red, whi te,  yel low) 
foreground, background; 

or, without the tag, simply 

enum {black, blue, cyan, green, magenta, red, whi te,  yel low} foreground, background; 

Enumeration constants are automatically assigned equivalent integer values, beginning with 0 for the first 
constant, with each successive constant increasing by 1. Thus, member 7 will automatically be assigned the 
value 0, member 2will be assigned 1, and so on. 

EXAMPLE 14.2 Consider the enumeration defined in Example 14.1, i.e., 

enum co lo rs  {black, blue, cyan, green, magenta, red, white, yel low); 

The enumeration constants will represent the following integer values. 

black 
blue 
cyan 
green 
magenta 
red 
white 
ye l low 

These automatic assignments can be overridden within the definition of the enumeration. That is, some of 
the constants can be assigned explicit integer values which differ from the default values. To do so, each 
constant (i.e., each member) which is assigned an explicit value is expressed as an ordinary assignment 
expression; i.e., member = int,where intrepresents a signed integer quantity. Those constants that are not 
assigned explicit values will automatically be assigned values which increase successively by 1 from the last 
explicit assignment. This may cause two or more enumeration constants to have the same integer value. 

EXAMPLE 14.3 Here is a variation of the enumeration defined in Examples 14.I and 14.2. 

enum co lo rs  {black = -1, blue, cyan, green, magenta, red = 2, whi te,  yel low); 

The enumeration constants will now represent the following integer values. 
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black -1 

blue 0 

cyan 1 

green 2 

magenta 3 
red 2 

whi te 3 
ye l low 4 

The constants black and red are now assigned the explicit values -1 and 2, respectively. The remaining enumeration 
constants are automatically assigned values that increase successively by 1 from the last explicit assignment. Thus, blue, 
cyan, green and magenta are assigned the values 0, 1, 2 and 3, respectively. Similarly, white and yel low are assigned 
the values 3 and 4. Notice that there are now duplicate assignments; Le., green and red both represent 2, whereas 
magenta and whi te  both represent 3. 

Enumeration variables can be processed in the same manner as other integer variables. Thus, they can be 
assigned new values, compared, etc. It should be understood, however, that enumeration variables are 
generally used internally, to indicate various conditions that can arise within a program. Hence, there are 
certain restrictions associated with their use. In particular, an enumeration constant cannot be read into the 
computer and assigned to an enumeration variable. (It is possible to enter an integer and assign it to an 
enumeration variable, though this is generally not done.) Moreover, only the integer value of an enumeration 
variable can be written out of the computer. 

EXAMPLE 14.4 Consider once again the declarations presented in Example 14.1, i.e., 

enum co lo rs  {black, blue, cyan, green, magenta, red, white, yellow); 
co lo rs  foreground, background; 

Several statements involving the use of the enumeration variables foreground and background are shown below. 

foreground = whi te;  

background = blue; 

i f  (background == blue) 
foreground = yel low; 

e lse  
foreground = white; 

i f  (foreground == background) 
foreground = (enum co lo rs )  (++background % 8 ) ;  

sw i tch  (background) { 

case black:  
foreground = white; 
break; 

case blue : 
blue : 
cyan: 
green: 
magenta : 
red: 
foreground = yel low; 
break; 
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case w h i t e :  
foreground = b lack;  
break ; 

case ye l low:  
foreground = blue; 
break; 

case d e f a u l t  : 
pr in t f ( "ERR0R I N  SELECTION OF BACKGROUND COLOR\nn); 

The use of enumeration variables within a program can often increase the logical clarity of that program. 
Enumeration variables are particularly usefil as flags, to indicate various options for carrying out a 
calculation, or to identify various conditions that may have arisen as a result of previous internal calculations. 
From this perspective, the use of enumeration variables within a complex program is encouraged. It should be 
understood, however, that ordinary integer variables can always be used in place of enumeration variables. 
Thus, enumeration variables do not provide any findamentally new capabilities. 

EXAMPLE 14.5 Raising a Number to a Power In Example 11.37 we saw a C program to evaluate the formulay =x", 
where x and y are floating-point values and n is either an integer or a floating-point exponent. That program made use of 
the following data structures. 

typedef  un ion { 

f l o a t  fexp;  / *  f l o a t i n g - p o i n t  exponent * /  
i n t  nexp; / *  i n t e g e r  exponent * /  

} nva ls ;  

typedef  s t r u c t  { 

f l o a t  x; / *  va lue t o  be r a i s e d  t o  a power * /  
char  f l a g ;  / *  I f '  i f  exponent i s  f l o a t i n g - p o i n t ,  

'i'i f  exponent i s  i n t e g e r  * /  
n v a l s  exp; / *  un ion c o n t a i n i n g  exponent * /  

} values; 

Note that the union contains the value of the exponent, which may be either an integer or a floating-point quantity. The 
structure includes the value of x, a flag (a single character), which indicates the nature of the exponent, and the union, 
which contains the exponent. 

We now present another version of this program, in which the single-character flag is replaced with an enumeration 
variable. The data structures are therefore modified as follows. 

typedef  enum { f loa t ing-exp,  integer-exp) exp-type; 

typedef  un ion  { 

f l o a t  fexp ;  / *  f l o a t i n g - p o i n t  exponent * /  
i n t  nexp; / *  i n t e g e r  exponent * /  

} nva ls ;  

typedef  s t r u c t  { 

f l o a t  x; / *  va lue t o ' b e  r a i s e d  t o  a power * /  
exp-t ype f l a g  ; / *  f l a g  i n d i c a t i n g  type  o f  exponent * /  
n v a l s  exp; / *  un ion conta ing  exponent * /  

} va lues;  
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Notice that f lag,  which is a member of the structure of type values, is now an enumeration variable of type exp-type. 
This variable can take on the value f loating-exp or integer-exp, indicating either a floating-point exponent or an 
integer exponent, respectively. 

The calculations will be carried out differently, depending on the nature of the exponent. In particular, the 
exponentiation will be carried out by repeated multiplication in the case of an integer exponent, and by utilizing 
logarithms in the case of a floating-point exponent. 

Here is the modified version of the program. 

/ *  program t o  ra i se  a number t o  a power * /  

#include <stdio.h> 
#include <math.h> 

typedef enum {f loating-exp, integer-exp} exp-type; 

typedef union { 

f l o a t  fexp; / *  f l o a t i n g - p o i n t  exponent * /  
i n t  nexp; / *  in teger  exponent * /  

} nvals; 

typedef s t r u c t  { 
f l o a t  x; / *  value t o  be raised t o  a power * /  
exp-type f l a g ;  / *  f l a g  i nd i ca t i ng  type o f  exponent * /  
nvals exp; / *  union containing exponent * /  

} values; 

f l o a t  power(va1ues a) ;  / *  funct ion prototype*/  

main( ) 

{ 
values a; / *  s t ructure containing x, f l a g  and fexp/nexp * /  
i n t  i; 
f l o a t  n, y; 

/ *  enter i npu t  data * /  
p r i n t f ( " y  = x^n\n\nEnter a value f o r  x:  " ) ;  

scan f ( "%f " ,  &a.x); 
p r i n t f  ( "Enter  a value f o r  n: ' I ) ;  

scanf ( "%f",&n); 

/ *  determine type o f  exponent * /  
i= ( i n t )  n; 
a . f l a g  = ( i  == n)  7 integer-exp : f loating-exp; 
i f  (a . f l ag  == integer-exp) 

a.exp.nexp = i; 
else 

a.exp.fexp = n; 

/ *  ra i se  x t o  the appropriate power and d isp lay the r e s u l t  * /  
i f  (a . f l ag  == f loat ing-exp && a.x <= 0.0) { 

printf("\nERROR - Cannot ra i se  a non-posi t ive number t o  a " ) ;  

p r i n t f ( " f 1 o a t i n g - p o i n t  power'); 

k 

else { 

y = power(a); 
p r i n t f ( " \ n y  = %.4f ' ,  y ) ;  

1 
} 
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f l o a t  power(va1ues a )  / *  c a r r y  out  the  exponentiat ion * /  

{ 
i n t  i; 
f l o a t  y = a . x ;  

i f  ( a . f l a g  == integer-exp) { / *  i n t e g e r  exponent * /  
i f  (a.exp.nexp == 0)  

y = 1 . 0 ;  / *  zero exponent * /  
e l s e  { 

f o r  ( i  = 1; i < abs(a.exp.nexp);  ++i) 
y *= a . x ;  

i f  (a.exp.nexp < 0)  
y = l . / y ;  / *  negat ive i n t e g e r  exponent * /  

1 
1 
e l s e  / *  f l o a t i n g - p o i n t  exponent * /  

y = exp(a.exp.fexp * l o g ( a . x ) ) ;  

r e t u r n ( y ) ;  

} 

When executed, this program behaves in exactly the same manner as the earlier version. You may wish to verify this 
by executing the program using the input values shown in Example 11.37. 

This version of the program does not represent a dramatic improvement over the earlier version. The advantage in 
using enumeration variables becomes clearer, however, in programs that include more complicated options. 

An enumeration variable can be initialized, in much the same manner as other variables in C. The 
initialization can be accomplished by assigning either an enumeration constant or an integer value to the 
variable. Usually, however, the variable will be assigned an enumeration constant, as illustrated below (also, 
see Example 14.13). 

EXAMPLE 14.6 A C program contains the following declarations. 

enum c o l o r s  {b lack ,  b lue ,  cyan, green, magenta, red,  wh i te ,  ye l low} ;  

c o l o r s  foreground = yel low,  background = red;  

Thus, the enumeration variables foreground and background are assigned the initial values ye l low and red, 
respectively. These initialization assignments are equivalent to writing 

foreground = 7; 

background = 5; 

However, enumeration variables are usually assigned enumeration constants rather than their equivalent integer values. 

14.2 COMMAND LINE PARAMETERS 

You may have been wondering about the empty parentheses in the first line of the main function, i.e., 
main ( ) . These parentheses may contain special arguments that allow parameters to be passed to main from 
the operating system. Most versions of C permit two such arguments, which are traditionally called argc and 
argv, respectively. The first of these, argc, must be an integer variable, while the second, argv, is an array 
of pointers to characters; i.e., an array of strings. Each string in this array will represent a parameter that is 
passed to main. The value of argc will indicate the number of parameters passed. 
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EXAMPLE 14.7 The following outline indicates how the arguments argc and argv are defined within main. 

v o i d  m a i n ( i n t  argc, char * a r g v [ ] )  

{ 
. . . . .  

1 

The first line can be written without the keyword void, i.e., 

m a i n ( i n t  argc, char * a r g v [ ] )  

A program is normally executed by specifjing the name of the program within a menu-driven 
environment, as explained in Sec. 5.4. Some compilers also allow a program to be executed by specifLing the 
name of the program (actually, the name of the file containing the compiled object program) at the operating 
system level. The program name is then interpreted as an operating system command. Hence, the line in 
which it appears is generally referred to as a command line. 

In order to pass one or more parameters to the program when it is executed from the operating system, the 
parameters must follow the program name on the command line, e.g., 

program-name parameter 7 parameter 2 . . . parameter n 

The individual items must be separated from one another either by blank spaces or by tabs. Some operating 
systems permit blank spaces to be included within a parameter provided the entire parameter is enclosed in 
quotation marks. 

The program name will be stored as the first item in argv, followed by each of the parameters. Hence, if 
the program name is followed by n parameters, there will be (n+ 1) entries in argv, ranging from argv [0 )  to 
argv [ n] .  Moreover, argc will automatically be assigned the value (n + 1). Note that the value for argc is 
not supplied explicitly from the command line. 

EXAMPLE 14.8 Consider the following simple C program, which will be executed from a command line. 

# inc lude <s td io .h> 

m a i n ( i n t  argc, char * a r g v [ ] )  

{ 
i n t  count; 

p r i n t f ( " a r g c  = % d \ n a J  argc) ;  

f o r  (count = 0; count < argc; ++count) 
p r i n t f ( " a r g v [ % d ]  = %s \n " ,  count, a rgv [coun t ] ) ;  

} 

This program allows an unspecified number of parameters to be entered from the command line. When the program is 
executed, the current value for argc and the elements of argv will be displayed as separate lines of output. 

Suppose, for example, that the program name is sample, and the command line initiating the program execution is 

sample red  wh i te  b lue  

Then the program will be executed, resulting in the following output. 

argc = 4 

argv[O] = sample.exe 
a r g v [ l ]  = red  
a rgv [2 ]  = wh i te  
a rgv [3 ]  = b lue  
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The output tells us that four separate items have been entered from the command line. The first is the program name, 
sample. exe, followed by the three parameters, red, whi te and blue. Each item is an element in the array argv. (Note 
that sample. exe is the name of the object file resulting from the compilation of the source code sample. c.) 

Similarly, if the command line is 

sample red "whi te b lue"  

the resulting output will be 

argc = 3 
argv[O] = sample.exe 
a r g v [ l ]  = red 
argv [2 ]  = whi te blue 

In this case the string 'white blue 'I will be interpreted as a single parameter, because of the quotation marks. 

Once the parameters have been entered, they can be utilized within the program in any desired manner. 
One particularly common application is to specifL the names of data files as command line parameters, as 
illustrated below. 

EXAMPLE 14.9 Reading a Data File Here is a variation of the program shown in Example 12.4, which reads a line 
of text from a data file on a character-by-character basis, and displays the text on the screen. In its original form, the 
program read the text from a data file called sample. dat; i.e., the name of the data file was built into the program. Now, 
however, the file name is entered as a command line parameter. Thus, the program is applicable to any data file; it is no 
longer confined to sample. dat. 

Here is the entire program. 

/ *  read a l i n e  o f  t e x t  from a data f i l e  and d isp lay  i t  on the screen * /  

#include <stdio.h> 

#def ine NULL 0 

main( in t  argc, char * a r g v [ ] )  

{ 
FILE * f p t ;  / *  def ine a po in te r  t o  p re-de f ined s t ruc tu re  type FILE * /  

char c; 

/ *  open the data f i l e  f o r  reading on ly  * /  
i f  ( ( f p t  = fopen(a rgv [ l ] ,  " r " ) )  == NULL) 

printf("\nERROR - Cannot open the designated f i l e \ n " ) ;  

e lse  / *  read and d isp lay  each character from the data f i l e  * /  
do 

putchar(c = g e t c ( f p t ) ) ;  
wh i le  (c I =  ' \ n u ) ;  

/ *  c lose the data f i l e  * /  
f c l o s e ( f p t ) ;  

1 

Notice that the main function now includes the formal arguments argc and argv, defined in the manner described earlier. 
Also, the f open statement now reads 
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fopen(argv[  11, ' r " )  

rather than 

fopen( 'sarnple.dat ' ,  " r " )  

as in the earlier version of the program. 
Now suppose that the program name is readf  i l e .  To execute this program and read the data file sample. dat ,  the 

command line would be written 

readf  i l e  sample. da t  

The program will then behave in exactly the same manner as the earlier version shown in Example 12.4. 

14.3 MORE ABOUT LIBRARY FUNCTIONS 

By now we have learned that the C library functions are extensive, both in number and in purpose. We have 
seen evidence of this in the programming examples presented earlier in this book, and in the list of commonly 
used library h c t i o n s  given in Appendix H. Throughout this book we have used these library functions 
freely, wherever they were needed. 

You should be aware, however, that all of the library functions presented in this book fall into a few basic 
categories. In particular, they facilitate various input/output operations, mathematical function evaluations, 
data conversions, character classifications and conversions, string manipulations, dynamic memory allocation, 
and certain miscellaneous operations associated with clock time. 

Most commercial C compilers include many additional library functions. Some of these functions fall 
into the categories described above, while others fall into new categories that have not been described 
elsewhere in this book. For example, most compilers include library functions that can manipulate buffer 
areas (i.e., blocks of memory in which arrays of characters are stored temporarily), facilitate file handling and 
file management, and provide capabilities for carrying out searching and sorting. In addition, there may be 
library functions that provide access to certain operating system commands, and to the computer's internal 
hardware (especially instructions embedded in the computer's read-only memory). Some compilers also 
include library functions for more specialized applications, such as process control and computer graphics. 

These library functions simplify the writing of comprehensive C programs in a number of important 
areas. For example, C is used to write operating systems, as well as office automation applications such as 
word processors, spreadsheets and data base management programs. The well known UNIX operating system 
is written primarily in C. So are many commercial office automation programs. 

The process control functions permit applications in which programs are executed simultaneously, in a 
hierchical manner. Similarly, the graphics functions facilitate the writing of various graphics applications, 
such as "paint" programs and computer-aided design (CAD) applications. The use of C for other types of 
commercial applications appears to be increasing rapidly. 

Detailed discussions of such comprehensive programming applications are well beyond the scope of the 
present text. However, you should understand that it is practical to write such applications in C, largely 
because of the availability of the extensive C library. To pursue these topics further, you should familiarize 
yourself with the library functions that accompany your particular C compiler. 

14.4 MACROS 

We have already seen that the #def ine  statement can be used to define symbolic constants within a C 
program. At the beginning of the compilation process, all symbolic constants are replaced by their equivalent 
text'(see Sec. 2.9). Thus, symbolic constants provide a form of shorthand notation that can simplify the 
organization of a program. 

The # d e f i n e  statement can be used for more, however, than simply defining symbolic constants. In 
particular, it can be used to define macros; i.e., single identifiers that are equivalent to expressions, complete 
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statements or groups of statements. Macros resemble functions in this sense. They are defined in an 
altogether different manner than functions, however, and they are treated differently during the compilation 
process. 

EXAMPLE 14.10 Consider the simple C program shown below. 

#include <stdio.h> 

#def ine area length * width 

main( ) 

i n t  length,  width; 

p r i n t f  ( " l eng th  = ' I )  ; 
scanf ( '%d" ,  &length) ; 
p r i n t f  ( "w id th  = " ) ; 
scanf ("%d" , &width); 

p r i n t f ( " \ n a r e a  = %d", area); 

1 

This program contains the macro area, which represents the expression length * width. When the program is 
compiled, the expression length * width will replace the identifier area within the p r i n t f  statement, so that the 
p r i n t f  statement will become 

p r i n t f ( " \ n a r e a  = %d", length * width);  

Note that the format string I' \narea = %dHis unaffected by the #define statement (see Sec. 2.9). 
When the program is executed, the values for length and width are entered interactively from the keyboard, and the 

corresponding value for area is displayed. A typical interactive session is shown below. The user's responses are 
underlined, as usual. 

length = 3 
width = 4 

area = 12 

Macro definitions are customarily placed at the beginning of a file, ahead of the first function definition. 
The scope of a macro definition extends from its point of definition to the end of the file. However, a macro 
defined in one file is not recognized within another file. 

Multiline macros can be defined by placing a backward slash (\)  at the end of each line except the last. 
This feature permits a single macro (i.e., a single identifier) to represent a compound statement. 

EXAMPLE 14.1 1 Here is another simple C program that contains a macro. 

#include <stdio.h> 

#define loop f o r  ( l i n e s  = 1; l i n e s  <= n; l ines++) { \ 
f o r  (count = 1; count <= n - l i nes ;  count++) \ 

putchar( '  I ) ;  \ 
f o r  (count = 1; count <= 2 * l i n e s  - 1; count++) \ 

p u t c h a r ( ' * ' ) ;  \ 
p r i n t f  ( " \ n " )  ; \ 

1 
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main( ) 

t 
i n t  count, l i n e s ,  n; 

p r i n t f  ("number o f  l i n e s  = ' )  ; 
scanf ( "%d" ,  an) ; 
p r i n t f ( " \ n " ) ;  

loop 

1 

This program contains a multiline macro, which represents a compound statement. The compound statement consists of 
several embedded f o r  loops. Notice the backward slash (\)  at the end of each line, except the last. 

When this program is compiled, the reference to the macro is actually replaced by the statements contained within the 
macro definition. Thus, the above program becomes 

#include <stdio.h> 

main ( ) 

{ 
i n t  count, l i n e s ,  n; 

pr int f ("number o f  l i n e s  = " ) ;  

scanf("%d",  8n); 
p r i n t f  ( " \nn) ; 

f o r  ( l i n e s  = 1; l i n e s  <= n; l ines++) { 

f o r  (count = 1;  count <= n - l i nes ;  count++) 
putchar( '  I ) ;  

f o r  (count = 1; count <= 2 * l i n e s  - 1; count++) 
p u t c h a r ( ' * ' ) ;  

p r i n t f ( ' \ n ' ) ;  

When the program is executed it displays a triangle of asterisks, whose size, in terms of the number of lines, is 
determined by a user-supplied value (i.e., the value for n). The result of a typical execution is shown below. Again, the 
user's response is underlined. 

number o f  l i n e s  = 6 

* 
* * *  

*****  
*******  

* * * * * * *** 
*********** 

A macro definition may include arguments, which are enclosed in parentheses. The left parenthesis must 
appear immediately after the macro name; i.e., there can be no space separating the macro name from the left 
parenthesis. When a macro is defined in this manner, its appearance within a program resembles a function 
call. 
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EXAMPLE 14.12 Here is another variation of the program shown in Example 14.1 1. 

#include <stdio.h> 

#def ine loop(n)  f o r  ( l i n e s  = 1; l i n e s  <= n; l ines++)  { \ 
f o r  (count = 1; count <= n - l i nes ;  count++) \ 

pu tchar ( '  I ) ;  \ 
f o r  (count = 1; count <= 2 * l i n e s  - 1; count++) \ 

p u t c h a r ( ' * ' ) ;  \ 
p r i n t f ( " \ n " ) ;  \ 

1 

main ( ) 

i 
i n t  count, l i n e s ,  n; 

p r i n t f  ("number o f  l i n e s  = ' I )  ; 
scanf ( "%dW, an) ; 
p r i n t f ( w \ n M ) ;  

The program now passes the value of n to the macro, as though it were an actual argument in a function call. 
When executed, the program behaves in exactly the same manner as the program shown in Example 14.1 1. 

Macros are sometimes used in place of functions within a program. The use of a macro in place of a 
function eliminates the time delays associated with function calls. If a program contains many repeated 
function calls, the time savings resulting from the use of macros can become significant. 

On the other hand, macro substitution will take place wherever a reference to a macro appears within a 
program. Thus, a program that contains several references to the same macro may become unreasonably long. 
We are therefore faced with a tradeoff between execution speed and size of the compiled object program. The 
use of a macro is most advantageous in applications where there are relatively few function calls but the 
function is called repeatedly (e.g., a single function call within a loop). 

EXAMPLE 14.13 Future Value of Monthly Deposits (Compound Interest Calculations) In Example 10.30 we saw 
a C program that generates the future value of a given sum of money over a specified time period for various interest rates. 
The program was originally structured in a manner that illustrates how one function can be passed as an argument to 
another function. In particular, main passed another function, either mdl, md2 or md3, to table,  which generated a table 
of future value vs. interest rate. 

We now present two variations of that program. The first version utilizes function calls directly from main, whereas 
the second version makes use of macro substitution. Here is the first version. 

/ *  personal  f inance ca lcu la t ions ,  using func t i on  c a l l s  * /  

# include <stdio.h> 
#include <s td l ib .h>  
#include <ctype. h> 
#include <math.h> 

/ *  func t i on  prototypes * /  
double mdl (double i,i n t  m ,  double n) ; 
double md2(double i,i n t  m ,  double n ) ;  
double md3(double i,double n ) ;  
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main() / *  ca lcu late the fu tu re  value o f  a ser ies o f  monthly deposi ts * /  

{ 
enum {A = 1 ,  S = 2 ,  Q = 4 ,  M = 12, D = 360, C}  m; 

/ *  number o f  compounding periods per year * /  

i n t  count; / *  loop counter * /  
double n; / *  number o f  years * /  
double a; / *  amount o f  each monthly payment * /  
double 1; / *  annual i n t e r e s t  ra te  * /  
double f; / *  fu tu re  value * /  
char f req; / *  frequency o f  compounding i nd i ca to r  * /  

/ *  enter  i npu t  data * /  
printf("\nFUTURE VALUE OF A SERIES OF MONTHLY DEPOSITS\n\n"); 
pr int f ( 'Amount o f  Each Monthly Payment: " ) ;  

s c a n f ( " % l f " ,  &a); 
pr int f ("Number o f  Years: " ) ;  

scan f ( '% l f " ,  &n); 

/ *  enter  frequency o f  compounding * /  
do { 

pr int f ("Frequency of Compounding (A, S, Q, M, D, C ) :  " ) ;  

scanf ( '%Isw, &freq) ; 
f r e q  = toupper( f req);  / *  convert t o  uppercase * /  
i f  ( f r e q  == ' A ' )  { 

m = A; 
p r i n t f ( " \ nAnnua l  Compounding\n'); 

} 
e lse i f  ( f r e q  == I S ' )  { 

m = S; 
pr int f ( ' \nSemiannual  Compounding\n"); 

k 

else i f  ( f r e q  == I Q ' )  { 

m = Q; 
pr in t f ( ' \ \ nQuar te r l y  Compounding\n'); 

} 
else i f  ( f r e q  == ' M ' )  { 

m = M; 
pr in t f ( " \ nMon th l y  Compounding\n'); 

1 
else i f  ( f r e q  == ID ' )  { 

m = D; 
p r i n t f  ( I' \nDai ly Compounding\n" ) ; 

1 
else i f  ( f r e q  == ' C ' )  { 

m = C; 

pr in t f ( ' \nCont inuous Compounding\n"); 

} 
else 

printf("\nERROR - Please Repaat\n\n'); 
} whi le  ( f r e q  != 'A '  && f r e q  I =  ' S '  && f r e q  I =  I Q '  && 

f r e q  I =  ' M '  && f r e q  != ID' && f r e q  I =  'C l ) ;  

/ *  ca r ry  out the ca lcu lat ions * /  
p r i n t f ( " \ n I n t e r e s t  Rate Future Amount\n\n"); 
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f o r  (count = 1; count <= 20; ++count) { 

i= 0.01 * count; 
i f  ( m  == C )  

f = a * md3(i, n ) ;  / *  continuous compounding * /  
e lse  i f  ( m  == D) 

f = a * md2(i, m, n ) ;  / *  d a i l y  compounding * /  
e lse  

f = a * md l ( i ,  m, n ) ;  / *  annual, semiannual, qua r te r l y  o r  
monthly compounding * /  

p r i n t f  ( %2d %.2 f \n " ,  count, f ) ;  

1 

double mdl(doub1e i,i n t  m,  double n) 
/ *  monthly deposits, pe r iod i c  compounding * /  

double fac to r ,  r a t i o ;  

f a c t o r  = 1 + i / m ;  
r a t i o  = 12 * (pow(factor, m*n) - 1) / i; 
r e t u r n ( r a t i 0 ) ;  

1 

double md2(double i,i n t  m, double n) 
/ *  monthly deposits, d a i l y  compounding * /  

t 
double f a c t o r ,  r a t i o ;  

f a c t o r  = 1 + i / m ;  
r a t i o  = (pow(factor, m*n) - 1) / (pow(factor, m/12) - 1) ;  
r e t u r n ( r a t i 0 ) ;  

1 

double md3(double i, double n) 
/ *  monthly deposits, continuous compounding * /  

double r a t i o ;  

r a t i o  = (exp( i *n )  - 1 )  / ( e x p ( i / l 2 )  - 1) ;  
r e t u r n ( r a t i 0 ) ;  

1 

Notice that the function table,  which was included in the original program, is now combined with main, thus 
avoiding the need to pass one function to another. The present program utilizes an enumeration to simplify the internal 
bookkeeping somewhat. 

Here is the second version, which utilizes macro substitution in place of the functions 

/ *  personal  f inance ca lcu la t ions ,  using macro subs t i t u t i ons  * /  

#include <stdio.h> 
#include <s td l i b .h>  
#include <ctype.h> 
#include <math.h> 
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#define m d l ( i ,  m, n)  { / *  monthly deposits, per iod ic  compounding * /  
f a c t o r  = 1 + i / m ;  
r a t i o  = (12/m) * (pow(factor, m*n) - 1) / ( i / m ) ;  

1 

#def ine md2(i, m, n) { / *  monthly deposits, d a i l y  compounding * /  
f a c t o r  = 1 + i /m;  
r a t i o  = (pow(factor, m*n) - 1 )  / (pow(factor,  m/12) - 1 ) ;  

#def ine md3(i, n)  { / *  monthly deposits, continuous compounding * /  
r a t i o  = (exp( i *n )  - 1) / ( e x p ( i l l 2 )  - 1 ) ;  

1 

main() / *  ca l cu la te  the f u t u r e  value o f  a ser ies  o f  monthly deposi ts * /  

{ 
enum {A = 1, S = 2, Q = 4, M = 12, D = 360, C }  m; 

/ *  number o f  compounding per iods per year * /  
i n t  count; / *  loop counter * I  
double n; / *  number o f  years * /  
double a; / *  amount of each monthly payment * /  
double i; / *  annual i n t e r e s t  r a t e  * I  
double f ;  / *  f u t u r e  value * I  
double f a c t o r ,  r a t i o ;  / *  i n t e r n a l  parameters * /  
char f req; / *  frequency o f  compounding i n d i c a t o r  * I  

/ *  en ter  i npu t  data * I  
printf("\nFUTURE VALUE OF A SERIES OF MONTHLY DEPOSITS\n\n"); 
p r in t f ( "Amount  o f  Each Monthly Payment: " ) ;  

scanf ( "%If &a) ;I " ,  

pr int f ("Number o f  Years: " ) ;  

scanf ( "%%If",an) ; 

/ *  enter frequency o f  compounding * /  

do { 
p r in t f ( "Frequency  o f  Compounding (A, S, Q, M, D,  C): " ) ;  

scan f ( "% ls " ,  & f req) ;  
f r e q  = toupper ( f req) ;  / *  convert t o  uppercase * I  
i f  ( f r e q  == ' A ' )  { 

m = A; 

p r i n t f  ( I" \nAnnual Compounding\n" ) ; 

1 
e lse  i f  ( f r e q  == I S ' )  { 

m = S; 
p r in t f ( " \nSemiannua l  Compounding\n"); 

1 
e lse  i f  ( f req  == 'a") { 

m = Q; 
p r i n t f ( " \ n Q u a r t e r l y  Compounding\n"); 

1 
e lse  i f  ( f r e q  == " M u )  { 

m = M; 

p r i n t f ( " \ n M o n t h l y  Compounding\n"); 

1 
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else if (freq == '0') { 

m = D; 
printf("\nDaily Compounding\n"); 


1 
else if (freq == 'C') { 

m = C; 
printf("\nContinuous Compounding\n"); 


1 
else 


printf ("\nERROR - Please Repeat\n\n') ; 
} while (freq I =  ' A '  && freq I =  I S '  && freq I =  I Q '  && 

freq != 'M' && freq != ' D '  && freq != ' C l ) ;  

/ *  carry out the calculations * /  
printf("\nInterest Rate Future Amount\n\n"); 

for (count = 1 ;  count <= 20; ++count) { 

i = 0.01 * count; 

if ( m  == C) 
md3(i, n) / *  continuous compounding * /  

else if ( m  == D) 
md2(i, m ,  n) / *  daily compounding * /  

else 

mdl(i, m ,  n) / *  annual, semiannual, quarterly or 

monthly compounding * /  

f = a * ratio; 
printf ( 'I %2d %.2f\n', count, f); 

1 
1 

Examine these two programs carefully, comparing the use of macro substitution in place of the functions. In 
particular, notice the manner in which the functions are accessed in the first program, compared with the references to the 
macros in the second program (refer to the if - else statement at the end of main). 

When executed, both of these programs behave in exactly the same manner as the original program given in Example 
10.30. 

Many commercial C compilers offer certain library functions both as macros and as true functions. The 
macros are defined in the various header files. You may then choose which form is most appropriate for each 
particular application. Keep in mind, however, that there are certain disadvantages associated with the use of 
macros in place of functions, aside from the potentially significant increase in program length. In particular: 

1. When passing arguments to a macro, the number of arguments will be checked, but their data types will 
not. Thus, there is less error checking than with a function call. 

2. A macro identifier is not associated with an address, so that a macro cannot be utilized as a pointer. Thus, 
a macro identifier cannot be passed to a function as an argument, in the same sense that a function can be 
passed to another function as an argument (see Sec. 10.9). Moreover, a macro cannot call itself 
recursively . 

3. There are possible undesirable side effects associated with the use of macros, particularly when calling 
arguments are involved. 
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EXAMPLE 14.14 Consider the macro definition 

#def ine r o o t ( a ,  b )  s q r t ( a * a  + b*b)  

Now suppose that this macro is utilized within a program in the following manner. 

r o o t ( a + l ,  b+2) 

The intent, of course, is to evaluate the formula 

s q r t ( ( a + l ) * ( a + l )  + (b+2) * (b+2) )  

However, each appearance of a is replaced by the expression a + 1 (without parentheses), and each appearance of b is 
replaced by b + 1. Therefore, the result of the macro substitution will be 

s q r t  ( a + l  *a+l  + b+2*b+2) 

This expression is equivalent to 

s q r t ( 2 * a + l  + 3*b+2) = s q r t ( 2 * a  + 3*b + 3) 

which is clearly incorrect. The source of error can be corrected, however, by placing additional parentheses within the 
macro definition; i.e., 

#define r o o t ( a ,  b )  s q r t ( ( a ) * ( a )  + ( b ) * ( b ) )  

A more subtle error occurs if we write 

root  (a++, b++) 

The macro substitution results in the expression 

s q r t ( a * ( a + l )  + b * ( b + l ) )  

rather than 

s q r t ( a * a  + b*b) 

as intended. This is an example of an undesired side effect. The placement of additional parentheses within the macro 
definition will not correct this problem. 

14.5 THE C PREPROCESSOR 

The C preprocessor is a collection of special statements, called directives, that are executed at the beginning of 
the compilation process. The #include and #define statements considered earlier in this book are 
preprocessor directives. Additional preprocessor directives are #if, #elif, #else, #endif, #if def, 
#if ndef, #line and #undef. The preprocessor also includes three special operators: defined, #, and ##. 

Preprocessor directives usually appear at the beginning of a program, though this is not a fm 
requirement. Thus, a preprocessor directive may appear anywhere within a program. However, the directive 
will apply only to the portion of the program following its appearance. 

For the beginning programmer, some of the preprocessor directives are relatively unimportant. Hence, 
we will not describe each preprocessor feature in detail. The more important features are discussed below. 

The #if, #elif, #else and #endif directives are used most frequently. They permit conditional 
compilation of the source program, depending on the value of one or more true/false conditions. They are 
sometimes used in conjunction with the defined operator, which is used to determine whether or not a 
symbolic constant or a macro identifier has been defined within a program. 
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EXAMPLE 14.15 The following preprocessor directives illustrate the conditional compilation of a C program. The 
conditional compilation depends on the status of the symbolic constant FOREGROUND. 

#if defined(FOREGR0UND) 

#define BACKGROUND 0 

#else 

#define FOREGROUND 0 
#define BACKGROUND 7 

#endif 


Thus, if FOREGROUND has already been defined, the symbolic constant BACKGROUND will represent the value 0. Otherwise, 
FOREGROUND and BACKGROUNDwill represent the values 0 and 7, respectively. 

Here is another way to accomplish the same thing. 

#ifdef FOREGROUND 
#define BACKGROUND 0 

#else 

#define FOREGROUND 0 
#define BACKGROUND 7 

#endif 


The directive #ifdef is equivalent to #if defined( ).  Similarly, the directive #ifndef is equivalent to # i f  

!defined ( ) , i.e., “if not defined.” The original approach, in which the defined operator appears explicitly, is the 
preferred form. 

In each of these examples,’the last directive is #endif. The preprocessor requires that any set of directives beginning 
with #if, #if def or #if ndef must end with #endif. 

The directive #elif is analogous to an else - if clause using ordinary C control statements. An #if 
directive can be followed by any number of #elif directives, though there can be only one #else directive. 
The appearance of the #else directive is optional, as determined by the required program logic. 

EXAMPLE 14.16 Here is another illustration of conditional compilation. In this situation the conditional compilation 
will depend on the value that is represented by the symbolic constant BACKGROUND. 

#if BACKGROUND == 7 
#define FOREGROUND 0 

#elif BACKGROUND == 6 
#define FOREGROUND 1 

#else 

#define FOREGROUND 6 

#endif 


In this example we see that FOREGROUND will represent 0 if BACKGROUND represents 7, and FOREGROUND will represent 1 
if BACKGROUNDrepresents 6. Otherwise, FOREGROUNDwill represent 6. 

The #undef directive “undefmes” a symbolic constant or a macro identifier; i.e., it negates the effect of a 
#define directive that may have appeared earlier in the program. 
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EXAMPLE 14.17 The following example illustrates the use of the #undef ine directive within a C program. 

#define FOREGROUND 7 
#define BACKGROUND 0 

main ( ) 

{ 

. . . . .  
#undef FOREGROUND 

. . . . .  
#undef BACKGROUND 

. . . . .  
1 

The symbolic constants FOREGROUND and BACKGROUND are defined by the first two directives. These definitions are then 
negated by the #undef directives, when they appear later in the program. Prior to the #undef directives, any references 
to FOREGROUND or BACKGROUND will be associated with the values 7 and 0, respectively. After the #undef directives, any 
references to the corresponding identifiers will be ignored. 

The "stringizing" operator # allows a formal argument within a macro definition to be converted to a 
string. If a formal argument in a macro defmition is preceded by this operator, the corresponding actual 
argument will automatically be enclosed in double quotes. Consecutive whitespace characters inside the 
actual argument will be replaced by a single blank space, and any special characters, such as and \, willI ,  I' 

be replaced by their corresponding escape sequences; e.g., \ I ,  \ I' and \ \ .  In addition, the resulting string will 
automatically be concatenated (i.e., combined) with any adjacent strings. 

EXAMPLE 14.18 Here is an illustration of the use of the "stringizing" operator, #. 

#define display(text) printf(#text '\n") 


main ( ) 
{ 

. . . . .  
display(P1ease do not sleep in class.); 

. . . . .  
display(P1ease - don't snore during the professor's lecture!); 

1 

Within main, the macros are equivalent to 

printf ( "Please do not sleep in class. \n") ; 

and 

printf("P1ease - don\'t snore during the professor\'s lecture!\n"); 

Notice that each actual argument is converted to a string within the printf function. Each argument is concatenated with 
a newline character (\n), which is written as a separate string within the macro definition. Also, notice that the 
consecutive blank spaces appearing in the second argument are replaced by single blank spaces, and each apostrophe ( ' ) is 
replaced by its corresponding escape sequence ( \ ' ). 
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Execution of this program will result in the following output: 

Please do not sleep i n  c lass.  

Please - don ' t  snore dur ing the professor 's  lecture1 

The "token-pasting" operator ## causes individual items within a macro definition to be concatenated, 
thus forming a single item. The various rules governing the use of this operator are somewhat complicated. 
However, the general purpose of the token-pasting operator is illustrated in the following example. 

EXAMPLE 14.19 A C program contains the following macro definition. 

#define d i s p l a y ( i )  p r i n t f ( " x *  #i= % f \ n " ,  x # # i )  

Suppose this macro is accessed by writing 

disp lay(3) ;  

The result will be 

p r i n t f ( " x 3  = % f \ n n ,  x3); 

Thus, the expression x # # ibecomes the variable x3, since 3 is the current value of the argument i. 
Notice that this example illustrates the use of both the stringizing operator (#) and the token-pasting operator (##). 

Refer to the programmer's reference manual for your particular C compiler for more information on the 
use of the C preprocessor. 

Review Questions 

14.1 What is an enumeration? How is an enumeration defined? 

14.2 What are enumeration constants? In what form are they written? 

14.3 Summarize the rules for assigning names to enumeration constants. 

14.4 Summarize the rules for assigning numerical values to enumeration constants. What default values are assigned to 
enumeration constants? 

14.5 Can two or more enumeration constants have the same numerical value? Explain. 

14.6 What are enumeration variables? How are they declared? 

14.7 In what ways can enumeration variables be processed? What restrictions apply to the processing of enumeration 
variables? 

14.8 What advantage is there in using enumeration variables within a program? 

14.9 Summarize the rules for assigning initial values to enumeration variables. Compare your answer with that for 
Prob. 14.4. 

14.10 Most C programs recognize two formal arguments in the definition of function main. What are they traditionally 
called? What are their respective data types? 

14.11 Describe the information represented by each formal argument in function main. Is information passed explicitly 
to each argument? 
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14.12 When parameters are passed to a program from the command line, how is the program execution initiated? Where 
do the parameters appear? 

14.13 What useful purpose can be served by command line parameters when executing a program involving the use of 
data files? 

14.14 The library functions discussed in earlier chapters of this book are all members of a few broad categories of library 
functions. Describe each category, in general terms. 

14.15 Describe, in general terms, some additional categories of library functions that are provided with most commercial 
C compilers. What is the purpose of each category? 

14.16 What is a macro? Summarize the similarities and differences between macros and functions. 

14.17 How is a multiline macro defined? 

14.18 Describe the use of arguments within a macro. 

14.19 What is the principal advantage in the use of a macro rather than a function? What is the principal disadvantage? 
What other disadvantages are there? 

14.20 Summarize the various preprocessor directives, other than # inc lude and #define. Indicate the purpose of the 
more commonly used directives. 

14.21 What is the scope of a preprocessor directive within a program file? 

14.22 Summarize the special preprocessor operators # and ##. What is the purpose of each? 

14.23 What is meant by conditional compilation? In general terms, how is conditional compilation carried out? What 
preprocessor directives are available for this purpose? 

Problems 

14.24 Define an enumeration type called f lags ,  having the following members: f i r s t ,  second, t h i r d ,  f o u r t h  and 
f i f t h .  

14.25 Define an enumeration variable called event, of type f l a g s  (see the preceding problem). 

14.26 Define two enumeration variables, called soprano and bass, whose members are as follows: do, re, m i ,  fa, 
sol,  l a  and ti. Assign the following integer values to these members: 

do 1 

r e  2 

m i  3 
f a  4 

s o l  5 

l a  6 

t i  7 

14.27 Define an enumeration type called money, having the following members: penny, n icke l ,  dime, quarter,  h a l f  
and d o l l a r .  Assign the following integer values to these members: 

penny 1 

n i c k e l  5 

dime 10 
quar te r  25 

h a l f  50 

d o l l a r  100 

14.28 Define an enumeration variable called coins, of type money (see the preceding problem). Assign the initial value 
dime to coins. 
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14.29 In the following enumeration declaration, determine the value of each member. 

enum compass {no r th  = 2, south, east = 1, west}; 

14.30 Determine the value associated with each of the following enumeration variables (see the preceding problem). 

enum compass move-1 = south, move-2 = north;  

14.31 Explain the purpose of the following program outline. 

i n t  score = 0; 

enum compass move; 

sw i tch  (move) { 

case nor th :  
score += 10; 

break; 

case south: 
score += 20; 
break; 

case east:  
score += 30; 

break; 

case west: 
score += 40; 

break; 

d e f a u l t  : 
p r i n t f  ( 'ERROR - Please t r y  aga in \n " )  ; 

1 

14.32 The outline of a C program is shown below. 

main ( in t  argc, char * a r g v [ J )  

1 

(a) Suppose the compiled object program is stored in a file called demo.exe, and the following commands are 
issued to initiate the execution of the program. 

demo debug f a s t  

Determine the value of argc and the non-empty elements of argv. 

(b) Suppose the command line is written as 

demo "debug f a s t "  

How will this change affect the values of argc and argv? 
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14.33 Describe the purpose of the C program shown below. 

# inc lude <stdio.h> 
# inc lude <s t r ing .h> 

m a i n ( i n t  argc, char * a r g v [ ] )  

{ 
char l e t t e r [ 8 0 ] ;  
i n t  count, tag ;  

f o r  (count = 0; ( l e t t e r [ c o u n t ]  = g e t c h a r ( ) )  I =  ' \ n o ;  ++count) 

3 

t a g  = count; 
f o r  (count = 0; count < tag; ++count) 

i f  ( s t r cmp(a rgv [ l ] ,  "upper " )  == 0) 
putchar(toupper(letter[count])); 


e lse  i f  ( s t r c m p ( a r g v [ l ] ,  " l ower " )  == 0) 

putchar(tolower(letter[count])); 

e lse  { 

pUtS("ERR0R I N  COMMAND LINE - PLEASE TRY AGAIN"); 
break; 

f 
1 

14.34 Consider the program shown below, which reads a line of text from an existing data file, displays it on the screen, 
and writes it out to a new data file. 

/ *  read a l i n e  o f  t e x t  from a data f i l e ,  d i sp lay  i t  on the  screen 
and w r i t e  i t  t o  a new data  f i l e  * /  

# inc lude <stdio.h> 

#def ine  NULL 0 

m a i n ( i n t  argc, char * a r g v [ ] )  

{ 
FILE * f p t l ,  * f p t 2 ;  

char c; 

/ *  open the  o l d  data f i l e  f o r  reading on ly  * /  
i f  ( ( f p t l  = f open(a rgv [ l ] ,  " r " ) )  == NULL) 

printf("\nERROR - Cannot open the  designated f i l e \ n " ) ;  

e l se  
/ *  read, d i sp lay  and w r i t e  each character from the  o l d  data f i l e  * /  
f p t 2  = fopen(argv [2 ] ,  "wW") ;  

do { 
pu tchar (c  = g e t c ( f p t 1 ) ) ;  
pu tc (c ,  f p t 2 ) ;  

} wh i l e  (c  I =  ' \ n ' ) ;  

/ *  c lose  the  data f i l e s  * /  
f c l o s e ( f p t 1 ) ;  
f c l o s e ( f p t 2 ) ;  

Suppose the program is stored in a file called t r a n s f e r .  exe, the old data file is called data.  o l d  and the new 
data file is called data. new. How should the command line be written in order to execute this program? 
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14.35 Write a symbolic constant or a macro definition for each of the following situations. Do not include arguments 
unless the problem asks you to do so. 

(a)  Define the symbolic constant P I  to represent the value 3.141 5927. 

( 6 )  Define a macro called AREA, which will calculate the area of a circle in terms of its radius. Use the constant 
PI ,  defined in part (a),in the calculation. 

(c)  Rewrite the macro described in the preceding problem so that the radius is expressed as an argument. 

(4 Define a macro called CIRCUMFERENCE, which will calculate the circumference of a circle in terms of its 
radius. Use the constant PI ,  defined in part (a),in the calculation. 

(e )  Rewrite the macro described in the preceding problem so that the radius is expressed as an argument. 

U> Write a multiline macro called in terest ,  which will evaluate the compound interest formula 

F = P ( l  + i)" 

where F is the future amount of money that will accumulate after n years, P is the principal (i.e., the original 
amount of money), i = 0.01r, and r is the annual interest rate, expressed as a percentage. 

Evaluate i on one line of the macro, and evaluate F on a separate line. Assume that all of the symbols 
represent floating-point quantities. 

(g) Rewrite the macro described in the preceding problem so that P, r and n are expressed as arguments. 

(h )  Write a macro called max that utilizes the conditional operator (? :) to determine the maximum of a and b, 
where a and b are integer quantities. 

(i) Rewrite the macro described in the preceding problem so that a and b are expressed as arguments. 

14.36 Explain the purpose of each of the following groups of preprocessor directives. 

(a) #if !defined(FLAG) 
#def ine FLAG 1 

#endi f  

(b) # i f  defined(PASCAL) 
#def ine BEGIN { 

#def ine END } 

#endi f  

(c)  # i f d e f  CELSIUS 
#def ine temperature(t) 0.5555555 * ( t  321 

#else 
#def ine temperature(t) 1.8 * t + 32 

#endi f  

(6) # i f  ndef DEBUG 

#def ine out p r i n t f ( ' x  = % f \ n " ,  x) 
# e l i f  LEVEL == 1 

#def ine out p r i n t f ( " i  = %d y = %f \n " ,  1, y [ i ] )  
#else 

#define out f o r  (count = 1; count <= n; ++count) \ 
p r i n t f  ( ' i  = %d y = %f\n',  i,y [ i ] )  

#endi f  

(e )  #if  defined DEBUG 
#undef DEBUG 

#endi f  

v) # i f d e f  ERROR-CHECKS 

#define message(1ine) p r i n t f ( # l i n e )  
#endi f  

(g) #if  defined(ERR0R-CHECKS) 
#def ine message( n) p r i n t f  ( "%s\n",  message##n) 

#endi f  
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14.37 Write one or more preprocessor directives for each of the following situations. 

(a) If the symbolic constant BOOLEAN has been defined, define the symbolic constants TRUE and FALSE so that 
their values are 1 and 0, respectively, and negate the definitions of the symbolic constants YES and NO. 

(b) If f l a g  has a value of 0, define the symbolic constant COLOR to have a value of 1. Otherwise, if the value of 
f l a g  is less than 3, define COLOR to have a value of 2; and if the value o f f  l a g  equals or exceeds 3, define 
COLOR to have a value of 3. 

(c) If the symbolic constant S I Z E  has the same value as the symbolic constant WIDE, define the symbolic constant 
WIDTH to have a value of 132; otherwise, define WIDTH to have a value of 80. 

(d) Use the “stringizing” operator to define a macro called e r r o r  ( t e x t  ) that will display t e x t  as a string. 

(e) Use the “token-pasting” operator to define a macro called error(i) that will print the value of the string 
variable e r r o r i  (e.g., e r r o r l ) .  

14.38 Familiarize yourself with the library functions and the header files that accompany your particular C compiler. 
Are some functions available both as macros and as true functions? 

14.39 Does the library accompanying your particular C compiler include graphics or process control routines? Are other 
special routines included? If so, what are they? 

Programming Problems 

14.40 Modify the programs given in Example 14.13 (future value of monthly deposits) so that they accept a command 
line parameter indicating the frequency of compounding. The command line parameter should be a single 
character, selected from A, S, Q, M, D or C (either upper- or lowercase), as explained in the example. 

14.41 Modify the program given in Example 6.22 (solution of an algebraic equation) so that f l a g  is an enumeration 
variable whose value is either t r u e  or f a l se .  

14.42 Modify the program given in Example 6.32 (searching for palindromes) so that f l a g  is an enumeration variable 
whose value is either t r u e  or f a l se .  

14.43 Modify the program given in Example 7.9 (largest of three integer quantities) so that the function maximum is 
written as a multiline macro. 

14.44 Modify the program given in Example 7.10 (calculating factorials) so that the function f a c t o r i a l  is written as a 
multiline macro. 

14.45 Modify the program given in Example 7.11 (shooting craps) so that the function throw is written as a multiline 
macro. Can an enumeration variable be used effectively in this particular problem? 

14.46 Write a complete C program to solve the problem described in Prob. 7.42 (roots of a quadratic equation). Include 
an enumeration variable within the program. 

14.47 Write a complete C program to solve the problem described in Prob. 9.46 (names of countries and their capitals). 
Use an enumeration variable to distinguish between the two program options (i.e., find the name of a capital for a 
specified country, or find the country whose capital is specified). 

14.48 Modify the program given in Example 10.28 (displaying the day of the year) so that it makes use of an 
enumeration variable to represent the months of the year. 

14.49 Write a complete C program to solve the problem described in Prob. 11.67 (maintaining baseball/football team 
statistics). Include an enumeration variable to distinguish between baseball and football. 

14.50 Write a complete C program to solve the problem described in Prob. 11.71 (an RPN calculator). Include an 
enumeration variable to identify the types of arithmetic operations that will be carried out by the calculator. 

14.51 Repeat Prob. 14.50, utilizing macros in place of functions. 

14.52 Modify the program given in each of the following examples so that the required file name is entered as a 
command line parameter. 

(a) Example 12.3 (creating a data file) 

(6) Example 12.4 (reading a data file) 
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14.53 Modify the program given in each of the following examples so that the required file names are entered as 
command line parameters. Utilize an enumeration variable to represent internal true/false conditions within each 
program. 

(a) Example 12.5(creating a file containing customer records) 

(6)  Example 12.6(updating a file containing customer records) 

(c) Example 12.7(creating an unformatted data file containing customer records) 

(d) Example 12.8(updating an unformatted data file containing customer records) 

14.54 Write a complete C program to solve each of the following problems. 

(a) Prob. 12.50(line-oriented text editor). 

(b) Prob. 12.51(maintaining baseball/football team statistics in a data file). 

For each program, enter the required file names as command line parameters. 

14.55 Each of the following problems requires that one or more numerical values be specified as command line 
parameters. Use the library functions a t o i  and atof to convert the command line parameters into integers and 
floating-point values, respectively. 

(a) Write a complete C program to solve the problem described in Prob. 7.49(a) (recursive generation of 
Legendre polynomials). Enter the values of n and x as command line parameters. 

(b) Write a complete C program to solve the problem described in Prob. 7.49(b)(calculate the sum of n floating-
point numbers recursively). Enter the value of n as a command line parameter (but enter the individual 
floating-point numbers interactively, as before). 

(c) Write a complete C program to solve the problem described in Prob. 7.49(c)(calculate the first n terms of a 
series recursively). Enter the value of n as a command line parameter. 

(d) Write a complete C program to solve the problem described in Prob. 7.49(d)(calculate the product of n 
floating-point numbers recursively). Enter the value of n as a command line parameter. (Enter the individual 
floating-point numbers interactively, however, as before.) 

(e) Mod@ the program given in Example 8.4(search for a maximum) in the following ways. 

(i) Enter values for CNST, a and b as command line parameters. 

(ii) Write the function curve as a macro. 

v) Modify the program given in Example 8.7(generating Fibonacci numbers) so that the value for n is entered 
as a command line parameter. 

(g) Modify the program given in Example 9.13(reordering a list of numbers) so that the value for n is entered as 
a command line parameter. 

(h) Modify the program given in Example 9.19(adding two tables of numbers) so that the values of nrows and 
ncols are entered as command line parameters. 

14.56 Write a complete C program to generate the table described in Prob. 9.43.Use a macro to evaluate the formula 

y =2e-O*ltsin 0.5t 

14.57 Write a complete C program to generate the table described in Prob. 9.44.Use a macro to evaluate the formula 

F/P = (1 + i/l OO)n 

14.58 Write a complete C program to solve the problem described in Prob. 7.44(evaluating the formula y =3).Use a 
multiline macro in place of the function to carry out the exponentiation. 
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Number Systems 


Decimal Binary Octal Hexadecimal 

0 0000 0 0 

1 0001 1 1 

2 0010 2 2 

3 0011 3 3 

4 0100 4 4 

5 0101 5 5 

6 0110 6 6 

7 0111 7 7 

8 1000 10 8 

9 1001 11 9 

10 1010 12 A 

1 1  1011 13 B 
12 1100 14 C 
13 1101 15 D 
14 1110 16 E 

15 1111 17 F 

Notice that there are eight octal digits and 16 hexadecimal digits. The octal digits range from 0 to 7; the 
hexadecimal digits range from 0 to 9, and then A to F. 

Each octal digit is equivalent to three binary digits (3 bits), and each hexadecimal digit is equivalent to four binary 
digits (4 bits). Thus, octal and hexadecimal numbers offer a convenient and concise way to represent binary bit patterns. 
For example, the bit pattern 101 101 11 can be represented in hexadecimal as 87. To see this relationship more clearly, 
rearrange the bits into groups of 4 and represent each group by a single hexadecimal digit; e.g., 101 1 0 1  11 is represented 
a s B  7. 

Similarly, this same bit pattern (10110111) can be represented in octal as 267. To see this relationship more 
clearly, add leading zeros (so that the number of bits in the bit pattern will be some multiple of 3), rearrange the bits into 
groups of three, and represent each group by a single octal digit; e.g., 010 1 1 0  1 1 1 is represented as 2 6 7. 

Most computers use hexadecimal numbers to represent bit patterns, though some computers use octal numbers for 
this purpose. 
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Escape Sequences 

Character Escape Sequence ASCII Value 

bell (alert) \ a  007 

backspace \ b  008 

horizontal tab \ t  009 

newline (line feed) \n  010 

vertical tab \ V  01 1 

form feed \ f  012 

carriage return \ r  01 3 

quotation mark (") 034 

apostrophe ( I ) \ '  039 

question mark (7) \ 7  063 

backslash ( \ )  \ \  092 

null \O 000 

octal number \ooo (0  represents an octal digit) 

Usually, not more than 3 octal digits are permitted. 

Examples: \5, \005, \123, \177 

hexadecimal number \ xhh (h represents a hexadecimal digit) 

Usually, any number of hexadecimal digits are permitted. 

Examples: \x5, \x05, \x53, \x7f 

Most compilers permit the apostrophe ( ' ) and the question mark (7) to appear within a string constant as either an 
ordinary character or an escape sequence. 
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Operator Summary 

Precedence Group Operators Associativity 

function, array, structure member, 0 [ I  . -> L + R  
pointer to structure member 

unary operators - -- 1 - R + L  
* sizeof ( type)  

arithmetic multiply, divide I % L + R  
and remainder 

arithmetic add and subtract - L + R  

bitwise shift operators >> L + R  

relational operators < > >= L + R  

equality operators I =  L + R  

bitwise and a L + R  

Abitwise exclusive or L + R  

bitwise or I L + R  

logical and aa L + R  

logical or I I  L + R  

conditional operator ? :  R + L  

assignment operators -- += *= I= %= R + L  
a= A - <<= >>= 

comma operator L + R1 

Note: The precedence groups are listed from highest to lowest. Some C compilers also include a unary plus (+) 
operator, to complement the unary minus (-) operator. However, a unary plus expression is equivalent to the 
value of its operand; i.e., +v has the same value as v. 
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Data Types and Data Conversion Rules 


Data Type Description Typical Memory Requirements 

i n t  Integer quantity 2 bytes or 1 word 
(varies from one computer to another) 

short  Short integer quantity (may 2 bytes or 1word 
contain fewer digits than i n t )  (varies from one computer to another) 

long Long integer quantity (may 1 or 2 words 
contain more digits than i n t )  (varies from one computer to another) 

unsigned Unsigned (positive) integer quantity 2 bytes or 1 word 
(maximum permissible quantity is (varies from one computer to another) 
approximately twice as large as i n t )  

char Single character 1 byte 

signed Single character, with numerical 1 byte 
char values ranging from -128 to +127 

unsigned Single character, with numerical 1 byte 
char values ranging from 0 to 255 

f l o a t  Floating-point number (i.e., a number 1 word 
containing a decimal point andor 
an exponent) 

double Double-precision floating-point number 2 words 
(i.e., more significant figures, and an 
exponent that may be larger in magnitude) 

long Double-precision floating-point number 2 or more words 
doubl (may be higher precision than double) (varies from one computer t another) 

void Special data type for functions that do not (not applicable) 
return any value 

enum Enumeration constant (special type of i n t )  2 bytes or 1 word 
(varies from one computer to another) 

Note: The qualifier unsigned may appear with short i n t  or long i n t ,  e.g., unsigned short i n t  (or unsigned 
short), or unsigned long i n t  (or unsigned long). 
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CONVERSION RULES 

These rules apply to arithmetic operations between two operators with dissimilar data types. There may be some variation 
from one version of C to another. 
1. If one of the operands is long double, the other will be converted to long double and the result will be long 

double. 

2. Otherwise, if one of the operands is double, the other will be converted to double and the result will be double. 

3. Otherwise, if one of the operands is f l o a t ,  the other will be converted to f l o a t  and the result will be f l o a t  

4. Otherwise, if one of the operands is unsigned long i n t ,  the other will be converted to unsigned long i n t  and 
the result will be unsigned long i n t .  

5 .  Otherwise, if one of the operands is long i n t  and the other is unsigned i n t ,  then: 

(a) If unsigned i n t  can be converted to long i n t ,  the unsigned i n t  operand will be converted as such and 
the result will be long i n t .  

(b) Otherwise, both operands will be converted to unsigned long i n t  and the result will be unsigned long 
i n t .  

6.  Otherwise, if one of the operands is long i n t ,  the other will be converted to long i n t  and the result will be long 
i n t .  

7. Otherwise, if one of the operands is unsigned i n t ,  the other will be converted to unsigned i n t  and the result 
will be unsigned i n t .  

8. If none of the above conditions applies, then both operands will be converted to i n t  (if necessary), and the result 
will be i n t .  

Note that some versions of C automatically convert all floating-point operands to double-precision. 

ASSIGNMENT RULES 

If the two operands in an assignment expression are of different data types, then the value of the right-hand operand will 
automatically be converted to the type of the operand on the left. The entire assignment expression will then be of this 
same data type. In addition, 

1. A floating-point value may be truncated if assigned to an integer identifier. 

2. A double-precision value may be rounded if assigned to a floating-point (single-precision) identifier. 

3. An integer quantity may be altered (some high-order bits may be lost) if it is assigned to a shorter integer identifier 
or to a character identifier . 
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The ASCll Character Set 


ASCII ASCII ASCII ASCII 
Value Character Value Character Value Character Value Character 

0 NUL 32 (blank) 64 @ 96 

1 SOH 33 ! 65 A 97 a 
I12 STX 34 66 B 98 b 

3 ETX 35 # 67 C 99 C 

4 EOT 36 $ 68 D 100 d 

5 ENQ 37 % 69 E 101 e 
6 AC K 38 & 70 F 102 f 

I7 BEL 39 71 G 103 9 
8 BS 40 ( 72 H 104 h 

9 HT 41 1 73 I 105 i 
* 10 LF 42 74 J 106 j 

11 VT 43 + 75 K 107 k 
12 FF 44 I 76 L 108 1 
13 CR 45 - 77 M 109 m 
14 so 46 78 N 110 n 
15 SI 47 I 79 0 111 0 

16 DLE 48 0 80 P 112 P 
17 DC1 49 1 81 Q 113 q 
18 DC2 50 2 82 R 114 r 
19 DC3 51 3 83 S 115 S 

20 DC4 52 4 84 T 116 t 
21 NAK 53 5 85 U 117 U 

22 SYN 54 6 86 v 118 V 

23 ETB 55 7 87 W 119 W 

24 CAN 56 8 88 X 120 X 

25 EM 57 9 89 Y 121 Y 
26 SUB 58 90 2 122 Z 

27 ESC 59 I 91 [ 123 

28 FS 60 < 92 \ 124 I 
--29 GS 61 93 1 125 1 

30 RS 62 > 94 126 -
31 us 63 ? 95 - 127 DEL 

'he first 32 characters and the last character are control characters. Usually, they are not displayed. However, some 
,ersions of C (some computers) support special graphics characters for these ASCII values. For example, 001 may 
epresent the character 0 ,002  may represent 8,and so on. 
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Control Statement Summary 

Statement General Form Example 

break break; f o r  (n = 1; n <= 100; ++n) { 

s c a n f ( w % f M J& x ) ;  
i f  ( x  < 0) { 

printf("ERR0R - NEGATIVE VALUE FOR X " ) ;  
break; 

1 
. . . . .  

continue continue; f o r  (n = 1;  n <= 100; ++n) { 

scanf("%%f",& x ) ;  
i f  ( x  < 0) { 

printf("ERR0R - NEGATIVE VALUE FOR X " ) ;  

continue; 

> 
. . . . .  

> 

do - whi le  do do 
st a  temen t p r i n t f ( "%d\nM, d ig i t++ )  ; 

whi le  (expression); whi le ( d i g i t  <= 9);  

f o r  f o r  (exp 7; exp 2; exp 3) f o r  ( d i g i t  = 0; d i g i t  <= 9; + + d i g i t )  
statement pr in t f ( "%d \n ' ,  d i g i t ) ;  

goto goto l a b e l ;  i f  ( x  < 0)  

. . . . .  goto f l a g ;  
l abe l :  statement . . . . .  

f l a g :  printf("ERR0R"); 

i f  i f  (expression) i f  ( x  < 0) 

statement p r i n t f  ( " % f "  x )  ; 
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Statement General Form Examde 

i f  - e l s e  i f  (expression) i f  ( s t a t u s  == IS1) 
statement 1 t a x  = 0 . 2 0  * pay; 

e l s e  e l s e  
statement 2 t a x  = 0.14 * pay; 

r e t u r n  r e t u r n  expression; r e t u r n  ( n l  + n2) ;  

switch switch (expression) { switch (choice = g e t c h a r ( ) )  { 

case expression 1 :  case I R l :  

statement 1 p r i n t f ( " R E D n ) ;  
statement 2 break; 
. . . . .  
statement m case I W I :  

break; p r i n t f  ( "WHITE ) ; 
break; 

case expression 2: 
statement 7 case I B I ;  
statement 2 p r i n t f ( " B L U E " ) ;  
. . . . .  break; 
statement n 
break; d e f a u l t : 

pr in t f (nERROR") ;  
. . . . .  1 

d e f a u l t : 
statement 1 
statement 2 
. . . . .  
statement k 

1 

w h i l e  w h i l e  (expression) whi le  ( d i g i t  <= 9) 
statement p r i n t f ( % d \ n n ,  d i g i t + + ) ;  
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Commonly Used scanf and prinff Conversion 

Characters 

scanf Conversion Characters 

Conversion Character Meaning 

C Data item is a single character 

d Data item is a decimal integer 

e Data item is a floating-point value 

f Data item is a floating-point value 

g Data item is a floating-point value 

h Data item is a short integer 

i Data item is a decimal, hexadecimal, or octal integer 

0 Data item is an octal integer 

S Data item is a string followed by a whitespace character 
(the null character \O ' will automatically be added at the end) 

U Data item is an unsigned decimal integer 

X Data item is a hexadecimal integer 

[ .  Data item is a string which may include whitespace characters 

A prefur may precede certain conversion characters. 

Pre f u  Meaning 

h Short data item (short integer or short unsigned integer) 

1 Long data item (long integer, long unsigned integer or double) 

L Long data item (long double) 

Example: 

i n t  a; 
sho r t  b; 

l ong  c ;  
unsigned d; 
double x; 
char s t r [  801 ; 

scanf("%5d %3hd %121d %121u %151f",  &aJ &bJ &cJ &dJ & x ) ;  

scanf ( ' I % [  - \ n ]  ' I ,  s t r )  ; 
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printf Conversion Characters 

Conversion Character Meaning 

C Data item is displayed as a single character 

d Data item is displayed as a signed decimal integer 

e Data item is displayed as a floating-point value with an exponent 

f Data item is displayed as a floating-point value without an exponent 

Data item is displayed as a floating-point value using either e-type or f -type 
conversion, depending on value; trailing zeros, trailing decimal point will 
not be displayed. 

i Data item is displayed as a signed decimal integer 

0 Data item is displayed as an octal integer, without a leading zero 

S Data item is displayed as a string 

U Data item is displayed as an unsigned decimal integer 

X Data item is displayed as a hexadecimal integer, without leading Ox 

Some of these characters are interpreted differently than with the scanf funtion. 

A prefa may precede certain conversion characters. 

Prefa Meaning 

h Short data item (short integer or short unsigned integer) 

1 Long data item (long integer, long unsigned integer or double) 

L Long data item (long double) 

Example : 

i n t  a ;  
short  b; 
long  c ;  
unsigned d; 
double x ;  
char s t r [ 8 0 ] ;  

p r i n t f ( I ' % 5 d  %3hd %121d %121u %15.71e\n1' ,  a ,  b ,  c ,  d ,  x ) ;  

p r i n t f  ( 1%%40s\n", s t r )  ; 
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Flags 

Flag Meaning 

Data item is left justified within the field (blank spaces required to fil l  the minimum field- 
width will be added aJer the data item rather than before the data item.) 

t A sign (either + or -) will precede each signed numerical data item. Without this flag, only 
negative data items are preceded by a sign. 

0 Causes leading zeros to appear instead of leading blanks. Applies only to data items that are 
right justified within a field whose minimum size is larger than the data item. 

(Note: Some compilers consider the zero flag to be a part of the field-width specification 
rather than an actual flag. This assures that the 0 is processed last, if multiple flags are 
present.) 

I I A blank space will precede each positive signed numerical data item. This flag is over- 
(blank space) ridden by the + flag if both are present. 

# Causes octal and hexadecimal data items to be preceded by 0 and Ox, respectively 
(with 0- and x-
type conversion) 

# Causes a decimal point to be present in all floating-point numbers, even if the data item (with 
e-,f -and g- is a whole number. Also prevents the truncation of trailing zeros in g-type conversion. 
type conversion) 

Example: 

int a; 
short b; 
long c; 
unsigned d; 
double x ;  

printf("%+5d %+5hd %+121d %-121u %#15.7le\nu, a, b,  c, d, x ) ;  
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Library Functions 

Function Type Purpose i nc lude File 

abs (1) int Return the absolute value of i. s t d l i b .  h 

acos (d )  double Return the arc cosine of d. math. h 

as in  (d) double Return the arc sine of d. math. h 

atan (d) double Return the arc tangent of d. math.h 

atan2(dl,d2) double Return the arc tangent of d l  /d2. math. h 

a t o f  (s) double Convert string s to a double-precision quantity. s t d l i b .  h 

a t o i ( s) int Convert string s to an integer. s t d l i b .  h 

a t o l(s) long Convert string s to a long integer. s t d l i b .  h 

ca l l oc (u l ,u2 )  void* Allocate memory for an array having u l  malloc. h, or 
elements, each of length u2 bytes. Return a s t d l i b .  h 
pointer to the beginning of the allocated space. 

c e i l  (d )  double Return a value rounded up to the next higher integer. math. h 

cos (d )  double Return the cosine of d. math. h 

cosh (d) double Return the hyperbolic cosine of d. math. h 

d i f f t i r n e ( l l , 1 2 )  double Return the time difference 11 - 12, where 11 and t ime. h 

12 represent elapsed times beyond a designated 
base time (see the t ime function). 

e x i t  ( u) void Close all files and buffers, and terminate the program. s t d l i b .  h 
(Value of U is assigned by function, to indicate 
termination status.) 

double Raise e to the power d (e  = 2.71 82818 - - is the base math. h 

of the natural (Naperian) system of logarithms). 

f abs  (d )  double Return the absolute value of d. math. h 

f c lose (f ) int Close file f. Return 0 if file is successfully closed. s t d i o .  h 

f e o f  ( f )  int Determine if an end-of-file condition has been reached. s t d i o .  h 
If so, return a nonzero value; otherwise, return 0. 

f getc (f ) int Enter a single character from file f. s td io .  h 

f g e t s ( s , i , f )  char* Enter string s, containing icharacters, from file f. s td io .  h 

f l o o r  (d) double Return a value rounded down to the next lower integer. math. h 

fmod(dl,d2) double Return the remainder of d l  /d2 (with same sign as dl). math.h 

f open ( s l  ,s2) file* Open a file named s l  of type s2. Return a pointer to the file. s td io .  h 

f p r i n t f ( f ,  . . . )  int Send data items to file f (remaining arguments are s t d i o .  h 
complicated -see Appendix G). 

f p u t c ( c , f )  int Send a single character to file f. s t d i o .  h 

f p u t s ( s , f )  int Send string s to file f. s t d i o .  h 
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Function Type Purpose inc1ude File 

fread(s,il,i2,f) int Enter i2 data items, each of size il bytes, from stdio.h 
file f to string s. 

free (P 1 void Free a block of allocated memory whose beginning is malloc. h, or 
indicated by p. stdlib. h 

fscanf(f, . . . )  int Enter data items from file f (remaining arguments are stdio. h 
complicated - see Appendix G) 

fseek(f ,l,i) int Move the pointer for file f a distance 1 bytes from stdio.h 
location i (imay represent the beginning of the file, 
the current pointer position, or the end of the file). 

f tell( f ) long int Return the current pointer position within file f. stdio. h 

fwrite(s,il,i2,f) int Send i2 data items, each of size il bytes, from stdio.h 
string s to file f. 

int Enter a single character from file f. stdio.h 

int Enter a single character from the standard input device. stdio.h 

char* Enter string s from the standard input device. stdio.h 

int Determine if argument is alphanumeric. Return a ctype.h 

nonzero value if true; 0 otherwise. 

isalpha(c) int Determine if argument is alphabetic. Return a ctype.h 
nonzero value if true; 0 otherwise. 

isascii(c) int Determine if argument is an ASCII character. Return a ctype.h 
nonzero value if true; 0 otherwise. 

iscntrl(c) int Determine if argument is an ASCII control character. ctype.h 
Return a nonzero value if true; 0 otherwise. 

isdigit(c) int Determine if argument is a decimal digit. Return a ctype.h 

nonzero value if true; 0otherwise. 

isgraph(c) int Determine if argument is a graphic ASCII character ctype. h 
(hex 0x21-0x7e; octal 041-1 76). Return a 
nonzero value if true; 0otherwise. 

islower (c) int Determine if argument is lowercase. Return a ctype.h 
nonzero value if true; 0otherwise. 

isodigit(c) int Determine if argument is an octal digit. Return a ctype.h 
nonzero value if true; 0otherwise. 

isprint(c) int Determine if argument is a printing ASCII character ctype.h 
(hex Ox20-0x7e; octal 040-176). Return a nonzero 
value if true; 0otherwise. 

ispunct(c) int Determine if argument is a punctuation character. ctype.h 

Return a nonzero value if true; 0 otherwise. 

isspace(c) int Determine if argument is a whitespace character. ctype.h 

Return a nonzero value if true; 0 otherwise. 

isupper (c) int Determine if argument is uppercase. ctype.h 
Return a nonzero value if true; 0 otherwise. 

isxdigit(c) int Determine if argument is a hexadecimal digit. ctype.h 
Return a nonzero value if true; 0 otherwise. 

long int Return the absolute value of 1. math.h 

double Return the natural logarithm of d. math.h 
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Function Type Purpose i nc lude File 

log10(d) double Return the logarithm (base 10) of d. math. h 

malloc ( u) void* Allocate U bytes of memory. Return a pointer malloc. h, or 
to the beginning of the allocated space. s t d l i b .  h 

pow(dl,d2) double Return d l  raised to the d2 power. math. h 

p r i n t f ( . . . )  int Send data items to the standard output device s t d i o .  h 

(arguments are complicated - see Appendix G). 

int Send a single character to file f. s t d i o .  h 

int Send a single character to the standard output device. s t d i o .  h 

int Send string s to the standard output device. s td io .  h 

int Return a random positive integer. s t d l i b .  h 

void Move the pointer to the beginning of file f. s t d i o .  h 

int Enter data items from the standard input device s t d i o .  h 

(arguments are complicated - see Appendix G). 

s i n  (d) double Return the sine of d. math. h 

s inh  (d )  double Return the hyperbolic sine of d. math.h 

s q r t ( d )  double Return the square root of d. math. h 

srand (u )  void Initialize the random number generator. s t d l i b .  h 

s t  rcmp ( s l  ,s2) int Compare two strings lexicographically. Return a s t r i n g .  h 
negative value if s l  < s2; 0 if s l  and s2 are 
identical; and a positive value if s l  s2. 

s t rcmpi (s l ,s2)  int Compare two strings lexicographically, without regard s t r i n g .  h 
to case. Return a negative value if s l  < s2; 0 if s l  
and s2 are identical; and a positive value if s l  > s2 

s t rcpy(s1 , s2 )  char* Copy string s2 to string s l . s t r i n g .  h 

s t  r l e n  ( s )  int Return the number of characters in a string. s t r i n g .  h 

s t r s e t ( s , c )  char* Set all characters within s to c (excluding the s t r i n g .  h 
terminating null character \O). 

system( s) int Pass command s to the operating system. s t d l i b .  h 
Return 0 if the command is successfully executed; 
otherwise, return a nonzero value, typically -1. 

t a n  (d) double Return the tangent of d. math. h 

tanh(d) double Return the hyperbolic tangent of d. math. h 

t ime (p )  long int Return the number of seconds elapsed t i m e  .h 
beyond a designated base time. 

t o a s c i i ( c )  int Convert value of argument to ASCII. ctype. h 

to lower (c )  int Convert letter to lowercase. ctype. h, or 
s t d l i b .  h 

toupper(c)  int Convert letter to uppercase. ctype. h, or 
s t d l i b .  h 

Notes: Type refers to the data type of the quantity that is returned by the function. An asterisk (*) denotes a pointer. 

c denotes a character-type argument 

d denotes a double-precision argument 
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f denotes a file argument 

i denotes an integer argument 

1denotes a long integer argument 

p denotes a pointer argument 

s denotes a string argument 

U denotes an unsigned integer argument 

Most commercial C compilers are accompanied by many more library functions. Consult the C reference manual for 
your particular compiler for more detailed information on each of the above functions, and for a listing of additional 
functions. 



Answers to Selected Problems 


Chapter 1 

1.31 (a) This program prints the message Welcome t o  the Wonderful World o f  Computing I .  The program 
does not contain any variables, The line containing p r i n t f  is an output statement. There are no 
assignment or input statements. 

This program also prints the message Welcome t o  the Wonderful World o f  Computing!. The 
program does not contain any variables. (MESSAGE is a symbolic constant, not a variable.) The line 
containing p r i n t f  is an output statement. There are no assignment or input statements. 

This program calculates the area of a triangle from its base and height. The variables are base, height 
and area. The alternating p r i n t f  - scanf statements provide interactive input. The final p r i n t f  
statement is an output statement. The statement that begins with area = is an assignment statement. 

(6) This program calculates net (after tax) salary, given the gross salary and the tax rate (which is expressed as 
a constant 14%). The variables are gross, tax and net. The initial p r i n t f  - scanf statements provide 
interactive input. The final two p r i n t f  statements are output statements. Note that the statements 
containing t ax  = and net = are assignment statements. 

This program uses a function to determine the smaller of two integer quantities. The variables are a, b and 
min. The alternating pairs of p r i n t f  - scanf statements provide interactive input. The final p r i n t f  
statement is an output statement. The statement min = smaller (a, b)  references the function, which is 
called smaller. This function contains an i f  - else statement that returns the smaller of the two 
quantities to the main portion of the program. 

v) This program processes n pairs of integer quantities, and determines the smaller of each pair. A f o r  loop is 
used to process the multiple pairs of integer quantities. In all other respects, this program is similar to that 
shown in part (e). 

(9) This program processes an unspecified number of pairs of integer quantities, and determines the smaller of 
each pair. The computation continues until a pair of zeros are entered into the computer. A whi le  loop is 
used to process the multiple pairs of integer quantities. In all other respects, this program is similar to that 
shown in part v). 

This program processes an unspecified number of pairs of integer quantities, and determines the smaller of 
each pair. The original values and the corresponding minimum values are stored in the arrays a, b and min. 
Each array can store as many as 100 integer values. 

After all of the data have been entered and all of the minimum values have been determined, the 
number of data sets is “tagged” with the assignment statement n = - -i;then a f o r  loop is used to display 
the data. In all other respects, this program is similar to that shown in part (9). 

Valid 
An identifier must begin with a letter. 
Valid 
re tu rn  is a reserved word. 
An identifier must begin with a letter. 
Valid 
Blank spaces are not allowed. 
Valid 
Dash (minus sign) is not allowed. 
An identifier must begin with a letter or an underscore. 

Distinct (c )  Identical (e) Distinct 
Distinct (6) Distinct v) Distinct 

Valid (real) 
Illegal character (,) 
Valid (real) 

491 



492 ANSWERS TO SELECTED PROBLEMS 

Valid (real) 
Valid (decimal integer) 
Valid (long integer) 
Valid (real) 
Illegal character (blank space) 
Valid (octal constant) 
Illegal characters (C , 0, F), if intended as an octal constant. If intended as a hexadecimal constant, an X 
or an x must be included (Le., OX18CDF). 
Valid (hexadecimal long integer) 
Illegal character (h) 

Valid 
Valid 
Valid 
Escape sequences must be written with a backward slash. 
Valid 
Valid 
Valid 
Valid (null-character escape sequence). 
A character constant cannot consist of multiple characters. 
Valid (octal escape sequence). Note that octal 52 is equivalent to decimal 42. In the ASCII character set, 
this value represents an asterisk (*). 

A string constant must be enclosed in double quotation marks. 
Valid 
Trailing quotation mark is missing. 
Valid 
Valid 
Valid 
Quotation marks and (optionally) the apostrophe within the string must be expressed as escape sequences; 
i.e., "The professor sa id  , \ "Please don\ I t sleep i n  c l a s s \  It 

2.44 (a) i n t  P, q; 
f l o a t  x ,  y ,  z;  

(6) char cur rent ,  l a s t ;  
unsigned count; 

char a ,  b ,  c ;  f l o a t  e r r o r ;  

f l o a t  r o o t l ,  root2 ;  (e) char f i r s t ,  l a s t ;  
long counter;  char message[80]; 
short  f l a g ;  

i n t  index;  
unsigned cust-no; 
double gross, t a x ,  n e t ;  

2.45 (a) f l o a t  a = -8 .2 ,  b = 0.005; 
i n t  x = 129, y = 87,  z = -22;  

(c) long b i g  = 123456789L; 
double c = 0.3333333333; 

char c l  = Owl, c2 = I & ' ;  char eol = ' \ , I ;  

double d l  = 2 .88e-8 ,  d2 = -8 .4e5 ;  (d) char message[] = " E R R O R " ;  
i n t  U = 0711, v = O x f f f f ;  

Subtract the value of b from the value of a. 
Add the values of b and c, then multiply the sum by the value of a. 
Add the values of b and c and multiply the sum by the value of a. Then assign the result to d. 
Determine whether or not the value of a is greater than or equal to the value of b. The result will be either 
true or false, represented by the value 1 (true) or 0 (false). 
Divide the value of a by 5, and determine whether or not the remainder is equal to zero. The result will be 
either true or false. 

v) Divide the value of b by the value of c, and determine whether or not the value of a is less than the 
quotient. The result will be either true or false. 
Decrement the value of a; i.e., decrease the value of a by 1. 

Expression statement 
Control statement containing a compound statement. (The compound statement is enclosed in braces.) 
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Control statement 
Compound statement containing expression statements and a control statement. 
Compound statement containing an expression statement and a control statement. The control statement 
itself contains two compound statements. 

#define FACTOR -18 (d) #define NAME "Sharon' 
#define ERROR 0.0001 (e )  #define EOLN '\n' 
#define BEGIN { U> #define COST "$19.95' 
#define END } 

6 
45 
2 
2 
-1 
3 
-4 
0 (because b / c iszero) 
-1 
-16 

7.1 
49 
2.51429 
The remainder operation is not defined for floating-point operands. 
-5,17647 
-2.68571 
20.53333 
1.67619 

69 
79 
51 
3 
98 
6 
100 
63 
159 
2703 

integer 
float (some versions of C will convert to double-precision) 
double-precision 
long integer 
float (or double-precision) 
integer 
long integer 
integer 
long integer 

14 
18 
-466.6667 
-13 
9 
9 
4 
1.005 

(i) -1.01 
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0 

0 

1 
0 

1 
1 
0 
1 
0.01 
1 
1 
0 
0 
0 
1 
1 
0 
k =  13 
2 = -0.005 
1=5 
k = O  
k = 99 
2 = 1.0 
b = 100, a = 100 (Note that 100 is the encoded value for ' d I in the ASCII character set.) 
j = l , i = l  
k = 0, z = 0.0 
z = 0.005, k = 0 [compare with (i) above] 
i =  10 
y = -0.015 
x = 0.010 
i = l  
1=3 
i =  1 1  
k = 8  
k = 5  

z = 0.005 
2 = 0.0 
a =  ' c 1  

1=3 

Return the absolute value of the integer expression (i - 2 * j ) . 
Return the absolute value of the floating-point expression ( x + y ) . 
Determine if the character represented by c is a printing ASCII character. 
Determine if the character represented by c is a decimal digit. 
Convert the character represented by c to uppercase. 
Round the value of x up to the next higher integer. 
Round the value of ( x  + y ) down to the next lower integer. 
Determine if the character represented by c is lowercase. 
Determine if the character represented by j is uppercase. 
Return the value ex. 
Return the natural logarithm of x. 
Return the square root of the expression ( x * x  + y*y ) . 
Determine if the value of the expression ( 10 * j ) can be interpreted as an alphanumeric character. 
Determine if the value of the expression ( 10 * j ) can be interpreted as an alphabetic character. 
Determine if the value of the expression ( 10 * j ) can be interpreted as an ASCII character. 
Convert the value of the expression ( 10 * j ) to an ASCII character. 
Divide the value of x by the value of y, and return the remainder with the same sign as x. 
Convert the ASCII character whose numerical code is 65 to lowercase. 
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(s) Determine the difference between the value of x and the value of y, then raise this difference to the 3.0 
power. 

( f )  Evaluate the expression (x - y)  and return its sine. 
(U) Return the number of characters in the string 'I he110" . 
(v) Return the position of the first occurrence of the letter e in the string h e l l o" . 

2 
0.005 
1 
0 
I D '  
1.o 
0.0 
0.0 
-1 .o 
1 
0 
1.005013 
-5.2983 17 
0.005 
0.011180 
1 
0 
1 
' 2 '  
0.005 
' a '  
3.375e-6 
0.014999 
5 
1 (0 indicates first position) 
1.002472 

Chapter 4 

4.50 (a) a = getchar( ) ;  
b = getchar( ) ;  
c = getchar( ) ;  

(b) putchar (a) ; 
putchar(b);  
putchar(c) ;  

4.51 (a) scanf ( "%c%c%c" &a, &b, &c) ; 
or scanf ("%c %c %c", &a, &b, &c); 

(b) pr in t f (n%c%c%cn,a, b, c ) ;  
or p r i n t f ( " % c  %c %c', a ,  b, c ) ;  

4.52 (a) f o r  (count = 0; count < 60; ++count) 
t ex t [ coun t ]  = getchar() ;  

(b) f o r  (count = 0; count < 60; ++count) 
putchar( text [count ] ) ;  
(Note: count is assumed to be an integer variable.) 

4.53 f o r  (count = 0; ( t ex t [ coun t ]  = getchar( ) )  I =  ' \ n u ;  ++count) 
, 

4.54 scanf ( "%[ A \n ]  ' I ,  t e x t )  ; 
The method used in Prob. 4.53 indicates the number of characters that have been read. 

4.55 (a) scanf('%d %d %d', &i, &j, &k) ;  
(6)  scanf ("%d %o %x' , &i,& j ,  &k) ;  
(c) scanf ("%x %x %on, &i,& j ,  &k) ; 
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&I,4.56 scanf ('%6d %6d %6d*, &i,B k ) ;  
&I,scanf("%8d%80 %8x', &i,& k ) ;  

scanf(*%7x %7x %70", 81, &j, &k) ;  

4.57 a will be assigned a long decimal integer with a maximum field-width of 12; b will be assigned a short 
decimal integer with a maximum field-width of 5; c and d will be assigned double-precision quantities with 
maximum field-widths of 15. 

a will be assigned a long hexadecimal integer with a maximum field-width of 10; b will be assigned a short 
octal integer with a maximum field-width of 6; c will be assigned a short unsigned integer with a maximum 
field-width of 6; and d will be assigned a long unsigned integer with a maximum field-width of 14. 

a will be assigned a long decimal integer with a maximum field-width of 12; b will be assigned a short 
decimal integer whose maximum field-width is unspecified; c and d will be assigned floating-point 
quantities with maximum field-widths of 15. 

a will be assigned a decimal integer with a maximum field-width of 8; another decimal integer will then be 
read into the computer but not assigned; c and d will then be assigned double-precision quantities with 
maximum field-widths of 12. 

4.58 scanf ("%d %d %e %le"  &i,&j,  &x, &dx); 
or scanf("%d %d %f %lf" ,  &i,&j,  &x, &dx); 
scanf( '%d %Id  %d %f% U " ,  &i, &ix ,  &I,&x, & U ) ;  

scanf( '%d %U %c", &i,&c);&U, 

scanf ('%c %f %If %hd", &c, & x ,  &dx, as); 
or scanf ( "%c %e % le  %hd" , &c, &x, &dx, a s ) ; 

4.59 scanf("%4d %4d %8e %151e", &i,&j,  &x, &dx); 
&j, 
or scanf("%4d %4d %8f %151fn, &i,&x, &dx); 

scanf("5d %121d %5d %10f %5u",  &i, & i x ,  & j ,  &x, & U ) ;  

scanf ("%6d %6u %c",  &i,&c);&U, 

scanf ( "%c %9f %161f %6hd" &c, &x, &dx, a s ) ; 
or scanf("%c %9e %161e %6hd", &c, &x, &dx, & s ) ;  

4.60 scanf ( "%s" t e x t )  ; 

4.61 scanf("%[ abcdefghi jk lmnopqrstuvwxyz\n]" ,  t e x t ) ;  

4.62 scanf( "%[  ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890$ J " ,  t e x t ) ;  

4.63 scanf ( " % [  ^ * I  " ,  t e x t )  ; 

4.64 $*@ (no spaces separating the characters) 
$ * @ (one or more blank spaces between the characters) 
$ * @ (one or more whitespace characters between the input characters) 
$ * @ (one or more blank spaces between the characters. Other whitespace characters may also appear 
with the blank spaces.) 
$*@ (no spaces separating the characters) 

4.65 12 -8 0.011 -2.2e6 
12 -8 0.011 -2.2e6 
12 -8 0.011 -2.2e6 
12 -8 0.011 -2.2e6 

Note that the specified field-widths cannot be exceeded, and that one or more blank spaces must separate 
the successive numerical quantities. The most convenient representation of the floating-point values is as 
shown, irrespective of the particular conversion characters in each scanf function. 

4.66 p r i n t f  ('%d %d %do', i,j ,  k); 
p r i n t f ( " % d  %d",  (i+ j ) ,  ( 1  - k)); 
p r i n t f ( " % f  %d", s q r t ( i  + j ) ,  a b s ( i  - k)); 

4.67 p r i n t f ( " % 3 d  %3d %3d", i,j, k); 
p r i n t f ( " % 5 d  %5d*, (i + j ) ,  (i- k)); 
p r i n t f ( " % 9 f  %7d", s q r t ( i  + j ) ,  a b s ( i  - k)); 

4.68 p r i n t f ( " % f  %f%f",x, y, z ) ;  
p r i n t f ( " % f  %f",( x  + y ) ,  (x  - z ) ) ;  
p r i n t f ( " % f  %f",sq r t ( x  + y ) ,  fabs(x - z ) ) ;  
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Note: e- or g-type conversion could also be used, e.g., 
p r i n t f ( " % e%e %e", x, y, z ) ;  

4.69 (a)  p r i n t f ( " % 6 f  %6f %6f " ,  x, y, z ) ;  
(b)  p r i n t f ( " 8 f  %8 fn ,  ( x  + y ) ,  (x - 2 ) ) ;  

(c)  p r i n t f ( " % l 2 f  %9 f " ,  sq r t ( x  + y ) ,  abs(x - z ) ) ;  

4.70 (a)  p r i n t f ( " % 6 e  %6e %6en, x,  y, z ) ;  
(b) p r i n t f ( * W e  W e " ,  (x + y ) ,  (x - 2 ) ) ;  

(c) pr in t f ( *%12e  %9en, s q r t ( x  + y ) ,  abs(x - z ) ) ;  
In each case, the numerical values will include exponents. 

pr in t f ( I 8%8.4 f  %8.4f %8.4fn,  x, y, z ) ;  
p r i n t f ( " % 9 . 3 f  %9.3fn,  (x + y ) ,  (x - z ) ) ;  
p r i n t f ( " % l 2 . 4 f  %10.4fM, sq r t ( x  + y ) ,  abs(x - z ) ) ;  

pr in t f ( '%12.4e %12.4e %12.4e", x, y, z ) ;  
p r i n t f ( " % l 4 , 5 e  %14.5e", ( x  + y) ,  ( x  - z ) ) ;  
p r i n t f ( * % l 2 , 7 e  %15.7e", sq r t ( x  + y ) ,  abs(x - z ) ) ;  

p r i n t f ( * % o %o %x %x" ,  a, b, c, d) ;  
p r i n t f ( * % o % x * ,  (a  + b),  (c - d ) ) ;  

p r i n t f ( " % d  %d %g %gn,  i,j ,  x, dx);  
p r i n t f ( " % d  %Id %d %g % U " ,  i,i x ,  j ,  x, U ) ;  

p r i n t f ( " % d %U %c*, i,U,  c ) ;  
p r i n t f ( ' % c  %g %g % l d * ,  c, x, dx, i x ) ;  

Note: e- or f -type conversion may be used in place of the g-type conversion. 

p r i n t f ( " % 4 d  %4d %14.8e %14.8e", 1, j ,  x, dx); 
p r i n t f ( " % 4 d \ n  %4d\n %14.8e\n %14.8e", i,j ,  x, dx); 
p r i n t f ( " % 5 d  %121d %5d %10.5f %U",  i, i x ,  j ,  x, U ) ;  

p r i n t f ( " % 5 d  %121d %5d\n\n %10.5f %5u", i,i x ,  j ,  x, U ) ;  

pr in t f ( "6d  %6u %cn, 1, U ,  c ) ;  
p r i n t f ( '%5d  %5u %11.4f", j ,  U,  x) ;  
p r i n t f ( ' % - 5 d  %-5u %-11.4fN, j ,  U, x);  
p r i n t f ( "%+5d%5u %+11.4fn, j ,  U ,  x) ;  
p r i n t f ( " % 0 5 d%05u %11.4f1', j ,  U ,  x ) ;  
p r i n t f ( " % 5 d  %5u %#11.4f", j ,  U,  x);  

p r i n t f  ("80 %8d %8x" 1, j ,  k ) ;  
p r i n t f ( ' % - 8 o  %-8d % - e x * ,  i,j ,  k ) ;  
p r i n t f ( * % # 8 o  %O8d %#ex*, i, j ,  k ) ;  

12345 -13579 -24680 123456789 -2222 5555 
12345 -13579 -24680 
123456789 -2222 5555 

12345 -13579 -24680 
123456789 -2222 5555 

12345 -13579 
-24680 123456789 
-2222 5555 
+12345 -1 3579 
-24680 +123456789 
-2222 5555 
00012345 -0013579 
-0024680 000000123456789 
-0002222 00005555 

12345 abcd9 77777 
12345 abcd9 77777 

12345 abcd9 77777 
12345 abcd9 77777 
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+12345 abcd9 77777 
00012345 Oxabcd9 077777 

2.500000 0.000500 3000.000000 
2.500000 0.000500 3000.000000 
2.500000 0.0005"9 3000.000000 

2.5000 0.0005 3000.0000 
2.500 0.001 3000.000 

2.500000e+000 5.000000e-004 3.000000e+003 
2.500000e+000 5.000000e-004 3.000000e+003 
2.500000e+000 5.OOOOOOe-004 3.000000e+003 
2.5000e+000 5.0000e-004 3.0000e+003 
2.50e+000 5.00e-004 3.00e+003 
2.500000 0.000500 3000.000000 
+2.500000 +0.000500 +3000.000000 
2.500000 0.000500 3000.000000 
2.500000 0.000500 3000.000000 
2.5 0.0005 3000 
2.500000 0.000500 3000.000000 

A B C  
ABC 

A B C 
A B C 

cl=A c2=B c3=C 

p r i n t f ( ' % s " ,  t e x t ) ;  
p r i n t f ( " % . 8 s " ,  t e x t ) ;  
p r i n t f  ( "%13.8s", t e x t )  ; 
p r i n t f  ( "%-13.8sn, t e x t ) ;  

Programming w i t h  C can be a chal lenging creat ive a c t i v i t y .  
Programming w i t h  C can be a chal lenging creat ive a c t i v i t y .  
Programming w i t h  C 

Program 
Program 

4.83 (a)  p r i n t f  ( "Please enter your name: I' ) ; 
~ c a n f ( ' % [ ~ \ n ] " ,name); 

p r i n t f  ( " x l  = %4 . l f  x2 = %4.1f1', x l ,  x2); 

pr in t f ( "P1ease enter a value f o r  a: " ) ;  
scanf ( "%d', &a) ; 
pr int f ( 'P1ease enter a value f o r  b: " ) ;  
scanf ( "%d", &b) ; 
p r i n t f ( " \ n T h e  sum i s  %d", (a + b ) ) ;  

The last statement can also be written as 
pr in t f ( " \ \ n%s  %d", 'The sum i s " ,  (a + b ) ) ;  

Chapter 5 

5.31 (a)  / *  'HELLOI " program * /  

# include <stdio.h> 

main ( ) 

p r i n t f  ( " % s " ,  "HELLOI ' I )  ; 



499 

1 

ANSWERS TO SELECTED PROBLEMS 

(b)  / *  "WELCOME - LET'S BE FRIENDS" program * /  

#include <stdio.h> 

main( ) 

{ 
char name[20]; 

p r i n t f ( " % s " ,  " H I ,  WHAT\'S YOUR NAME? " ) ;  
~ c a n f ( * % [ ~ \ n ] " ,name); 
pr in t f ( " \n \n%s%s\n%s",  "WELCOME ", name, "LET\IS BE FRIENDS!'); 

(c) / *  temperature conversion - fahrenhei t  t o  Celsius * /  

#include <stdio.h> 

main( ) 

{ 
f l o a t  c, f ;  

p r i n t f ( " % s " ,  "Please enter a value f o r  the temperature i n  degrees F: " ) ;  

scanf ( "%f" , & f ) ; 
C = (5. / 9.) * ( f  - 32.);  

p r i n t f ( " \ n%s%5.1 fn ,  "The corresponding value f o r  C i s :  ', c ) ;  
1 

(d) / *  piggy-bank problem * /  

#include <stdio.h> 

main ( ) 

{ 
i n t  ha l f s ,  quarters, dimes, n icke ls ,  pennies; 
f l o a t  do l l a rs ;  

p r i n t f ( " % s " ,  'How many h a l f - d o l l a r s ?  ' ) ;  
scanf("%d",  &hal fs) ;  
p r i n t f  ( "%s", "How many quarters? " ) ; 
scanf(*%dw, &quarters); 
p r i n t f  ( "%s", "How many dimes? " ) ; 
scanf ( '%d" &dimes) ; 
p r i n t f ( ' % s " ,  "How many n icke ls? ' ) ;  
scanf ( "%d", &nickels) ; 
p r i n t f ( ' % s " ,  'How many pennies? ' ) ;  
scanf ( "%d , &pennies) ; 

d o l l a r s  = 0.5 * h a l f s  + 0.25 * quarters + 0.1 * dimes + 
0.05 * n i cke l s  + 0.01 * pennies; 

pr in t f ( " \n%s%6.2f%sH, "The t o t a l  i s  ', dol lars ,  d o l l a r s " ) ;  

1 

(e )  / *  volume and area o f  a sphere * /  

#include <stdio.h> 

#def ine P I  3.1415927 

main ( ) 

f l o a t  radius, volume, area; 

p r i n t f ( " % s n ,  'Please enter a value f o r  the radius:  ' ) ;  
scanf ( "%f &radius);' I ,  

volume = (4. / 3.) * P I  * radius * radius * radius; 
area = 4. * P I  * radius * radius; 

printf("\n%s%.3e\n%s%.3eH, "The volume i s  I ,  volume, 'The area i s  * ,  area); 

1 
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U> / *  mass o f  a i r  i n  an automobile t i r e  * /  

# i n c l u d e  c s t d i o .  h> 

main ( ) 

t 
f l o a t  p, v, m y  t; 

p r i n t f  ( "%sII, "Please e n t e r  a va lue f o r  t h e  volume, i n  c u b i c  f e e t :  I " ) ;  

scanf ( "%f, &v) ; 
p r i n t f  ( " % s a y "Please e n t e r  a va lue f o r  t h e  pressure, i n  p s i :  ' I); 

scanf ( "%fW, &p) ; 
p r i n t f ( " % s V J"Please e n t e r  a va lue f o r  t h e  temperature, i n  degrees F: 
scanf ( " % f y  , a t )  ; 

m = ( p  * v)  / (0 .37 * ( t  + 460. ) ) ;  
p r i n t f (  "\nMass o f  a i r :  %g pounds", m); 

} 

(g) / *  encoding o f  a 5 - l e t t e r  word * /  

# i n c l u d e  cs td io .h> 

main ( ) 

{ 
char  c l ,  c2, c3, c4, c5; 

p r i n t f  ( "%sn, "Please e n t e r  a 5 - l e t t e r  word: I t )  ; 
scanf("%c%c%c%c%c",& c l ,  &c2, &c3, &c4, &c5); 
p r in t f ( "%c%c%c%c%c" ,( c l - 3 0 ) ,  (c2-30) ,  (c3-30) ,  (c4-30) ,  ( c 5 - 3 0 ) ) ;  

} 

(h )  / *  decoding o f  a 5 - l e t t e r  word * /  

# i n c l u d e  <s td io .h> 

main ( ) 

t 
char  c l ,  c2, c3, c4, c5; 

p r i n t f  ( "%isM, "Please e n t e r  t h e  encoded 5 - l e t t e r  word: ' I )  ; 
scanf ( "%c%c%c%c%cn, & c l , &c2, &c3, &c4, &c5) ; 
pr in t f ( "%c%c%c%c%c" ,(c1+30), (c2+30), (c3+30), (c4+30), (c5+30)) ;  

(i) / *  encoding and decoding a l i n e  o f  t e x t  * /  

# inc lude <s td io .h> 

main( ) 

{ 
i n t  count, tag ;  
char  t e x t [ 8 0 ] ;  

/ *  read and encode t h e  l i n e  of t e x t  * /  
p r i n t f ( " % s " ,  "Please e n t e r  a l i n e  o f  t e x t  below: \ n " ) ;  
f o r  (count  = 0; ( t e x t [ c o u n t ]  = ge tchar ( )  - 30) I =  ( ' \ n i  - 30) ;  ++count) 

Y 

t a g  = count; 

/ *  w r i t e  ou t  t h e  encoded t e x t  * /  
p r i n t f  ( ' \nEncoded t e x t :  \n"  ) ; 
f o r  (count  = 0; count c tag ;  ++count) 

p u t c h a r ( t e x t [ c o u n t ] ) ;  

/ *  decode and w r i t e  ou t ,  r e t u r n i n g  t h e  o r i g i n a l  t e x t  * /  
p r i n t f ( " \ n \ n D e c o d e d  ( o r i g i n a l )  t e x t : \ n " ) ;  
f o r  (count  = 0; count c tag ;  ++count) 

p u t c h a r ( t e x t [ c o u n t ]  + 30) ;  
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0) / *  r e v e r s i n g  uppercase and lowercase l e t t e r s  i n  a l i n e  o f  t e x t  * /  

# inc lude <s td io .h> 
# inc lude <ctype.h> 

main ( ) 

{ 
i n t  count, tag ;  
char  c ,  tex t (801;  

/ *  read a l i n e  o f  i n p u t  * /  

p r i n t f ( " " % s " ,  "Please en ter  a l i n e  o f  t e x t  below: \ n n ) ;  
f o r  (count  = 0; ( t e x t [ c o u n t ]  = g e t c h a r ( ) )  I =  " \ n " ;  ++count) 

I 

t a g  = count; 

/ *  w r i t e  t h e  reversed l i n e  o f  ou tpu t  * /  

f o r  (count = 0; count < tag;  ++count) { 
c = i s l o w e r ( t e x t [ c o u n t ] )  ? t o u p p e r ( t e x t [ c o u n t ] )  

: t o l o w e r ( t e x t [ c o u n t ] ) ;  
p u t c h a r ( c ) ;  

} 
1 

Chapter 6 

6.43 If the value of x is smaller in magnitude than the value of xmin, then the value of xmin is assigned to x if x has a 
positive value, and the value of -xmin is assigned to x if x has a negative value or if x equals zero. This is not a 
compound statement, and there are no embedded compound statements. 

6.44 (1) The program segment itself is a compound statement. 

(2) The do - w h i l e  statement, which is embedded in the program segment, contains a compound statement. 
(3) The i f  statement, which is embedded in the do - w h i l e  statement, contains a compound statement. 

6.45 (a) sum = 0; (c) sum = 0; 
i= 2; f o r  ( i  = 2; i< 100; i+= 3) 
w h i l e  ( i  < 100) { sum += i; 

sum += i; 
i+= 3; 

1 

(b)  sum = 0; 
i= 2; 

do { 
sum += i; 
i+= 3; 

} w h i l e  ( i  < 100); 

6.46 (a) sum = 0; (c) sum = 0; 
i= n s t a r t ;  f o r  ( i  = n s t a r t ;  i<= nstop; i+= n)  
w h i l e  ( i  <= nstop)  { sum += i; 

sum += i; 
i+= n; 

1 

(b) sum = 0; 
i= n s t a r t ;  

do { 
sum += i; 
i+= n; 

} w h i l e  ( i  <= ns top) ;  
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6.47 count = 0; or count = 0; 
while (count < n) { while (count < n) 

' I ,printf(*%d text[count]); printf ("%d ", text[count++]); 
++count; 


1 
count = 0; or count = 0; 
do do 


' I ,printf("%d text[count]); printf ("%d * ,  text[count++]); 
++count; while (count < n) ; 

} while (count < n); 

for (count = 0; count < n; ++count) 
printf("%d * ,  text[count]); 

6.48 count = 0; or count = 0; 
I * ' )while (text[count] != ' * I )  { while (text[count] != 

printf("%d text[count]); printf("%d text[count++]);
' I ,  ' I ,  

++count ; 
1 
count = 0; or count = 0; 
do { do 

' I ,printf("%d ", text[count]); printf('%d text[count++]); 
++count ; while (text[count]) != I * ' ) ;  

} while (text[count] != I * ' ) ;  

for (count = 0; text[count] I =  ++count)' * I ;  

printf("%d * ,  text[count]); 

6.49 for ( j  = 2; j <= 13; ++I) for ( j  = 2; j <= 13; ++I){ 
sum = 0; sum = 0; 
i = 2; for (i = 2; i < 100; i += j) 
while (i < 100) { sum += i; 

sum += i; printf(*%d*, sum); 
i += j ;  1 

1 
printf("%d", sum); 


1 

for ( j  = 2; j <= 13; ++I) 
sum = 0; 
i = 2; 
do { 

sum += i; 
i += j; 

} while (i < 100); 
printf ("%d", sum) ; 

1 

6.50 sum = 0; sum = 0; 
for (i = 2; i < 100; i += for (i = 2; i < 100; i += 3) 

sum = (i % 5 == 0) '? += i : += 0; if (i % 5 == 0) sum += i; 

6.51 sum = 0; 
for (i = nstart; i <= nstop; i += n) 

sum = (1 % k == 0) ? += i : += 0; 

sum = 0; 
for (i = nstart; i <= nstop; i += n) 

if (1 % k == 0) sum += i; 
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6.52 l e t t e r s  = d i g i t s  = whi tesp = o ther  = 0; 
f o r  (count  = 0; count < 80; ++count) { 

i f  ( ( t e x t [ c o u n t ]  >= ' a '  && t e x t [ c o u n t ]  <= ' 2 ' )  I I 
( t e x t [ c o u n t ]  >= ' A '  && t e x t [ c o u n t ]  <= ' Z ' ) )  

+ + l e t t e r s; 
e l s e  i f  ( t e x t [ c o u n t ]  >= '0'&& t e x t [ c o u n t ]  <= ' 9 ' )  

+ + d i g i t s ; 
e l s e  i f  ( t e x t [ c o u n t ]  == ' I 1 1  t e x t [ c o u n t ]  == ' \ n '  1 1  t e x t [ c o u n t ]  == ' \ t ' )  

++whitesp; 
e l s e  ++other; 

1 
6.53 vowels = consonants = 0; 

f o r  (count  = 0; count < 80; ++count) { 
i f  ( i s a l p h a ( t e x t [ c o u n t ] )  

i f  ( t e x t [ c o u n t ]  
t e x t [ c o u n t ]  

== 
== 

' a '  
' e '  

1 1  t e x t [ c o u n t ]  
I I t e x t [ c o u n t ]  

== 
== 

' A '  
' E '  

1 1  
I I 

t e x t [ c o u n t ]  
t e x t [ c o u n t ]  
t e x t [ c o u n t ]  

== 
== 
== 

'i' 1 1  t e x t [ c o u n t ]  
' 0 '  I I t e x t [ c o u n t ]  
' U '  1 1  t e x t [ c o u n t ]  

== 
== 
== 

' I '  1 1  
'0' I I 
' U ' )  

++vowels; 
e l s e  ++consonants; 

1 

The loop can also be written as 

vowels = consonants = 0; 
f o r  (count  = 0; count < 80; ++count) { 

i f  ( i s a l p h a ( t e x t [ c o u n t ] )  
i f  ( t o l o w e r ( t e x t [ c o u n t ] )  

t o l o w e r ( t e x t [ c o u n t ] )  
== 
== 

' a '  
' e t  

1 1  
I I 

t o l o w e r ( t e x t [ c o u n t ] )  == 'i'1 1  
t o l o w e r ( t e x t [ c o u n t ] )  == ' 0 '  I I 
t o l o w e r ( t e x t [ c o u n t ] )  == ' U ' )  

++vowels; 
e l s e  ++consonants; 

k 

6.54 s w i t c h  ( f l a g )  { 

case 1: p r i n t f ( "HOT' ) ; 
break; 

case 2 : p r i n t f  ( 'LUKE WARM ) ; 
break; 

case 3: p r i n t f  ('COLD" ) ; 
break; 

d e f a u l t :  p r i n t f ( " 0 U T  OF RANGE"); 
1 

6.55 s w i t c h  ( c o l o r )  { 

case Or': 
case ' R ' :  

p r i n t f ( 'RED") ; 
break; 

case ' g o :  
case ' G ' :  

p r i n t f  ("GREEN' ) ; 
break; 
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case ' b ' :  
case ' 6 ' :  

p r i n t f  ( ''BLUE"); 
break; 

d e f a u l t  : 
p r i n t f ( BLACK") ; 
break;  

1 

6.56 i f  (temp < 0 . )  
p r i n t f  ( " I C E " ); 

e l s e  i f  (temp <= 100.)  
p r i n t f ( "WATER' ) ; 

e l s e  
p r i n t f  ("STEAM") ; 

A switch statement cannot be used because: 

(a) The tests involve floating-point quantities rather than integer quantities. 
(b) The tests involve ranges of values rather than exact values. 

6.57 f o r  ( i  = 0, j = 79; i < 80; ++l, 

b a c k t e x t [ ] ]  = t e x t [ i ] ;  

6.58 0 5 15 30 0 1 3 5 8 12 15 19 24 30 
x = 30 x = 30 

1 2 3 4  0 1 3 6  
x = 4  x = 6  

1 2 3 4  0 
x = 4  x = o  

1 0 3 2 7 6 1 3 1 2 2 1  0 0 2 4 5 9 10 14 14 20 
x = 21 x = 20 

1 0 3 2 7 6 1 3 1 2 2 1  1 3 5 7 9 12 14 17 20 23 
x = 21 x = 23 

1 1 6 1 1  16 21 24 29 32 35 38 
x = l  x = 38 

Chapter 7 
7.32 f accepts an integer argument and returns an integer quantity. 

f accepts two arguments and returns a double-precision quantity. The first argument is a double-precision 
quantity, and the second is an integer. 
f accepts three arguments and returns nothing. The first function is a long integer, the second is a short 
integer and the third is an unsigned integer. 
f does not accept any argument but returns a single character. 
f accepts two unsigned integer arguments and returns an unsigned integer. 

7.33 f accepts two floating-point arguments and returns a floating-point value. 
f accepts a long integer and returns a long integer. 
f accepts an integer and returns nothing. 
f accepts nothing but returns a character. 

7.34 y = f o r m u l a ( x ) ;  
d i s p l a y ( a ,  b ) ;  

7.35 i n t  sample(void) 
f l o a t  r o o t ( i n t  a ,  i n t  b ) ;  
char convert  (char c )  
char t ransfer (1ong i )  
long inverse (char  c )  
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7.37 (a) 

(4 

7.38 (a) 

Chapter 8 

8.25 

8.26 

(a) 
(4
(4 
(a) 

8.27 

(4 
(a) 

ANSWERS TO SELECTED PROBLEMS 

double p rocess ( in t  i,f l o a t  a, f l o a t  b )  
v o i d  value(doub1e x, double y, sho r t  i )  

i n t  f u n c t l ( i n t  a, i n t  b) ;  
double funct l (doub1e a, double b ) ;  
l ong  i n t  f u n c t l ( i n t  a, f l o a t  b ) ;  
double funct l (doub1e a, double b ) ;  
double funct2(double a, double b ) ;  

1 4 9 16 25 

# inc lude <stdio.h> 

i n t  f u n c t l ( i n t  count) ;  

main ( ) 

{ 
i n t  count ; 

f o r  (count = 1; count <= 5; ++count) 
p r i n t f  ( "%d ', f u n c t l  ( coun t ) ) ;  

1 
i n t  f u n c t l  ( i n t  x)  

t 
r e t u r n ( x  * x ) ;  

} 

55 

30 

n-1 
y = x n +  C x i  or 

i= l  

y 1  = X I ,  and y , = ~ , + y , - ~  for n >  1 

n-1 
y = ( -1lnxn / n!+ c ( - l l i x i  / i!  or 

i= 0 
yo = 1 ,  and yn = (-l)"x"/n! +yn-l for n > 0 

t-1 
p = h * n f j  or 

j = l  

p1 =f1, and pt  =ft *pt- l  for n >  1 

1 2 3 4 5  
1 3 6 10 15 
6 15 28 45 66 

ex te rn  f l o a t  so l ve r ( f1oa t  a, f l o a t  b )  

Note that ex te rn  can be omitted; i.e., the first line can be written as 
f l o a t  so l ve r ( f1oa t  a, f l o a t  b )  

s t a t i c  f l o a t  so l ve r ( f1oa t  a, f l o a t  b )  

Firstfile: 

ex te rn  double funct l (doub1e a, double b); / *  added * /  

main ( ) 

{ 
double x, y, z; 
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z = f u n c t l ( x ,  y ) ;  

. . . . .  
1 
Second file: 

double funct l (doub1e a, double b) 

{ 
* . . . .  

1 
Firstfile : 

ex te rn  double f u n c t l  (double x, double y )  ; / *  added * /  
ex te rn  double funct2(double x,  double y ) ;  / *  added * /  

main( ) 

{ 
double x,  Y, z;  

. . . . .  
z = f u n c t l ( x ,  y ) ;  

. . . . .  
1 

Second fi le: 

double functi(doub1e a, double b) 

{ 
double c; 

c = funct2(a,  b ) ;  

. . . . .  
1 
s t a t i c  double funct2(double a, double b) 

{ 
. . . . .  

1 

4 6 9 13 18 
100 196 80 184 60 164 40 136 20 100 
104 116 136 136 100 
101 102 106 124 200 
6 11 16 21 26 
6 11 16 21 26 
9 25 57 121 249 
This program will return the number of characters within a line of text entered from the keyboard. The 
terminating newline character will not be included in the sum. 

name is a one-dimensional, 30-element character array. 
c is a one-dimensional, 6-element floating-point array. 
a is a one-dimensional, 50-element integer array. 
params is a two-dimensional, 25-element integer array ( 5  rows, 5 columns). 
memo is a two-dimensional, 8712-element character array (66 rows, 132 columns). 
accounts is a three-dimensional, 80,000-element double-precision array (50 pages, 20 rows, 80 columns). 

c is a one-dimensional, 8-element floating-point array. 

c[O] = 2. c [ l ]  = 5. c [ 2 ]  = 3.  c [ 3 ]  = -4. 
c [ 4 )  = 12. c [ 5 ]  = 12. c [ 6 ]  = 0. c [ 7 ]  = 8. 
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c is a one-dimensional, 8-element floating-point array. 

c[O] = 2. c[l] = 5. c[2] = 3. c[3] = -4. 
c[4] = 0. c[5] = 0. c[6] = 0. c[7] = 0. 

z is a one-dimensional, 12-element integer array. 

z [21 = 8 z [51 = 6 All other elements are assigned zeros 

flag is a one-dimensional, 4-element character array. 

flag[O] = I T '  flag[l] = ' R I  flag[2] = ' U '  flag[3] = ' E '  

flag is a one-dimensional, 5-element character array. 

flag[O] = ' T '  flag[l] = ' R I  flag[2] = ' U '  flag[3] = ' E '  
flag [41 is assigned zero. 

flag is a one-dimensional, 5-element character array. 

flag[O] = I T '  flag[l] = ' R '  flag[2] = ' U '  flag[3] = ' E '  
flag[4] = '\O' 

flag is a one-dimensional, 6-element character array. 

flag[O] = I F '  flag[l] = ' A '  flag[2] = ' L '  flag[3] = I S '  
flag[4] = ' E '  flag[5] = '\O' 

p is a two-dimensional, 2 x 4 integer array. 

P[OI[Ol = 1 P[01[11 = 3 P[01[21 = 5 P[O1[31 = 7 
P[11[01 = 0 P[ll[ll = 0 P[11[21 = 0 p[11[31 = 0 

p is a two-dimensional, 2 x 4 integer array. 

P[Ol[OI = 1 P[01[11 = 1 P[01[21 = 3 p[Ol[31 = 3 
P[11[01 = 5 P[ll[ll = 5 P[11[21 = 7 p[11[31 = 7 

p is a two-dimensional, 2 x 4 integer array. 

P[OI[Ol = 1 P[01[11 = 3 P[01[21 = 5 P[O1[31 = 7 
P[11[01 = 2 P[ll[ll = 4 p[11[21 = 6 p[11[31 = 8 

p is a two-dimensional, 2 x 4 integer array. 

P[OI[Ol = 1 P[01[11 = 3 P[O1[21 = 0 p[01[31 = 0 
P[11[01 = 5 P[ll[ll = 7 p[11[21 = 0 p[11[31 = 0 

c is a three-dimensional, 2 x 3 x 4 integer array. 

C[O][O][O] = 1 c[O][O][l] = 2 c[0][0][2] = 3 c[O][O][3] = 0 
c[O][lI[O] = 4 c[0][1][1] = 5 c[O][1][2] = 0 C[O][1][3] = 0 
C[01[21[01 = 6 C[O][2][1] = 7 c[O][2][2] = 8 c[O][2][3] = 9 
C[l][O][O] = 10 c[l][O][l] = 1 1  c[1][0][2] = 0 c[1][0][3] = 0 
c[1][1][0] = 0 c[l][l][l] = 0 c[1][1][2] = 0 c[1][1][3] = 0 
C[1][2][0] = 12 C[1][2][1] = 13 c[1][2][2] = 14 c[1][2][3] = 0 

colors is a two-dimensional, 3 x 6 character array. 

colors[O][O] = ' R I  colors[O][l] = ' E '  colors [0][2] = 'D' 
colors[0][3] = 0 colors[0][4] = 0 colors[0][5] = 0 
colors[l][O] = 'G' colors[l][l] = ' R I  colors [1][2] = ' E '  
colors[l][3] = ' E '  colors[l][4] = ' N I  colors 1 1  [51 = 0 
colors[2][0] = ' 6 '  colors[2][1] = ' L '  colors [2][2] = ' U '  
colors[2][3] = ' E '  colors[2][4] = 0 colors 2][5] = 0 

int c[12] = (1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34); 
char point[] = "NORTH"; 

(c) char letters[4] = { I N ' ,  IS', ' E ' ,  ' W ' } ;  
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(d) float consts[6] = (0.005, -0,032, le-6, 0.167, -0.3e8, 0,015); 

( e )  int n[3][4]= (10, 12, 14, 16, 20, 22, 24, 26, 30, 32, 34, 36); 

Another way to assign the initial values is as follows. 

int n[3][4]= { 
(10, 12, 14, 16), 
(20, 22, 24, 26), 
(30, 32, 34, 36) 

1; 

or 

int n[3][4]= { 

( l 0 J  12, 14)J 
( O ,  2 o J  22), 

30J 32) 

(g) int n[3][4]= (10, 12, 14, 16, 20, 22); 

9.30 (a) float sample(f1oat a, float b, int ]star[]); 

main ( ) 
{ 

float a, b, x ;  
int jstar[20]; 

. . . . .  
x = sample(a, b, jstar); 

float sample(f1oat a, float b, int ]star[]) 
{ 

. . . . .  
1 

(b) float sample(int n, char c, double values[]); 

main ( ) 
( 

int n; 
char c; 
float x ;  
double values[50]; 

. . . . .  
x = sample(n, c, values); 

. . . . .  
1 

float sample(int n, char c, double values[]) 
( 

. . . . .  



509 ANSWERS TO SELECTED PROBLEMS 

f l o a t  sample(char t e x t [ ] [ 8 0 ] ) ;  

main ( ) 

{ 
f l o a t  x; 
char  t e x t [ 1 2 ] [ 8 0 ] ;  

. . . . .  
x = sample( tex t ) ;  

. . . . .  
1 

f l o a t  sample(char t e x t [ ] [ 8 0 ] )  

. . . . .  
1 

f l o a t  sample(char message[], f l o a t  accounts [ ] [ lOO] ) ;  

main ( ) 

f l o a t  x; 
char  message[40]; 
f l o a t  accounts[50] [100] ;  

. . . . .  
x = sample(message, accounts); 

. . . . .  
1 

f l o a t  sample(char message[], f l o a t  accounts [ ] [ lOO] )  

{ 
. . . . .  

1 

9.31 20 (sum of the array elements whose values are even) 
25 (sum of the even array elements) 
Will not run (automatic arrays cannot be initialized). 
25 (sum of the external array elements whose values are odd) 
1 (smallest value) 
1 5 9 (smallest value within each row) 
9 10 1 1 12 (largest value within each column) 
0 2 2 4  
4 6 6 8  
8 10 10 1 2 (if the value of an element is odd, reduce its value by 1;then display the entire array) 
PPoorrmmiiggwwtt aa eeggeet t f f nn (skip the even-numbered array elements; print each odd- 
numbered array element twice) 

Chapter 10 

10.44 (a)  px is a pointer to an integer quantity. 

(b)  a and b are floating-point variables; pa and pb are pointers to floating-point quantities (though not 
necessarily to a and b). 

( c )  a is a floating-point variable whose initial value is -0.167; pa is a pointer to a floating-point quantity; the 
address of a is assigned to pa as an initial value. 

(6) c l ,  c2 and c3 are char-type variables; pcl ,  pc2 and pc3 are pointers to characters; the address of c l  is 
assigned to pc3. 

( e )  f u n c t  is a function that accepts three arguments and returns a double-precision quantity. The first two 
arguments are pointers to double-precision quantities; the third argument is a pointer to an integer quantity. 
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U> f unct is a function that accepts three arguments and returns a pointer to a double-precision quantity. The 
first two arguments are pointers to double-precision quantities; the third argument is a pointer to an integer 
quantity. 
a is a pointer to a group of contiguous, one-dimensional, double-precision arrays; this is equivalent to 
double a [ ] [ l 2 ] ;  
a is a one-dimensional array of pointers to double-precision quantities (equivalent to a two-dimensional 
array of double-precision quantities). 
a is a one-dimensional array of pointers to single characters or strings (equivalent to a two-dimensional 
array of characters). 
d is a one-dimensional array of pointers to the strings "nor th  , I' south", "east and "west " .  
p is a pointer to a group of contiguous, two-dimensional, long-integer arrays; equivalent to p[ ] [ 101[ 20) ; 
p is a two-dimensional array of pointers to long-integer quantities (equivalent to a three-dimensional array 
of long integers). 
sample is a function that accepts an argument which is a function and returns a character. The function 
passed as an argument accepts two character arguments and returns an integer quantity. 
p f  is a pointer to a function that accepts no arguments but returns an integer quantity. 
p f  is a pointer to a function that accepts two character arguments and returns an integer quantity. 
p f  is a pointer to a function that accepts two pointers to characters as arguments and returns an integer 
quantity. 

10.45 (a) i n t  i,j ;  
i n t  * p i  = &i; 
i n t  * p j  = & j ;  
f l o a t  *pf ;  
double *pd; 
long * f u n c t ( i n t  a, i n t  b) ;  
long f u n c t ( i n t  *a, i n t  *b); 
f l o a t  *x ;  
f l o a t  ( * x ) [ 3 0 ] ; o r f l o a t  *x[15];  
char *co lo r [3 ]  = { " r e d " ,  "green", "b luen) ;  
char * f u n c t ( i n t  ( * p f ) ( i n t  a ) ) ;  
f l o a t  ( * p f ) ( i n t  a, i n t  b, i n t  c ) ;  
f l o a t  * ( * p f ) ( i n t  *a, i n t  *b, i n t  *c) ;  

F8D (c) B '  (e )  F8C 
F8D (4 'C'  U> F8C 

F9C v) F9E 
F9E (g) (i+ j )  = 35 + 30 = 65 
F9E (h)  FA2 
30 (note that this changes the value of j )  (i) 67 
35 (j) unspecified 

1130 (6) 1130 (g) 1134 
1134 (e )  0.002 ( h )  0.003 
1138 U> &(*pa) = pa = 1130 (i) 0.003 

80 (c) a=88 b=89 
81 (d) a=80 b=81 

A pointer to an integer. 
Nothing is returned. 
A pointer to an integer quantity. 
Calculate the sum of the elements of p (p is a five-element integer array). 
sum=l50 

A pointer to an integer. 
Nothing is returned. 
The last two elements of a five-element integer array. 
Calculate the sum of the last two elements of the five-element integer array. 
sum=90 
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A pointer to an integer quantity. 
A pointer to an integer quantity. 
The address of the element of p whose value is the largest (p is actually a five-element integer array). 
Determine the largest value of the elements of p. 
max=50 

Address of x [0 ] 
Address of x [2 ] 

(6) 
( e )  

12 (i.e., 10 + 2) 
30 (this is the value of x[  21) 

10 

Address of t a b l e [ 01[ 01 
Address of row 1 (the second row) of t a b l e  
Address of t a b l e  [ 1] [01 
Address of t a b l e  [ 1] [ 1] 
Address of t a b l e [ 01[ 1] 
2.2 (i.e., 1 .2 + 1) 
1.2 
2.1 
2.2 

Address of c o l o r [ 01 (the beginning of the first string) 
Address of c o l o r [ 21 (the beginning of the third string) 
I' red"  
'I b l u e It 

They both refer to the same array element (pointer to I' ye l low " ) 

a and b are ordinary floating-point variables. one, two and t h r e e  are functions, each of which returns a 
floating-point quantity. one and two each accept two floating-point quantities as arguments. t h r e e  
accepts a function as an argument; the argument function will accept two floating-point quantities as its 
own arguments, and it will return a floating-point quantity. (Note that either one or two can appear as an 
argument to three). 
one and two are conventional function definitions. Each accepts two floating-point quantities and returns a 
floating-point quantity which is calculated within the function. 
t h r e e  accepts a pointer to a function as an argument. The argument function accepts two floating-point 
quantities and returns a floating-point quantity. Within three, the argument function is accessed and the 
calculated result is assigned to c. The value of c is then returned to main. 

(4 A different function is passed to t h r e e  each time it is accessed. Therefore, the value that is returned by 
t h r e e  will be calculated differently each time t h r e e  is accessed. 

10.57 (a) a and b are pointers to floating-point quantities. one, two and t h r e e  are functions; one and two each 
return a floating-point quantity, and t h r e e  returns a pointer to a floating-point quantity. one and two 
each accept two pointers to floating-point quantities as arguments. t h r e e  accepts a function as an 
argument; the argument function will accept two pointers to floating-point quantities as its own arguments, 
and it will return a floating-point quantity. (Note that either one or two can appear as an argument to 
three). 
one and two are conventional function definitions. Each accepts two pointers to floating-point quantities 
and returns a floating-point quantity which is calculated within the function. 
t h r e e  accepts a pointer to a function as an argument. The argument function accepts two pointers to 
floating-point quantities and returns a floating-point quantity. Within three, the argument function is 
accessed and the calculated result is assigned to c. The address of c is then returned to main. 
A different function is passed to t h r e e  each time it is accessed. Therefore, the value whose address is 
returned by t h r e e  will be calculated differently each time t h r e e  is accessed. 
In this outline one and two accept pointers as arguments, whereas one and two accept ordinary floating- 
point variables as arguments in the previous outline. Also, in this outline t h r e e  returns a pointer whereas 
t h r e e  returns an ordinary floating-point quantity in the previous outline. 
x is a pointer to a function that accepts an argument which is a pointer to an integer quantity and returns a 
floating-point quantity. 
x is a function that accepts an argument which is a pointer to an integer quantity and returns a pointer to a 
20-element floating-point array. 
x is a function that accepts an argument which is a pointer to an integer array and returns a floating-point 
quantity. 
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x is a function that accepts an argument that is an array of pointers to integer quantities and returns a 
floating-point quantity. 
x is a function that accepts an argument which is an integer array and returns a pointer to a floating-point 
quantity. 
x is a function that accepts an argument which is a pointer to an integer array and returns a pointer to a 
floating-point quantity. 
x is a function that accepts an argument which is an array of pointers to integer quantities and returns a 
pointer to a floating-point quantity.quantity. 
x is a pointer to a function that accepts an argument which is a pointer to an integer array and returns a 
floating-point quantity. 
x is a pointer to a function that accepts an argument which is an array of pointers to integer quantities and 
returns a pointer to a floating-point quantity. 
x is a 20-element array of pointers to functions; each function accepts an argument which is an integer 
quantity and returns a floating-point quantity. 
x is a 20-element array of pointers to functions; each function accepts an argument which is a pointer to an 
integer quantity and returns a pointer to a floating-point quantity. 

10.59 (U) char ( * p ( i n t  *a))[6]); k) char ( * p ) ( i n t  ( * a ) [ ] ) ;  
(b) char p ( i n t  ( * a ) [ ] ) ;  (h)  char * ( * p ) ( i n t  ( * a ) [ ] ) ;  
(c) char p ( i n t  * a [ ] ) ;  (i) char * ( * p ) ( i n t  * a [ ] ) ;  

(6) char * p ( i n t  a [ ] ) ;  0) double ( * f [ l 2 ] ) ( d o u b l e  a, double b ) ;  
(e )  char * p ( i n t  ( * a ) [ ] ) ;  (k) double * ( * f [ l 2 ] ) ( d o u b l e  a, double b) ;  
v) char * p ( i n t  * a [ ] ) ;  ( f )  double * ( * f [ l 2 ] ) ( d o u b l e  *a ,  double * b ) ;  

Chapter 11 

11.34 s t r u c t  complex { 
f l o a t  r e a l ;  
f l o a t  imaginary; 

1; 

11.35 s t r u c t  complex x l ,  x2, x3; 

11.36 s t r u c t  complex { 
f l o a t  r e a l ;  
f l o a t  imaginary; 

} x l ,  x2, x3; 

Including the tag (complex) is optional in this situation. 

11.37 s t r u c t  complex x = {1.3, -2.2); 

Remember that x must be either s t a t i c  or external .  

11.38 s t r u c t  complex *px; 

The structure members are px -> rea l and px->imaginary 

11.39 s t r u c t  complex cx[  1001 ; 

11.40 s t r u c t  complex { 
f l o a t  rea l ;  
f l o a t  imaginary; 

) cx[ lOO]; 

Including the tag (complex) is optional in this situation. 

11.41 The structure members are cx[ 171. r e a l  and cx[ 171. imaginary 

11.42 typedef s t r u c t  { 
i n t  won; 
i n t  l o s t ;  
f l o a t  percentage ; 

} record; 
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11.43 typedef s t r u c t  { 
char name[40]; 
record s ta ts ;  

} team; 

where the structure type record is defined in Prob. 11.42. 

11.44 team t; 

The structure members are t .name, t .s ta ts .  won, t .s ta ts .  l o s t ,  and t .s ta ts .  percentage. The characters 
that make up t .name can also be accessed individually; e.g., t .name[ 01, t .name[ 1 I,t .name[ 21, . . . ,etc. 

11.45 team t = {"Chicago Bears", 14, 2, 87.5); 

11.46 p r i n t f  ( "%d\n" ,  s izeo f  t )  ; 

or 

p r i n t f ( " % d \ n " ,  s izeof (team)); 

11.47 team *p t ;  

The structure members are pt->name, pt->stats.won, p t ->s ta ts . l os t ,  and pt->stats.percentage. The 
characters that make up t - >name can also be accessed individually; e.g., p t  ->name [01, etc. 

11.48 team league [481; 

The individual items are league[ 41 .name and league [41 .s ta ts .  percentage. 

11.49 s t r u c t  team { 
char name[40] ; 
record s ta ts ;  
s t r u c t  team *next; 

1; 
11.50 Two solutions are given, either of which is correct. 

(a) s t r u c t  team *p t ;  

p t  = ( s t r u c t  team*) ma l l oc (s i zeo f ( s t ruc t  team)); 

(b)  typedef s t r u c t  team c i t y ;  
c i t y  *p t ;  

p t  = ( c i t y * )  m a l l o c ( s i z e o f ( c i t y ) ) ;  

11.51 Two solutions are given, either of which is correct. 

(a) s t r u c t  hms { 
i n t  hour; 
i n t  minute; 
i n t  second; 

} 

union { 
s t r u c t  hms loca l ;  
s t r u c t  hms home; 

} * t i m e ;  

(6) typedef s t r u c t  { 
i n t  hour; 
i n t  minute; 
i n t  second; 

} hms; 

union { 
hms l o c a l ;  
hms home ; 

} * t i m e ;  
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11.52 Two solutions are given, either of which is correct. 
(a) union ans { 

i n t  ians;  
f l o a t  fans; 
double dans; 

}; 

s t r u c t  { 
union ans answer; 
char f l a g ;  
i n t  a; 
i n t  b; 

} x, Y;  
( 6 )  typedef union { 

i n t  ians;  
f l o a t  fans; 
double dans; 

} ans; 

s t r u c t  { 
ans answer; 
char f l a g ;  
i n t  a; 
i n t  b; 

1 x, Y; 
11.53 union ans { 

i n t  ians; 
f l o a t  fans; 
double dans; 

}; 

s t r u c t  sample { 
union ans answer; 
char f l a g ;  
i n t  a; 
i n t  b; 

}; 

-2,s t r u c t  sample v = (14, 'i', 5); 

11.54 union ans { 
i n t  ians;  
f l o a t  fans; 
double dans; 

1; 
s t r u c t  sample { 

union ans answer; 
char f l ag ;  
i n t  a; 
i n t  b; 
s t r u c t  sample *next ; 

1 ;  
typedef s t r u c t  sample struct-type; 
struct- type x,  *px = &x; 

11.55 (a) red green blue 
cyan magenta yel low 
red green blue 

The structure variable sample is passed to f unct by value. Hence the reassignments within f unct are not 
recognized within main. 
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red green blue 
cyan magenta yel low 
cyan magenta yel low 

The structure variable sample is passed to f unct by reference. (Actually, it is a pointer to the beginning 
of sample that is passed to funct.) Therefore the reassignments within f unc t  are recognized within 
main. 

red  green blue 
cyan magenta yel low 
cyan magenta yel low 

The structure variable sample is passed to f unct by value, as in (a). Now, however, the altered structure 
variable is returned to main. 

100 0.000000 -0.000000 

0 0.500000 -0.000000 

-25098 391364288.000000 0.016667 


The first line represents the size of the union (8 bytes, to accommodate a double-precision number). In the second 
line, only the first value (1 00)is meaningful. In the third line, only the second value (0.500000) is meaningful. 
And in the last line, only the last value (0.01 6667) is meaningful. 

11.57 (a) 200 0.500012 
0 0.500000 


The union variable U is passed to f unct by value. Hence the reassignment within f unct is not recognized 
within main. Note that only the first value is meaningful in the first line of output, and only the second 
value is meaningful in the last line. 

( 6 )  -2621 4 -0.300000 
0 0.500000 

The union variable U is again passed to f unc t  by value. Hence the reassignment within f unc t  is not 
recognized within main. The first value in each line is meaningless. 

(c) -26214 -0.300000 

-26214 -0.300000 


The union variable U is passed to func t  by value, but the altered union variable is then returned to main. 
Hence, the reassignment within func t  will be recognized within main. The first value in each line is 
meaningless. 

Chapter 12 

12.21 #include <s td io .  h> 

FILE *po in t r ;  

p o i n t r  = fopen("students.dat" ,  'w") ;  

12.22 #include <s td io .  h> 

FILE *po in t r ;  

p o i n t r  = fopen("students.dat ' ,  " a " ) ;  

12.23 #include <s td io .  h> 

FILE "po in t r ;  

p o i n t r  = fopen('sample.dat', "w+"); 

f c l o s e ( p o i n t r ) ;  

12.24 #include cs td io .  h> 

FILE *po in t r ;  

p o i n t r  = f open ( " sample. dat I' , I' r + " ) ; 

f c l o s e ( p o i n t r ) ;  
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12.25 # inc lude <s td io .  h> 
#def ine  NULL 0 

FILE * p o i n t r ;  

p o i n t r  = fopen("sample.dat" ,  " r+" ) ;  
i f  ( p o i n t r  == NULL) 
printf("\nERROR - Cannot open the  designated f i l e \ n " ) ;  

f c l o s e ( p o i n t r ) ;  

The f open and i f  statements are often combined; e.g., 

i f  ( ( p o i n t r  = f open ( "sample. da t  I' , I' r+ ) ) == NULL) 
printf("\nERROR - Cannot open the  designated f i l e \ n " ) ;  

12.26 p r i n t f ( " E n t e r  values f o r  a, b and c :  " ) ;  
scanf ( "%d %f%c" ,  &a, &by &c) ;  
f p r i n t f ( f p t ,  "%d %.2f %cM,  a, b, c ) ;  

Newline characters ( \n )  may be included within the f p r i n t f  control string, as desired. 

12.27 f s c a n f ( f p t ,  "%d %f%c" ,  &a, &b, &c) ;  
p r i n t f ( " a  = %d b = %f c = %c" ,  a, b, c ) ;  

12.28 (a )  f scanf  ( p t l  , "%d %f%c", &a, &b, &c) ; 

(b )  p r i n t f ( " a  = %d New value: " ,  a ) ;  
scanf ( "%d"  , &a) ; 
p r i n t f ( " b  = %f New value: b ) ;' I ,  

scanf ( "%f, & x )  ; 
p r i n t f  ( " c  = %c New value: I' , c ) ;  
scanf ( "%cl', &c) ; 

(c) f p r i n t f ( p t 2 ,  "%d %.2f %cN,  a, b, c ) ;  

Newline characters ( \n )  may be included within the f p r i n t f  control string, as desired. 

12.29 (a)  f scanf ( p t l  , "%s", name) ; 

(b) p r i n t f  ( "Name: %s\n"  , name) ; 

(c) p r i n t f ( " N e w  name: " ) ;  
scanf ( I '  %[ ^ \ n ]  ,, , name) ; 

(6) f p r i n t f  (p t2 ,  " % s " ,  name); 

Here is another solution. 

fgets(name, 20, p t l ) ;  

p r i n t f  ("Name: %s\n"  , name) ; 

puts("New name: " ) ;  
gets(name); 

fputs(name, p t 2 ) ;  

f scanf  ( p t l ,  "%s" values.name); 
p r i n t f  ( "%s,, , values. name) ; 

p r i n t f ( " a  = " ) ;  
scanf ( "%d" , &values. a )  ; 
p r i n t f ( " b  = " ) ;  
scanf ( "%f, &values. b )  ;I' 

p r i n t f ( " c  = " ) ;  
scanf ( "%c" , &values. c )  ; 

f p r i n t f ( p t 2 ,  "%s %d %f%c" ,  values.name, values.a, 
values.b,  va1ues.c); 

or 
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f p r i n t f ( p t 2 ,  "%s\n%d\n%f\n%c\n", values.name, values.a, 
values.b, va1ues.c); 

or 

f p r i n t f  (pt2,  I"%s\n", values.name); 
f p r i n t f  (pt2, "%d\n", va1ues.a); 
f p r i n t f  (pt2, *%f \n l " ,  va1ues.b); 
f p r i n t f ( p t 2 ,  "%c\n",  va1ues.c); 

12.31 (a) fread(&values, s izeof values, 1, p t l ) ;  
p r i n t f  ( It%s1",values. name) ; 

(b) p r i n t f  ( "Ia = ) ; 
scanf ( "%d", &values. a) ; 
p r i n t f ( " b  = " ) ;  
scan f (@%f" ,  &values.b); 
p r i n t f  ( ""c = "I ) ; 
scanf ( "%c",  &values. c )  ; 

(c) fwr i te(&values,  s izeof values, I, p t2 ) ;  

Chapter 13 

13.36 r e g i s t e r  unsigned U, v; 

13.37 i n t  U = 1, v = 2; 
r e g i s t e r  i n t  x = 3, y = 4; 

13.38 unsigned * func t ( reg i s te r  unsigned * p t l ) ;  / *  funct ion prototype * /  

main( ) 

{ 
r e g i s t e r  unsigned * p t l ;  / *  po inter  dec larat ion * /  
unsigned *pt2; / *  po inter  dec larat ion * /  

. . . . .  
p t2  = func t (p t1 ) ;  

. . . . .  
1 

unsigned * func t ( reg i s te r  unsigned * p t l )  / *  funct ion d e f i n i t i o n  * /  

unsigned *pt2; 

. . . . .  
p t2  = . . . . .; 
. . . . .  
re tu rn (p t2 ) ;  

1 
13.39 bit pattern corresponding to a: 101 0 0010 1 100 001 1 

(a) 5d3c 0101 1101 0011 1100 
(b) 2202 0010 0010 0000 0010 
(c) 9dc5 1001 1101 1100 0101 
(4 bfc7 1011 1111 1100 0111 
( e )  80cl 1000 0000 1100 0001 
v) 623a 0110 0010 0011 1010 
(g) e2fb 1110 0010 1111 1011 
(h)  1458 0001 0100 0101 1000 
( i )  5860 0101 1000 0110 0000 
0') 0 0000 0000 0000 0000 (valid for any value of a) 
(k )  f f f f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (valid for any value of a) 
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( I )  f f f f  1111 1111 1111 1111 (validforanyvalueofa) 
( m )  a000 1010 0000 0000 0000 
(n) c100 1100 0001 0000 0000 
(0 )  aOc3 1010 0000 1100 0011 
(p) 5bc3 0101 1011 1100 0011 

(4) 3a00 0011 1010 0000 0000 
(r)  5b3c 0101 1011 0011 1100 
(s) f b c 3  1111 1011 1100 0011 
(t) fbOO 1111 1011 0000 0000 
(U) f b f f  1111 1011 1111 1111 

13.40 (a) a &= Ox3f06 (6) a >>= 3 (g) a &= -(0X3f06 << 8 )  
A =(b) a Ox3f06 (e) a <<= 5 

(c) a I= -0x3f06 U, a -aA =  

13.41 (a) v & Oxaaaaorv & -Ox5555 (c) v I 0x5555 
( 6 )  c 8 Ox7f (6) v 0x42A =  

13.42 (a)  Note that v represents a positive number, since the leftmost bit is 0 (the equivalent decimal value is 13980). 
Hence, the vacated bits resulting from both shift operations will be filled with O S .  The resulting values are 

(i) 0 x 6 9 ~ 0  (ii) 0x369 

(b)  Now v represents a negative number, since the leftmost bit is 1 (the equivalent decimal value is -1 55 1 1). 
Hence, the vacated bits in the left-shift operation will be filled with O S ,  but the vacated bits in the right-shift 
operation will be filled with Is. The resulting values are 

(i) 0x3690 (ii) Oxfc36 

13.43 Each structure defines several bit fields. 

U consists of 3 bits, v consists of 1 bit, w consists of 7 bits, and x consists of 5 bits. The total bit count is 
16. Hence, all of the bit fields will fit into one word. 

The individual bit fields are the same as in part (a). Now, however, each bit field is assigned an initial 
value. Note that each value is small enough to fit within its corresponding bit field (i.e., 2 requires two bits, 
1 requires one bit, 16 requires five bits, and 8 requires four bits). 

U, v and w are each 7 bits wide. Two words of memory will be required. U and v will fit into one word, but 
w will be forced to the beginning of the next word. 

U, v and w are each 7 bits wide. Two words will be required. U will be placed within the first word, 
followed by 9 empty bits. v and w will fit into the second word, separated by 2 empty bits. 

U, v and w are each 7 bits wide. Three words will be utilized to store these bit fields. U will be placed 
within the first word, v will be forced to the beginning of the second word, and w will be forced to the 
beginning of the third word. Each bit field will be followed by 9 empty bits. 

struct f i e l d s  { 
unsigned a : 6 ;  
unsigned b : 4; 
unsigned c : 6 ;  

1; 
s t a t i c  s t r u c t  f i e l d s  v = (3, 5, 7 ) ;  

or 

s t a t i c  s t r u c t  { 
unsigned a : 6 ;  
unsigned b : 4;  
unsigned c : 6 ;  

) v = (3, 5 ,  7 ) ;  

Each value can fit into a three-bit field. 

The 6-bit fields can accommodate any value up to 63, since 

63 = 26- 1 = 1 25 + 1 24+ 1 23+ 1 22 + 1 21 + 1 20 

The 4-bit field can accommodate any value up to 15, since 15 = 24 - 1 = 1 x 23 + 1 x 22 + 1 x 2l + 1 x 2O 
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(d) s t a t i c  s t r u c t  ( 
unsigned a : 8; 
unsigned b : 6; 
unsigned c : 5; 

1; 
’ a and b will be stored within one 16-bit word, and c will be stored within a second 16-bit word. 

(e) s t a t i c  s t r u c t  ( 
unsigned a : 8; 
unsigned : 2; 
unsigned b : 6; 
unsigned c : 5; 

1; 
(j) s t a t i c  s t r u c t  ( 

unsigned a : 8; 
unsigned : 0; 
unsigned b : 6; 
unsigned : 2; 
unsigned c : 5; 

1; 

Chapter 14 

14.24 enum f l a g s  { f i r s t ,  second, t h i r d ,  four th ,  f i f t h } ;  

14.25 enum f l a g s  event; 

or 
enum ( f i r s t ,  second, t h i r d ,  four th ,  f i f t h )  event; 

14.26 enum (do = 1, re,  m i ,  fa ,  so l ,  l a ,  t i) soprano, bass; 

14.27 enum money (penny = 1, n i c k e l  = 5, dime = 10, 
quar te r  = 25, h a l f  = 50, d o l l a r  = 100); 

14.28 enum money coins = dime; 

or 

enum (penny = 1, n i c k e l  = 5, dime = 10, quarter = 25, 
h a l f  = 50, d o l l a r  = 100) coins = dime; 

14.29 nor th  = 2 
south = 3 
east = 1 
west = 2 

14.30 move-1 = 3 
move-2 = 2 

14.31 This switch statement calculates a cumulative score, using rules that depend on the values assigned to the 
enumeration variable move. The rules are as follows: if move = no r th  add 10 points to score; if move = south 
add 20 points to score; if move = east add 30 points to score; and if move =west add 40 points to score. An 
error message is displayed if move is assigned anything other than north, south, east or west. 

14.32 (a) argc = 3, argv[O] = demo, argv[ 1 ] =debug, and argv[ 21 = f a s t  

(6) argc = 2, argv[ 0 J = demo, and argv[ 1 J =debug f a s t  

14.33 This program will read in a line of text and display it in either upper- or lowercase, depending on the second 
command line parameter. This parameter must be either upper or lower. If it is neither upper nor lower, an 
error message is generated and the text is not displayed. 

14.34 t rans fer .exe  data.old data.new 

or, with some compilers, 

t r a n s f e r  data. o l d  data. new 
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#def ine  P I  3.1415927 

#def ine  AREA P I  * r a d i u s  * r a d i u s  

# d e f i n e  AREA(radius) P I  * r a d i u s  * r a d i u s  

#def ine  CIRCUMFERENCE 2 * P I  * r a d i u s  

#def ine  CIRCUMFERENCE(radius) 2 * P I  * r a d i u s  

#def ine  i n t e r e s t  { \ 
i= 0.01 * r; \ 
f = p * pow((1 + i ) ,  n ) ;  \ 

1 
This assumes that the variables i,r,f, p and n have all been declared to be double-precision variables. 

#def ine  i n t e r e s t ( p ,  r, n)  { \ 
i= 0.01 * r; \ 
f = p * pow((1 + i ) ,  n ) ;  \ 

1 
#def ine  max (a  >= b)  ? a : b 

or 

# d e f i n e  max ( ( ( a )  >= (b ) )  ? ( a )  : ( b ) )  

The second version will minimize the likelihood of undesirable side effects. 

#def ine  max(a, b)  (a  >= b)  ? a : b 

or 

#def ine  max(a, b )  ( ( ( a )  >= ( b ) )  ? (a)  : ( b ) )  

14.36 (a)  If the symbolic consant FLAGhas not been defined previously, define FLAG to represent the value 1. 

(b)  If the symbolic constant PASCAL has been defined previously, define the symbolic constants BEGIN and 
END to represent the symbols { and }, respectively. 

If the symbolic constant CELSIUS has been defined previously, define the macro tempera ture( t )  to 
represent the expression 0,5555555 * ( t  - 32); otherwise, define temperature so that it represents 
the expression 1.8 * t + 32. 

If the symbolic constant DEBUG has not been defined previously, define the macro o u t  as 
p r i n t f ( ” x  = % f \ n ” ,  x )  

Otherwise, if the symbolic constant LEVEL has a value of 1, define o u t  as 
p r i n t f ( ” i  = %d y = % f \ n ” ,  i,y [ i ] )  

and if LEVEL does not have a value of 1, define o u t  as the multiline macro 

f o r  (count = 1; count <= n; ++count) \ 
p r i n t f ( ” i  = %d y = % f \ n ” ,  i,y [ i ] )  

(Assume that the variables x, i,y, count and n have been properly declared.) 

“Undefine” the symbolic constant DEBUG if it has been defined previously. 

This problem illustrates the use of the “stringizing” operator (#). If the symbolic constant ERROR-CHECKS 
has been defined previously, then the macro message(1ine) is defined in such a manner that the 
argument l i n e  is converted into a string and then displayed. 

This problem illustrates the use of the “token-pasting” operator (##). If the symbolic constant 
ERROR-CHECKS has been defined previously, then the macro message (n)  is defined in such a manner that 
the value of messagen (e.g., message3) is displayed. 

14.37 (a)  # i f  defined(BO0LEAN) or # i f d e f  BOOLEAN 
#def ine  TRUE 1 #def ine  TRUE 1 
#def ine  FALSE 0 #def ine  FALSE 0 
#undef YES #undef YES 
#undef NO #undef NO 

#end i f  #end i f  



ANSWERS TO SELECTED PROBLEMS 52 I 

(b)  #if flag == 0 
#define COLOR 1 

#elif flag < 3 
#define COLOR 2 

#else 
#define COLOR 3 

#endif 
(c) #if SIZE == WIDE 

#define WIDTH 132 
#else 

#define WIDTH 80 
#endif 

(6) #define error(text) printf(#text) 
(e )  #define error(i) printf("%s\n", error##i) 
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Programming examples are indicated in italics. 

#def ine ,  40,458,466 
# e l i f ,  466 
# e l s e ,  466 
#endi f ,  466 
# i f ,  466 
# i f  d e f ,  466 
# i f  ndef,  466 
# inc lude ,  63,228,466 
# l i n e ,  466 
#undef,  466 
Accessing a bit field, 44 1 
Accessing a function, 179 
Accessing structure members, 343, 357, 359 
Accuracy, numerical, 30 
Actual arguments, 176, I79 
Actual parameters, 176, 179 
Adding two tables of numbers, 263, 302, 306 
Address operator (a),280, 282, 356 
Address, data item, 280 
Addresses, and the scanf  function, 71, 289 
Algebraic equation, solution 01; I42 
Analyzing a line of text, 286 
And, bitwise operator (a),428, 429 
ANSI standard, C, 8, I0 I 
Applications programming, 7 
Area of a circle, 9-I8 
Areasofcircles, 9, 10, 1 1 ,  12, 13, 14, 15, 17 
argc parameter, 455-457 
Argument declarations, 9 
Arguments, 9, 176 

actual, 176, 179 
and macro definitions, 460 
array, 193 
command line, 450 
formal, 176 
passing by reference, 249, 25 1, 284 
passing by value, 188, 189 
passing to a function, 188, 248 
structure, 347, 360, 364 

argv parameter, 455-457 
Arithmetic operators, 46 
Array arguments, 193, 248 

passing by reference, 249, 25 I ,  289 
Array declarations, 38, 245 
Array definitions, 241 
Array elements, 34, 241 

assigning values to, 292 
Array of structures, initial values, 342 

Index 

Arrajr: 
defining, 24 1 
index, 34 
multidimensional, 24 1 
of structures. 34 1 ,  346 
one- d i in en si on al ,24 1 
processing. 235 
returning from a function, 254 
size of. 352 
size specification, 242. 244 
subscript, 34 

Arrays. 34, 241 
and pointers. 286, 291 
and strings. 35,265 
automatic, 215. 243, 260 
character, 244 
extcmal. 2 15. 243, 260, 265 
initialimtion, 243, 245, 247, 260, 261, 293 
multidiniensional, 259, 302 
of pointers. 304 
passing to functions, 193, 248, 262, 286, 289 
ragged. 3 10 
static, 243 
string, 244 

Arrow (->) operator, 357, 359, 384 
ASCII character set, 30, 3 I ,  48 1 
Assigning entire structures, 347 
Assigning values to array elements, 292 
Assignment operators, 56, 58, 124 
Assignment rules, data, 480 
Assignment statement, 10 
Assignment suppression, 78 
Assign men t : 

bitwise, 434 
different data types, 56 

Associativity, 49 
Automatic arrays, 2 15, 243, 260 
Automatic storage class, 207 
Automatic variable, scope of, 2 10 
Automatic variables, 208 

initial values, 208 
Auxiliary storage devices, 4 
Average length of several lines of text, 209, 2 15 
Average, deviations about, 246, 247 
A veraging. 

a list of nonnegative numbers, 156 
a list of nrtmhers, 129, 132, 135, 136, 156 
student eunm scores, 90 
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Backwards, printing, 195 

BASIC, 7 

Batch processing, 4, 5 

Binary numbers, 476 

Binary tree, 372 

Birthdates, storing, 44 1 

Bit fields, 437 


accessing, 44 1 

Bit patterns, displaying, 435 

Bits, 3 


inverted, 424 

masked, 424 

shifted, 424 

shifting position, 433 


Bitwise and operator (a), 428,429 
Bitwise assignment operators, 434 

Bitwise exclusive or operator (*), 428, 429 

Bitwise operations, 427 

Bitwise or operator (I), 428,429 
Borland International, 10 1 

Bottom-up programming, 102 

Branching, 122, 124 

break statement, 153 

Breakpoints, 116 

Buffer area, data file, 399 

Bytes, 3 


C character set, 24 

C preprocessor, 466 

C program: 

clarity, 103 

clear output, 103 

entering into the computer, I04 
logic, 103 

planning, 101 

prompts for input, 103 

structure of, 8 

use of comments, 103 

use of indentation, 103 

writing, 103 


C++, 8 

C: 

ANSI standard, 8, 101 

characteristics of, 7 

history of, 8 

introduction to, 7 

K&R, 8 

portability, 8 


Calculating depreciation, 148, 189 

Calculating factorials, 182, 194, 208 

Calling a function, 179 

case labels, 146 

Case sensitivity, 24 


INDEX 

Casts, 49, 52 

char data type, 26 

Character arrays, 244 


assigning initial values, 293 

Character constants, 27, 30 

Character conversion, lowercase to uppercase, 63, 175 

Character set, 24 


ASCII, 30, 3 1, 48 1 

EBCDIC, 30 


Characteristics, computer, 2 

Characters, encoding a string oJ: 139 

Circle, area of, 9-18 

Circles, areas oJ 9, 10, 11, 12, 13, 14, 15, 17 

Circular linked list, 372 

Circumflex (A),when reading strings, 74 

Clarity, 19 


C program, 103 

Class, storage, 207 

Closing a data file, 400 

Comma operator, 157 

Command line arguments, 450 

Command line parameters, 455 

Comments, 9 


within a C program, 103 

Comparing pointer variables, 299 

Compilation errors, 109 

Compiler, 7 

Compiling a program, Turbo C t t ,  106 

Complementation operator (-), 428 

Compound interest, 101, 103, 106, 140, 3 18,46 1 

Compound statement, 9, 39, 123 

Computer characteristics, 2 

Computer program, 2 

Computers, introduction to, 1 

Computing, interactive, 5 

Concatenation: 

macro, 469 

string, 266 


Conditional operator, 59, 123 

Connectives, logical, 123 

Consecutive integer quantities, 127, 13 1, 133, 134 

Constant, 27 


character, 30 

decimal, 27 

enumeration, 45 1 

floating-point, 29 

hexadecimal, 28 

integer, 27 

long integer, 28 

octal, 27 

string, 32 

symbolic, 40 

unsigned, 28 
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cont inue statement, 155 
Control statements, 40, 123 

summary, 482-483 
Control string, 7 1, 80 

assignment suppression in scanf, 78 
labels in output, 89 
reading consecutive single characters, 78 
unrecognized characters in scanf, 79 

Control structures, nested, 136 
Control, transfer of, 160 
Conversational programming, 90 
Conversational programs, 6 
Conversion characters, 7 1, 80 

data input, 72 
data output, 80, 86 
prefixes, 77, 86 
p r i n t f ,  485 
scanf, 484 

Conversion rules, data, 480 
Converting several lines of text to uppercase, 138, 16 1 
Craps game, simulation of: 183,222 
Creating a data file, 401 
Creating a data file, 40 1 
Creating aJile containing customer records, 403 
Creating an unformatted data Jile containing customer 
records, 4 13 
CSMP, 7 
Customer records: 

creating afile containing, 403 
locating, 362 
updating, 347, 366 
updating a file containing, 408 

Data, 2 
Data assignment rules, 480 
Data compression (storing names and birthdates), 44 1 
Data conversion, 48 

rules, 480 
Data file, 399 

closing, 400 
creating, 40 1 
low-level, 399 
opening, 399 
processing, 407 
reading, 402 
standard, 399 
stream-oriented, 399, 40 1 
system-oriented, 399 
text, 399 
unformatted, 399, 401, 412 

Data file, creating, 40 1 
Datafile, reading, 402, 457 
Data output: 

conversion characters. 80 
floating point, 8 1 

Data structures, linked, 370 
Data types, 26, 479 

memory requirements, 26 
user-defined, 353 

Data: 
character, 2 
graphic, 2 
input, 2 
numeric, 2 
output, 2 

Day of the year, displaying, 3 1 1 
Debug menu, Turbo C++, 106 
Debugger, interactive, 1 16 
Debugging a program, 1 14 
Debugging techniques, 1 12 
Debugging with an interactive debugger, 1 17 
Debugging: 

break points, 116 
error isolation, 1 I3 
stepping, I17 
tracing, 113 
watch values. 116 

Decimal integer, 27 
Declarations, 35-37 

and initial values, 37 
argument, 9 
array. 38, 245 
external variables, 2 10, 224 
function, 220 
pointer, 283, 322 
structure, 338, 356 
variable, 224 

Decrement operator, 5 1 
d e f a u l t ,  within s w i t c h  statement, 147 
Defining a function, 176, 2 19 
Defining a structure, 338, 356 
Defining an array, 241 
Definitions: 

external variables, 210, 224, 227 
function, 2 19 
variable, 224 

Depreciation, calculating, 148, 189 
Desirable program characteristics, 18 
Deviations about an average, 246, 247 
Diagnostic messages, 109 
Diagnostics, error, 109 
Displaying bit patterns, 435 
Displaying the day of the year, 3 1 1 
Division, integer, 46 
do - w h i l e  statement, 130 
double data type, 26 
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Drop-down menus, 104 External variables, 2 10,224, 227 
Dynamic memory allocation, 294, 296, 377 initial values, 214,224 

side effects, 216 

EBCDIC character set, 30 
Editing area, Turbo C++, 104 Factorials, calculating, 182, 194, 208 
Editing, Turbo C++, 105 False, value of, 53 
Editor, screen, 104 f close function, 400 
Efficiency, 19 f eof function, 4 15 
Elements, array, 241 Fibonacci numbers, generation of: 2 17,227,425 
else, 125 Field, 75, 83 
Embedded structures, 340 Field width: 
Encoding a string of characters, 139 data input, 75 
End-of-file condition, 69,4 15 output, 83, 84-85 
Entering a program into the computer, 104 Fields, bit, 437-441 
Enumeration constants, 27, 45 1 File type, 400 

equivalent values, 45 1 Files, 219 
Enumeration variables, 450 data, 399 

processing, 452 header, 228 
use of, 453 library, 228 

Enumerations, 450 output, 87, 486 
defining, 450 Flags, p r i n t f ,  486 

Equality operators, 53, 122 f l o a t  data type, 26 
Error diagnostics, 109 Floating-point constant, 27, 29 
Error isolation, 113, 118 exponent, 29 
Error messages: precision, 30 

compilation, 109 range of, 29 
diagnostic, 109 Floating-point data, rounding on output, 84 
execution, 1 10 Floating-point variables, 10 

Error tracing, 113 f open function, 400 
Error trapping, 140 f o r  statement, 133 
Errors: Formal arguments, 176 

compilation, 109 Formal parameters, 176 
execution, 1 10 Fortran, 7 
logical, 112, 118 f read function, 413 
syntactic, 109 f r e e  function, 296, 378 
syntactic, 109 Function calls, multiple, 180 

Escape sequences, 24,3 1,477 Function declaration, host function, 3 15 
Exam scores, averaging, 90 Function definition, 219 
Exclusive or, bitwise operator ("), 428,429 Function heading, 9 
Executing a program, Turbo C++, 106 Function prototypes, 174, 18 1 
Execution: and the register storage class, 426 

computer program, 2 array arguments, 248 
errors, 110 Function: 

Exponent, floating-point constant, 29 access, 179 
Exponentiation, 46 declaration, 220 
Expression statements, 9, 39, 123 definition, 176 
Expressions, 38 external, 2 19 

changing data types, 49, 52 guest, 3 15 
different type operands, 48 host, 3 15 

External arrays, 215, 243, 260 returning a pointer, 290 
External function, 2 19 static, 2 19, 222 
External storage class, 207 storage class, 2 19 
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Functions, 8 

and macros, 461,465 
library, 61,62,228,458,487-490 
passing arrays to, 248,262,286,289 
passing pointers to, 284 

passing structures to, 360, 361, 364 

passing to other functions, 3 15 

structure arguments, 347 

use of, 174 

within multifile programs, 2 19 


Future value of monthly deposits, 3 18,461 
fwrite function, 413 


Game of chance, simulation of; 183,222 
Generality, 19 

Generating Fibonacci numbers, 2 17,227,425 
get c har function, 69 

gets function, 89 

Global arrays, 215 

Global variables, 207, 2 10, 224, 227 


initial values, 2 14 

side effects, 2 16 


goto statement, 160 

use of, 161 


Grammatical errors, 109 

Guest function, 3 15 


Hanoi, towers of; 196 

Header files, 228 

Heading, function, 9 

Hexadecimal constants, 28 

Hexadecimal numbers, 476 

High level programming languages, 7 

Highlighting, Turbo C++,105 

History of C, 8 

Host function, 3 15 


declaration, 3 15 


Identifiers, 24 

case sensitivity, 24 

length of, 25 


if - else statement, 125 

if - else statements, nested, 126 

if statement, 124 

Include files (library functions), 487-490 

Increment operator, 5 1 

Indentation, within a C program, 103 

Independence, machine, 229 

Index, array, 34 

Indirection, 282 

Indirection operator, 280, 301, 309 

Initial value, pointer variable, 283 

Initial values: 

array, 243,245,247,293 
array of structures, 342 

assigned to array elements, 260, 261 

automatic variables, 208 

external variables, 2 14 

static variables, 2 17 

structure members, 340 

union members, 385 

within declarations, 37 


Input data, 2 

prompts for, 103 


Input: 
conversion characters, 72 

multiple data items, 71 

single character, 69 

string, 74 


int data type, 26 

Integer constants, 27 

Integer constants, range of, 28 

Integer division, 46 

Integer quantities, consecutive, 127, 13 1, 133, 134 

Integer quantities, largest of; 180 

Integrity, 18 

Interactive computing, 5 

Interactive debugger, 1 16 


debugging with, 117 

Interactive programming, 90 

Interest, compound, 101, 103, 106, 140,318,461 

Interpreter, 7 

Introduction to computers, 1 

Isolation, error, 113, 1 18 


K&R C, 8 

Kernighan, Brian, 8 

Keywords, 7,25 

Label, statement, 160 

Labels, case, 146 

Laptop computers, 1 

Largest of three integer quantities, 180 

Left, shift operator (<<), 433 

Library files, 228 

Library functions, 7, 61, 62, 228,458, 487-490 


string, 266 

Library, customized, 174 

Line of text: 

analysis of, 286 

reading and writing, 82,90 

Linear linked list, 372 

Lines of text: 

average length, 209,2 15 

conversion to uppercase, 13 8, 16 1 


Linked data structures, 370 
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Linked list, 371 compilation, 109 
circular, 371 diagnostic, 109 
linear, 371 execution, 110 
multiple pointers, 37 1 Microsecond, 4 
processing, 3 73 Minicomputer, 1 
tree, 371 Modem, 5 

LISP, 7 Modes of operation, 4 
List of numbers: Modularity, 19 

averaging, 129, 132, 135, 136, 156 Modulus operator (%), 46 
reordering, 252,295 Monitor, computer, 2 

List of strings, reordering, 266, 309 Monthly deposits, firture value of; 3 18, 46 1 
List, linked, 371 Mouse, 104 
Local variables, 207 Multidimensional arrays, 259, 302 
Locating customer recorh, 362 and pointers, 299, 304 
Logical bitwise operations, 429 initialization, 260, 26 1 
Logical bitwise operators, 428,429 passing to a function, 262 
Logical errors, 1 12, 1 18 Multifile program, 216, 219 
Logical operators, 54, 123 Multiline macros, 459 
long data type, 26 Multiple data items: 
Long integer constants, 28 input, 71 
Looping, 122, 127, 130, 133 output, 80 
Loops: Multiple function calls, 180 

do - while, 130 
f o r ,  133 Names and birthdates, storing, 44 1 
nested, 136 Nanosecond, 4 
while, 127 Nested control structures, 136, 139 

Low-level data file, 399 Nested i f  - e l s e  statements, 126 
Low-level programming, 424 Nested loops, 136 
Lowercase to uppercase: Nested parentheses, 50 

character conversion, 63, 175 Network, 2 
text conversion, 70, 128, 13 1, 134, 138, 161,242, 401 Nonnegative numbers, overaging a list, 156 

NULL,284 
Machine independence, 229 Null characters, 33 
Macro definition, arguments, 460 Number systems, 476 
Macros, 458 Numbers: 

in place of functions, 461, 465 averaging a list, 129, 132, 135, 136, 156 
multiline, 459 binary, 476 

main function, 8 hexadecimal, 476 
Mainframe, 1 octal, 476 
malloc function, 294, 296,377 Numerical accuracy, 30 
Masking, 430-432 Numerical arrays, assigning initial values, 293, 295 
Maximum, search for, 21 I ,  225 Numerical output, precision, 84 
Member names, scope, 343 
Members: Object program, 7 

as pointers, 358 Object-oriented programming, 8 
enumeration, 450 Octal constants, 27 
structures and unions, 338 Octal numbers, 476 
union, 382 Offset, array elements, 291 

Memory allocation, dynamic, 294, 296, 377 One’s complement operator (-), 427 
Memory requirements, data types, 26 One-dimensional arrays, and pointers, 29 1 
Memory, computer, 3 Opening a data file, 399 
Menu bar, Turbo C++, 104 Operands, 46 
Messages: mixed data types, 48 
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Operations: 
bitwise, 427 

logical bitwise, 429 

on pointers, 297, 298, 299 


Operator: 
address (a), 280,282 
address, 356 

arrow (->), 357,359,384 
bitwise and (a),428,429 
bitwise exclusive or (A),428, 429 

bitwise or ( I), 428,429 
comma, 157 

complementation (-), 428 

conditional (7 :), 59, 123 

decrement ( --), 5 1 

increment (++), 5 1 

indirection (*), 280, 301, 309 

modulus (a),46 

one’s complement (-), 427 

period, 343,344,357, 359,384 
s izeof ,  52,352 
stringizing (#), 468 

token-pasting (##), 469 


Operators, 38 

arithmetic, 46 

assignment, 56, 58, 124 

bitwise assignment, 434 

equality, 53,122 
logical, 54, 123 

logical bitwise, 428, 429 

precedence, 49, 55 ,  59,60 

relational, 53, 122 

shift, 433 

summary, 478 


Operators, unary, 50 

Or, bitwise operator ( I), 428, 429 

Output data, 2 

output: 

clear, 103 

multiple data items, 80 

single character, 69 

strings, 82 


Palindromes, search for, 157 

Parameters, 9, 176 


actual, 176, 179 

and macro definitions, 460 

array, 193 

command line, 455-457 

formal, 176 

passing by reference, 249, 25 1, 284 

passing by value, 188, 189 

passing to a function, 188, 248 


structure, 347, 360, 364 

Parentheses: 

nested, 50 

use of, 50 


Pascal, 7 

Passing functions to other functions, 3 15 

Passing structures to functions, 347 

Period operator, 343, 344, 357, 359, 384 


repeated use of, 344,384 
Personal computer, 1 

Piglatin generator, 254 

Planning a C program, 101 

Platform, independence, 229 

Pointer arguments, passing by reference, 284 

Pointer arrays, and strings, 308, 3 10 

Pointer declarations, 283, 322 

Pointer variable, 280, 283 


initial value, 283 

Pointer variables: 

assignment of integer values, 284 

comparison, 299 

declarations, 283 


Pointer, returned by a function, 290 

Pointers, 280 


to register variables, 426 

and arrays, 286 

and multidimensional arrays, 299, 304 

and one-dimensional arrays, 29 1 

and structures, 356 

and the scanf function, 71 

as structure members, 358 

operations on, 297, 298, 299 

passing to a function, 284 


Pointing device, 104 

Portability, 7 


C programs, 8 

program, 174 


Power, raising a number to, 386,453 
Precedence, 49, 5 5 ,  59,60 

Precision: 

numerical, 3 

of floating-point constants, 30 

output data, 84 


Prefixes: 
case, 146 

input, 77,484 
output, 86, 485 


Preprocessor, C, 466 

printf: 


conversion characters, 485 

function, 80, 84 


Printing backwardr, 195 

Processing a data file, 407 
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Processing a linked list, 3 73 

Processing a structure, 343 

Processing an array, 245 

Processing enumeration variables, 452 

Processing structure members, 346 

Program, 2 

Program characteristics, desirable, 18 

Program logic, 103 

Program portability, 174 

Program: 

debugging, 114 

execution, 2 

multifile, 2 16, 2 19 

object, 7 

single-fiJe, 2 16 

source, 7 


Programming languages: 
general purpose, 7 

high level, 7 

special purpose, 7 

types of, 7 


Programming: 
applications, 7 

bottom-up, 102 

interactive, 90 

low-level, 424 

object-oriented, 8 

planning, 101 

systems, 7 

top-down, 101, 181 


Programs, conversational ,6 

Prompts, for input data, 103 

Prototypes, function, 174, 18 1 

Pseudocode, 10 1 

p u t  c har function, 69 

pu ts  function, 89 


Quadratic equation, real roots ox 1 I 1, I 14 

Qualifiers, 26 


Ragged arrays, 3 10 

Raising a number to a power, 386,453 
rand function, 183 

Range of floating-point constants, 29 

Range of integer constants, 28 

Reading a data file, 402 

Reading a data file, 402, 457 

Reading and writing a line of text, 82, 90 

Real roots of a quadratic equation, 1 1 1, 1 14 

Recalling a file, Turbo C++, 106 

Recursion, 174, 194 

Register storage class, 207 


and function prototypes, 426 


INDEX 

Register variables, 424 

pointers to, 426 


Relational operators, 53, 122 

Reliability, 4 

Reordering a list of numbers, 252, 295 

Reordering a list of strings, 266, 309 

Repeated averaging of a list of numbers, 136 

Repeated compound interest calculations, 140 

Reserved words, 25 

re turn  statement, 177 


and arrays, 254 

Returning a structure, 362, 364 

Right, shift operator (>>), 433 

Ritchie, Dennis, 8 

Roots of a quadratic equation, 1 I I ,  I 14 

Rounding, output data, 84 

Run-time messages, 110 


Saving a file, Turbo C++, 105 

scanf conversion characters, 484 

scanf function, 7 1, 75 


and addresses, 289 

Scope: 

automatic variable, 2 10 

of member names, 343 


Screen editor, 104 

Scroll bars, Turbo C++, 105 

Search for a maximum, 2 11,225 

Searching for palindromes, 157 

Selection, 122, 146 

Self-referential structures, 370, 373 

Sequences, escape, 477 

Shift left operator (<<), 433 

Shift operators, 433 

Shift right operator (>>), 433 

Shifting bits, 433 

Shooting craps, simulation oJ 183,222 
shor t  data type, 26 

Side effects, and external variables, 2 16 

signed data type, 26 

SlMAN, 7 

Simplicity, 19 

Simulation, game of chance, 183,222 
Single character input, 69 

Single character output, 69 

Single-file program, 2 16 

sizeof operator, 52, 352 

Solution of an algebraic equation, 142 

Sorting: 

a list of numbers, 252, 295 

Sorting a list of strings, 266, 309 


Source program, 7 

Speed, 4 
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srand function, 185 

Stack, 195 

Standard data file, 399 

Statement label, 160 

Statement: 

assignment, 10 

compound, 9 

expression, 9 


Statements, 39 

compound, 39, 123 

control, 40, 123 

expression, 39, 123 


Static arrays, 243 

Static function, 219,222 
Static storage class, 207 

Static variables, 2 16, 227 


initial values, 217 

Status bar, Turbo C++,105 

Stepping, 117 

Storage class, 38,207 

automatic, 207 

external, 207 

function, 2 19 

register, 207,424 
static, 207 


Storage devices, auxiliary, 4 

Storing names and birthdates, 44 1 

strcrnp function, 266 

st rcpy  function, 266 

Stream (data file), 399 

Stream pointer (data file), 399 

Stream-oriented data file, 399, 401 

String arrays, 244 


initialization of, 3 1 1 

String constants, 27, 32 


and null characters, 33 

String: 

input, 89 

of characters, encoding, 139 

output, 89 


Stringizing operator (#), 468 

Strings, 244 


and arrays, 35,265 
and pointer arrays, 308,3 10 

displaying, 82 

field width (output), 86 

reading, 74 


Stroustrup, Bjarne, 8 

Structure arguments, 347, 360, 364 

Structure members: 

accessing, 343,357,359 
as pointers, 358 

initialization, 340 


' 

processing, 346 

Structure of a C program, 8 

Structure submembers, 344 

Structure variables, 338 

Structure: 

defining, 338,356 
processing, 343 

returning from a function, 362, 364 

size of, 352 


Structures, 338 

and pointers, 356 

and unions, 383 

array of, 341,346 
assigning, 347 

embedded, 340 

passing to functions, 347, 360, 361, 364 

self-referential, 370, 373 

user-defined, 354 


Student exam scores, averaging, 90 

Submembers, structure, 344 

Subscripts, array, 34, 241 

Substitution, macro, 461 

Summary: 

control statements, 482-483 

operators, 478 


Supercomputer, 1 

switch statement, 146 

Symbolic constants, 40 

Syntactic errors, 109 

System-oriented data file, 399 

Systems programming, 7 


Tables of numbers, addition of;263, 302, 306 

Tag: 

enumeration, 450 

structure, 338 

union, 383 


Text conversion, lowercase to uppercase, 70, 128, 1 3 1, 

134, 138, 161,242,401 

Text file, 399 

Text: 

average length of several lines, 209,2 15 

reading and writing, 82, 90 


Three integer quantities, largest OJ 180 

Timesharing, 5 

Title bar, Turbo C++, 104 

Token-pasting operator (##), 469 

Top-down programming, 10 1, 18 1 

Towers of Hanoi, 196 

Tracing, 113 

Tree, 371 


binary, 372 

True, value of, 53 
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Turbo C++, 101, 104 

compiling a program, I06 
debug menu, 106 

editing, 105 

editing area, 104 

~xecutinga program, I06 
highlighting, 105 

intereractive debugger, 1 16-I I7 

menu bar, 104 

recalling a file. 106 

saving a file, 105 

scroll bars, 105 

status bar, 105 

title bar, 104 


Type casts, 49, 52 

Type, file, 400 

typedef,  353 

Types of programming languages, 7 


Unary operators, 50 

Unformatted data file, 399, 40 1,  4 12 

Unformatted data file containing customer records: 

creating, 4 I2  
updating, 4 15 


Union members, initialization, 385 

Unjon, d e ~ n i n g ,  383 

Unions, 338, 382 


and structures, 383 

Unsign~d constan~s, 28 

unsigned data type, 26 
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lipdating a file containing customer records, 408 

Updating customer records, 347. 366, 4 I5 

Use of parentheses, 50 

User-defined data types, 353 

User-defined structures, 354 


Variable: 
declaration, 224 

definition, 224 

pointer, 280, 283 


Variables, 33 

automatic, 208 

enumeration, 450 

external, 2 10, 224, 227 

floating-point, 10 

global, 207, 2 10, 224, 227 

local. 207 

register, 424 

static, 2 16, 227 

structur~,338 

within multifile programs, 224 


v o i d ,  178 


Watch values, I16 
w h i l e  s t a t e~en t ,127 

Whitespace, I0 
Words, 3 

W ~ r k s t a ~ i ~ n ,1 

Writing a C program, 103 





